

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Rationalization with ruled surfaces in architecture

Steenstrup, Kasper Hornbak; Gravesen, Jens; Bærentzen, Jakob Andreas

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Steenstrup, K. H., Gravesen, J., & Bærentzen, J. A. (2016). Rationalization with ruled surfaces in architecture.
Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2016; No. 413).

http://orbit.dtu.dk/en/publications/rationalization-with-ruled-surfaces-in-architecture(9d38f5ce-8f63-4e58-9786-09df0aa7a5aa).html

Rationalization with ruled surfaces
in architecture

Kasper Hornbak Steenstrup
April 2016
PHD-2016-413

Abstract

This thesis addresses the problems of rationalizing and segmenting large scale 3D
models, and how to handle difficult production constraints in this area. The design
choices when constructing large scale architecture are influenced by the budget.
Therefore I strive to minimize the amount of time and material needed for pro-
duction. This makes advanced free form architecture viable for low cost projects,
allowing the architects to realize their designs.

By pre-cutting building blocks using hot wire robots, the amount of milling
necessary can be reduced drastically. I do this by rationalizing the intended shape
as a piecewise ruled surface; the developed method was able to cut away up to
95% of the excess material. Methods were developed to minimize the number of
blocks necessary to build advanced large scale 3D shapes. Using stochastic opti-
mization to guide the segmentation, it was possible to remove up to 48% of the
building blocks. Hot blade cutting for constructing models with positive Gauss
curvature is an upcoming technology. Three segmentation algorithms were devel-
oped to solve construction constraints that arises when using this technique. One
of the algorithms focusses on creating an aesthetic segmentation.

Resume

Denne afhandling omhandler segmentering og approksimering af 3D modeller og
de problemer der opstår når modellerne når en størrelse, hvor 3D print ikke er
muligt. Ved opførelsen af store bygningsværker kan omkostningerne være en hin-
dring for kreativiten. I denne afhandling forsøger jeg at minimere produktions-
tid samt mængden af byggematerialer, for at gøre det nemt og billigt at realisere
arkitektoniske mesterværker.

Mængden af fræsning kan reduceres kraftigt ved at glødetrådsskære bygge-
klodserne forinden. Jeg har udviklet en metode til at approksimere overflader med
stykvist retlinjede flader, og derved opnået at fjerne op til 95% af det overflødige
materiale. Ved at bruge stokastisk optimering, til at segmentere 3D modeller,
lykkedes det at reducere antallet af bygningsklodser med op til 48%. En ny og
lovende teknologi er glødeklingeskæring, der kan udskære flader med positiv Gauss
krumning. Vi har udviklet tre segmenteringsalgorithmer, som løser produktionsbe-
grænsninger, der opstår med denne teknik. En af disse algorithmer fokuserer på at
lave den mest æstetiske segmentering.

Preface

This thesis presents the results of my research between the years 2013 and 2016.
Throughout my PhD I have focused on segmentation and rationalization for the
industry, in particular for large scale structures, and how to overcome the problems
and constraints that arise when using different building techniques.

This thesis contains several papers and manuscripts that I authored or co-
authored; Chapter 1 introduces the BladeRunner project, the chapters, and prelim-
inaries. Chapter 2 is a paper [SNS+] describing pre-cutting of blocks and is sub-
mitted for the conference AAG 2016. Chapter 3 is a manuscript [SBSG] describing
block segmentation and will be submitted to SIGGRAPH Asia 2016. Chapter 4
is an extension of what is introduced in the paper [BBaE+]. Chapter 5 describes
three algorithms solving Elastica segmentation, and one of the algorithms can be
found in the paper [SFN+16] from the conference Rob|Arch 2016.

Throughout my time as a PhD student, I have been grateful for the financial
support from the Innovation Fund Denmark and the grant given to the BladeRun-
ner project. The Otto Mønsted and Augustinus foundation have also helped me
with economic support for travelling abroad, for which I am grateful. I would also
like to thank the companies that I have worked closely with: The robotics company
Odico, who have had the industrial and robotic know-how, the architect company
3XN, which provided a lot of test cases and insight to problems in the architec-
tural world, the DTI with knowledge of robots, the concrete company CONFAC
for showing and producing the final product, the university UBC for letting me
visit for five months, and the university DTU where I have conducted me PhD.
Without all of this, my PhD would not have been the same.

I had the great opportunity to be part of three scientific groups: theMathematics
section and the Image Analysis & Computer Graphics section at DTU, and the
department of Computer Science at UBC. I want to give a special thanks to my
main supervisor Jens Gravesen who have not only helped me in my studies, but
also done it with an expertise and a good spirit, I have not seen elsewhere. I will
like to thank co-supervisor Andreas Bærentzen from DTU and Alla Sheffer from
UBC for broadening my mind on geometry. I will also like to thank Toke Bjerge
Nørbjerg, my fellow PhD student on the project. It has been a joy working with
you all.

Last but not least I would like to thank my partner Irene L. T. Heilmann for

vi Preface

the support and for helping me throughout the PhD. From text correction and
mathematics calculation to general support in what to do next, Irene have always
been there.

Contents

1 Introduction 7
1.1 BladeRunner . 7
1.2 Chapters . 12
1.3 Preliminaries . 12

1.3.1 Splines . 12
1.3.2 Ruled surface . 13
1.3.3 Curvature . 14

2 Cuttable ruled surface strips for milling 17
2.1 Introduction . 17
2.2 Method . 21

2.2.1 Constraints . 21
2.2.2 The optimization problem . 23
2.2.3 Initialization . 24

2.3 Results . 24
2.4 Conclusion and future work . 27

3 Block Segmentation 29
3.1 Introduction . 29
3.2 Previous work . 30
3.3 Method . 31

3.3.1 The idea . 32
3.3.2 Pure translation . 32
3.3.3 Rotation . 33
3.3.4 Alignment . 33
3.3.5 The algorithm . 34

3.4 Results . 34
3.5 Design choices . 37
3.6 Conclusion . 39

4 Segmentation versus rationalization 41
4.1 Challenges . 41
4.2 Algorithm . 43

2 Contents

5 Elastica segmentation 47
5.1 Robotic setup and constraints . 49

5.1.1 Dimension constraints . 49
5.1.2 Approximation constraint . 50
5.1.3 Shape constraints . 51
5.1.4 Blade strain constraint . 52
5.1.5 Multiple cuts constraints . 52
5.1.6 Limitation of the constraints 53

5.2 Inflection points algorithm . 54
5.3 Trace algorithm . 56
5.4 Longest elastica algorithm . 58

6 Discussion 63

7 Conclusion 65

8 Paper: Hot Blade Cuttings for the Building Industries 71

9 Paper: Robotic Hot-Blade Cutting 89

10 Paper: Designing for Robotic Hot-Blade Cutting 105

List of floats

Tables
2.1 In the second column the volume of the model is shown. In column

3,4, and 6 we show how much volume there is left for milling using
our method, the convex hull, and the bounding box respectively. All
volumes are normalized with respect to the volume of the bound-
ing box. In column 5 and 7 we show how much more volume our
method removes compared to the convex hull and the bounding box,
respectively. 25

3.1 The number of blocks used in the initial state and in the final seg-
mentation for twelve cases. The reduction in percentage is also shown. 36

3.2 The number of blocks in the initial step, and for different combina-
tions of the operations. 39

Figures
1.6 The basis functions β3

u,i having the knot vector u = [0, 0, 0, 0, 0.25, 0.25, 0.5, 1, 1, 1, 1].
Since the multiplicity in the knot 0.25 is two, there is only C1 conti-
nuity at that point. 13

2.1 Different cutting techniques: CNC-milling, hot wire cutting, and hot
blade cutting. 18

2.2 Creating an artificial concrete landscape in the urban harbor front
of Copenhagen. 19

2.3 To the left a ruled surface defined by two curves. To the right a
piecewise ruled surface defined by several curves. 20

2.4 Planar intersection of the surface and the piecewise ruled rational-
ization. If the rulings turn less than 180◦ then the convexity of the
rulings guarantees that the extended rulings never intersect the surface. 20

2.5 The discretized piecewise ruled surface from figure 2.3. The points
s(ui, vj1), . . . , s(ui, vjh

) form an instance of the moving polygon. The
vector ri,` is a leg in the polygon, i.e., a ruling. The vectors wi,1, . . . ,wi,h

goes from one polygon of rulings to the next. 22

4 CONTENTS

2.6 Illustration of the 3 steps that initialize the model into 900 points.
Firstly: 10 of the 30 planes are shown, Secondly: 12 of the 30 in-
tersection curves. Finally: 300 of the 900 discitization points are
shown. 24

2.7 Model 1 with volume shown, the volume is created by intersection
the bounding box with the surface 25

2.8 Five models rationalized by piece-wise ruled surfaces. Model one
has been cut four times in one directions and four times in roughly
the orthogonal direction. The four other models have been cut four
times in one direction. 26

3.1 2D example of the initialization. Left: the model, middle: a grid of
blocks are laid over the model, and right: non-intersecting blocks are
removed. 31

3.2 How translation works on a 2D example. 32
3.3 How rotation works on a 2D example. 33
3.4 How alignment works on a 2D example. 33
3.5 Eight models and the segmentation of them. 35
3.6 The model and four stages of the segmentation. From left to right:

the model; the initialization; after 20 iterations; after 40 iterations;
the result after 49 iterations. In one iteration, each block is been
considered at least once. 36

3.7 The Neptun model and its segmentation for three different block sizes. 37
3.8 The initial state and the result of different combinations of opera-

tions. The rightmost case corresponds to the full algorithm. 38

5.3 Left: The original facade. Middle: 26 parallel planes evenly dis-
tributed. Right: the 26 planar curves of the facade ready to be
approximated. 49

5.4 Left: model surface. Middle: building block. Right: hot blade. . . . 50
5.8 Left column: the model where the red curve c is the cutting direction.

Middle column: the rotated planes found by equation 5.4. Right
column: the curves are the intersection between the planes and the
model. The two rows show different view points. 53

5.13 The blue points are the local maxima of curvature for each curve,
the red points are the inflection points for each curves. Both the red
and blue points form curves on the surface. 57

5.14 Left: The traces of curvature maxima. Right: The result after a
short trace is removed. The traces follow the geometry of the model. 57

5.15 Left: The original traces in black, and extra traces in red. Right:
The 7 segments of the result. 58

CONTENTS 5

5.16 Three iteration for finding the longest accepted elastica curve. From
top to bottom: the full length curve c; the first subsection with length
L (not accepted); the second subsection (accepted); the third sub-
section (not accepted); the fourth subsection. Observe the extension
or subtraction of the curve is halved for each step. 59

5.17 Left: The result of the algorithm starting from the top left edge.
Right: The segments of the result. 60

6 CONTENTS

Chapter 1

Introduction

1.1 BladeRunner
The BladeRunner project is a three year research project funded by the Innovation
Fund Denmark, and the participants are the three industrial firms Odico, 3XN, and
CONFAC as well as the two research institutions Technical University of Denmark
(DTU) and Danish Technological Institute (DTI). When architects design buildings
with advanced curves, the construction process requires special casting molds. The
architectural model goes through rationalization, in order for robots to cut the
model from expanded polystyrene (EPS) blocks using a hot wire or a hot blade.
The blocks are put together to form the casting mold and concrete is poured on
top, finally creating the architect’s design. When the architects’ designs are more
complex, the construction process becomes more complicated, and the cost of the
building increases rapidly. The goal of the BladeRunner project is to explore and
research the technology of hot wire and hot blade cutting in the industry. Hot
wire cutting was from the start of the project used by Odico on a commercial level,
whereas hot blade cutting was more of a theoretic concept.

The diversity of the partners in the BladeRunner project, means that most of
the processes, from designing a model to casting it in concrete, are covered. The
roles, of the different partners in the project, are:

• 3XN is an architect firm where case studies for the project arises.

• DTU Compute covers the rationalization and segmentation of the design.

• DTI develops the robot setup for the hot blade and (together with DTU
Mechanical Engineering) develops the design of the hot blade.

8 Introduction

• DTU Mechanical Engineering simulates blade expansion and material com-
ponents, and (together with DTI) develops the design of the hot blade.

• Odico is a robotics company. They have a hot wire robot setup and handle
coating of EPS blocks for fabrication.

• CONFAC is a concrete casting firm where the cut blocks are used for concrete
casting.

A hot wire is a thin metal wire heated to approximately 200◦C. The wire is
held by a robot and cuts through EPS blocks by melting the material, it comes
in contact with. The wire forms a straight line at all times, producing shapes of
so-called ruled surfaces. After cutting, the blocks can be used as molds for concrete
casting. The block can also be used directly as building material if given a coating
that is durable. The robot setup and the result of cutting a block twice is seen in
Figure 1.1.

Figure 1.1: Left: An ABB robot setup with a hot wire mounted in the two ends of the
robot’s frame. Right: The result of an EPS block after two cuts. This model was created
at the workshop Research day 2015 at DTU

The hot blade is a metal blade heated to approximately 350◦C mounted between
two robot arms. By changing the positions and angles of the robot’s hands, the
blade bends in different shapes. In Figure 1.2 is shown the robot setup and the
result of cutting the same block twice; notice this shape cannot be cut by a hot wire.
The properties of the hot blade will be discussed further in chapter 5. Depending
on the robotic setup, the blade can be exchanged with a tube.

The process of casting a model in concrete at CONFAC goes as follows. The
blocks are tightly pack in a large rectangular frame with the cut side facing up.
Then concrete is poured onto the blocks and at last the frame is shaken so the
concrete settles into all the recesses in the mold. This means the shape of the
blocks are the negative of the final design. Since multiple blocks are placed side by
side, the seams between the blocks need to uphold casting tolerance standards. An
illustration of twelve blocks collected in an frame, after they were cut with a hot
wire, and the result of the concrete casting is seen in Figure 1.3.

At DTU Compute (Department of Applied Mathematics and Computer Sci-
ence), we are working with the segmentation and rationalization of the model de-

1.1 BladeRunner 9

Figure 1.2: Left: The hot blade setup at DTI. The blade is bent and the robot is holding
the block, while feeding it to the blade. Right: An EPS block cut twice by a hot blade.

signs. The designs are given as computer aided design (CAD) models. Segmen-
tation consists of dividing the model into regions that represents the EPS blocks.
Depending on whether a hot wire or a hot blade is used, each region needs to be
approximated with a ruled surface or a surface swept by a moving Euler elastica,
respectively. The rationalization depends on the segmentation, and therefore it can
be beneficial to consider the two tasks together. The regions should fit together
smoothly and combined they should give satisfactory representation of the original
surface. My contribution to the project consist of developing several algorithms for
segmentation and for rationalization of ruled surfaces, during my PhD.

Figure 1.3: The casting at CONFAC. Left: Twelve EPS block in a frame being prepared
for casting. Right: The result after casting. Observe how the result is the negative of the
EPS mold.

From an industrial perspective the hot wire and hot blade technology are very
interesting, since large scale structures are expensive to construct, especially when
they include complicated geometry. In particular geometry with positive gauss
curvature is expensive to manufacture, since the current technologies to create the
form works are CNC-Milling, manual sculpturing, 3D printing, or bend/carved

10 Introduction

wooden frames. All of these techniques are either slow, expensive or both, in
contrast to using EPS blocks cut by a hot wire or hot blade, which is both fast,
cheap and environmentally friendly.

The hot wire technology is currently being used in industrial projects. An
inspiring domicile is under construction in Vejle1, where form works are cut by a
hot wire at Odico. Other modern building projects where hot wire or hot blade
techniques could have been used range from the roof of Nørrebro train station to the
museum lobby at Louisiana, see Figure 1.4. The technology has the potential to not
only lower the cost of high prestige buildings, but to also allow low budget projects
to have much more intriguing designs. My personal ambition for the BladeRunner
project, is the world will be a more beautiful place to live in.

Figure 1.4: Two construction projects where our technology would have been an excellent
choice. Left: Nørrebro train station. Right: The Louisiana State Museum and Sports
Hall of Fame.2

The hot blade technology is still in the research state, and its possibilities was
presented by the BladeRunner team at the Rob|Arch 2016 conference with a
paper [SFN+16] and a workshop for 18 architect students. The workshop’s main
contribution was a design tool allowing the students to design surfaces that by could
be cut by a hot blade and a robot cutting the models. This setup gave a short
feedback loop about the design tool. The students together with the BladeRunner
team created several designs that were cut on site, see Figure 1.5. In the bottom
part of the figure is the extraordinary result of students designing a model consisting
of multiple blocks. The design tool, feedback from the students, and the work flow
of the process, led to a submission in the AAG2016 conference [BBC+].

1ing.dk/artikel/havnedomicil-giver-byggerobot-gennembrud-183314
2Nørrebro picture taken by Inhabitat under the licence https://creativecommons.org/

licenses/by-nc-nd/2.0/, Louisiana picture taken by Larry Rowland under the licence https:
//creativecommons.org/licenses/by/2.0/

ing.dk/artikel/havnedomicil-giver-byggerobot-gennembrud-183314
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

1.1 BladeRunner 11

Figure 1.5: Samples of designs made at the Rob|Arch 2016 workshop. The large facade
in the bottom picture was created by a collaboration of four students. All the models was
designed and cut within three days.

12 Introduction

1.2 Chapters
Chapter 2 presents an optimization algorithm for pre-cutting of blocks using a hot
wire. The method handles the demand for rapid production by removing as much
material from a building block before milling the rest of the model. The model is
rationalized by a piecewise ruled surface, with production constraints not solved
elsewhere in the literature. The chapter is a paper submitted to the AAG 2016
conference.

Chapter 3 presents an algorithm for volumetric segmentation of free form archi-
tecture models. The method handles the demand for saving construction material,
by drastically lowering the number of building blocks needed to manufacture the
models. The chapter is a manuscript that will be submitted to the conference
SIGGRAPH Asia 2016.

Chapter 4 is an extension to my contribution to [BBaE+] and discusses the
question of whether to segment or rationalize a model first. An algorithm is de-
veloped to tackle this question and automatically produce piece-wise ruled surface
rationalization of a mesh. Such an algorithm is not seen in the literature so far,
and the plan is to make a separate manuscript based on this algorithm.

Chapter 5 concerns the constraints involved in hot blade cutting and how to
fulfill these constraints by segmentation. The method introduced in section 5.2
is my contribution to the paper [SFN+16], and is a greedy algorithm that solves
fabrication constraints. Sections 5.3 and 5.4 presents collaborate work with Toke
Bjerge Nørbjerg and describe two other methods for solving different constraints.
The algorithm in section 5.3 lets the segmentation follow the geometry of model,
whereas the algorithm in section 5.4 focusses on creating the largest possible seg-
mentation regions. The work in these last two sections still needs some refinement
before it is ready for publication.

1.3 Preliminaries
This section briefly introduces splines, ruled surfaces, and curvature, which are
concepts used throughout this thesis. Ruled surfaces are also linked to hot wire
cutting.

1.3.1 Splines
In the literature the word spline has many different meanings. In this thesis a spline
is a piece-wise polynomial curve,

su(v) =
n∑
i=1

βpu,i(v)ci , (1.1)

where c is the set of n control points, and βpu,i are B-splines on some given knot
vector u. The parameter where two polynomials meet are called the knots, and
they form a non-decreasing sequence, u = [t0, .., tm]. A knot is allowed to repeat,

1.3 Preliminaries 13

and the number of repetitions is called the multiplicity, denoted µ. The degree of
the B-spline is p = m− n− 1.

The B-spline βpu,i can be derived from the Cox-de Boor recursion formula as

β0
u,i =

{
1 if ti ≤ u < ti+1 and ti < ti+1

0 otherwise
(1.2)

βju,i = u− ti
ti+j − ti

βj−1
u,i + ti+j+1 − u

ti+j+1 − ti+1
βj−1

u,i+1 , (1.3)

where j = 1, .., p. With this representation, a B-spline have Cp−ν continuity at
a knot with multiplicity ν. This is seen in Figure 1.6, where the knot vector is
indicated by the small triangles in the bottom. Another property of splines, is that
they are easy to differentiate, and differentiating a spline of degree p gives another
spline of degree p-1.

Figure 1.6: The basis functions β3
u,i having the knot vector u =

[0, 0, 0, 0, 0.25, 0.25, 0.5, 1, 1, 1, 1]. Since the multiplicity in the knot 0.25 is two,
there is only C1 continuity at that point.

A spline surface can be obtained as a tensor product spline,

F (u, v) =
n∑
i=1

h∑
j=1

βpi (u)βqj (v) ci,j , (1.4)

where c = {ci,j} is the set of control points. More information about splines can
be found in the textbook [BGAA12].

1.3.2 Ruled surface
A ruled surface is a surface swept out by a line segment moving through space. In
this thesis we use the end points to define the line segments. A ruled surface R is
defined as

R(u, v) = (1− v)s2(u) + vs1(u) v ∈ [0, 1] , (1.5)

14 Introduction

where s1(v) and s2(v) are two parametrized curves following the end points of the
line segment. In this thesis the curves s1 and s2 will be given as splines. For a
degree 1 B-spline with no internal knots, we have β1

1(u) = (1 − v) and β1
2(u) = v.

Therefore equation 1.5 can be written as a tensor spline surface with degree 1 in
one direction.

R(u, v) =
n∑
i=1

2∑
j=1

βpi (u)β1
j (v) ci,j , (1.6)

where β1
j are B-splines of degree 1. Having multiple ruled surfaces combined at

shared edges is known as a piece-wise ruled surface. This can be obtained by
changing 2 to h in equation (1.6):

R(u, v) =
n∑
i=1

h∑
j=1

βpi (u)β1
j (v) ci,j , (1.7)

where h− 1 is the number of surfaces that are combined.
A developable surface is a special kind of ruled surface where the tangent plane

is constant along the ruling. More information about ruled surfaces can be found
in the textbooks [Pre10,Zho10].

A hot wire always form a straight line, so the shape it cuts is a ruled surface.
Cutting a piece-wise ruled surface with a hot wire, is obtained by cutting multiple
times; the number of cuts needed is h− 1.

1.3.3 Curvature
The curvature is a measure for how much a curve bends or, more precisely, how fast
the tangent rotates. For at planar curve the signed curvature can be calculated as:

κ(t) = det (s′(t), s′′(t))
‖s′(t)‖3 , (1.8)

where s(t) is parametrized curve. If κ(t) = 0 for t ∈ R then s(t) is a straight line.
When calculating the curvature for a given point on a surface, we look at the

normal sections through the point. A normal section is a curve given by the inter-
section of the surface and a plane containing the surface normal at the given point.
The curvature can be evaluated for each normal section using equation (1.8). The
maximum and minimum curvature of these curves are the two principal curvatures,
denoted by κ0, κ1.

The Gauss curvature is defined as K = κ0κ1 and reveals a lot about the surface.
If K = 0 on every point on the surface, then it is a developable surface, which is
a subset of ruled surfaces, and can therefore be cut by a hot wire. Examples of
developable surfaces are a cone or a cylinder. If K < 0 then we are at a saddle
point, and in special cases the surface is still ruled and can be cut. If K > 0 at
any point on the surface, then a valley or hill are present, and therefore a hot wire

1.3 Preliminaries 15

cannot cut the surface very well. More information on curvature can be found in
the textbooks [Pre10,BGAA12].

16 Introduction

Chapter 2
Cuttable ruled surface strips for

milling

This paper proposes a novel preprocessing method for industrial robotic CNC-
milling. The method targets a hybrid machining process, in which the main bulk
of material is removed through robotic hot or abrasive wire cutting, after which
regular CNC-machining is employed for removal of the remaining material volume.
Hereby, the roughing process is significantly sped up, reducing overall machining
time.

We compare our method to the convex hull, and remove between 5% and 75%
more material, and on most models we obtain a 50% improvement. Our method
ensures that no overcutting happens and that the result is cuttable by wire cutting.

2.1 Introduction
Recent years have seen a dramatic increase in the exploration of industrial robots
for the purpose of architectural production [KGW14]. While predominantly still
a topic of research, some of these developments have recently matured into com-
mercialization, targeting the deployment of industrial robots for large scale produc-
tion [Søn14]. Within subtractive processes, the Denmark start-up Odico has been
successfully bringing robotic hot wire cutting to market.

CNC-milling is a well-established process in industrial production of, partic-
ularly, foam casting moulds, but also digitally produced stonework and bespoke
timber manufacturing. While the process enables a very high degree of surface
control and design freedom, it is also inherently limited by vast machining times
for larger scale applications that require the removal of large quantities of material,

18 Cuttable ruled surface strips for milling

such as the machining of foam for ship hulls, wind turbine blades or architectural
structures. This adversity becomes significantly amplified when applied to hard ma-
terials, such as CNC-milling of stone [SBB+16]. Wire cutting on the other hand,
enables a dramatic reduction in production times, as volumetric artefacts can be
produced in one or few swipes [MFS13]. However, here the precondition is that pro-
duction geometries are described via ruled surfaces, which thus constrains the design
freedom for the benefit of production efficiency. The wire cutting methodology and
its implications are extendable to abrasive wire sawing of, for instance, stoneworks
such as exemplified at the works of the Sagrada Familia cathedral [Bur16], as well
as robotic abrasive wire sawing, as explored by [FS15].

The development of robotic hot blade cutting, [SFN+16], provides a cost-effective
and time-efficient manufacturing process for general curved foam geometries. How-
ever, this process is also constrained by the detail level achievable, and is inadequate
for small surface details, while well suited for large scale variations often deployed at
industrial and architectural scale. In addition, so far, blade cutting is not applicable
to non-foam materials.

Figure 2.1: Different cutting techniques: CNC-milling, hot wire cutting, and hot blade
cutting.

The three processes milling, wire cutting, and blade cutting (se Figure 2.1) can
be viewed as complementary, each covering a particular spectrum within subtractive
machining. As such, an extension of the processes is to consider new ways for
hybridization.

One such possibility is the combination of milling and wire cutting, in which
the latter is applied for removal of that initial volume which would otherwise be
machined in CNC-roughing processes. While CNC-roughing is generally fast com-
pared to CNC-finishing, when assuming high target surface smoothness the rough-
ing process can represent substantial machining times when applied to voluminous
subtractions. Additionally, certain architectural applications may enable the omis-
sion of surface finishing machining in favour of leaving roughed surfaces for practical
or aesthetic purposes. Two projects exemplifying this within the BladeRunner pro-
duction portfolio, would be the [Fer14] (2014). In [Fer14], 212 m3 of expanded
polystyrene foam were milled to achieve a three-dimensional guideline shape to be
coated in-situ with 70–100 mm of polished spent, giving the final shape, se Figure
2.2. Here, only roughing processes were applied as for ensuring enhanced binding
between the foam core and concrete shell, roughing representing approximately 92

2.1 Introduction 19

direct machining hours.

Figure 2.2: Creating an artificial concrete landscape in the urban harbor front of Copen-
hagen.

Given the amount of machining hours spend on roughing, a hybrid approach
would, for this case, have caused a reduction in processing time of between 69–
72%. In light of this finding, work was initiated to find a rationalization algorithm,
which would cover any arbitrary three-dimensional shape with a set of non-convex
ruled surfaces, such as to allow for a maximum of initial volume to be removed
through wire cutting, while within the same robot cell shifting subsequently to a
CNC tooling setup.

For this, we propose a method that combines fast wire cutting and precise CNC-
milling removing as much material as possible using a wire before the precise shape
is milled. As we allow multiple cuts the wire-cut surface is a piecewise ruled surface
and it can be considered as an approximation or rationalization of the required
surface. We can formulate the problem as follows: given a surface, rationalize it
with a piecewise ruled surface such that the rationalization never intersects the
original surface (no overcutting) and such that it can be manufactured by wire
cutting. The latter implies that not only the rulings, but also the extension of the
rulings, never intersect the surface.

Usually a mould is composed by several blocks and we do not consider the whole
surface, but only a segment contained in a single block. As the final shape is milled
we do not need to consider any continuity conditions between the piecewise ruled
rationalizations of the different segments.

A ruled surface is given by moving a line segment through space while it changes
length and orientation. As a line segment is determined by its endpoints the two

20 Cuttable ruled surface strips for milling

Figure 2.3: To the left a ruled surface defined by two curves. To the right a piecewise
ruled surface defined by several curves.

curves described by the end points determine the surface uniquely, see Figure 2.3.
A particular class of piecewise ruled surfaces is obtained by letting a polygon move
through space while it changes shape, see Figure 2.3.

If the polygon at all times is on the outside of the original surface and further-
more is planar and convex then we are certain that the extensions of the rulings
never intersect the original surface, see Figure 2.4.

Figure 2.4: Planar intersection of the surface and the piecewise ruled rationalization. If the
rulings turn less than 180◦ then the convexity of the rulings guarantees that the extended
rulings never intersect the surface.

Piecewise ruled surfaces are well known in architecture: [FNI+12] describes a
method to rationalize free form architecture, focusing on the smoothness between
rulings, and [FP10] find areas where a good rationalization can be done. Both
papers use the asymptotic directions as guides for the rulings. In [WE14] large
GPU powered dynamic programming is used to minimize the distance between the
original surface and the rationalization.

The paper [EF97] constructs a piecewise ruled approximation of a free form
surface using Bézier surfaces and a subdivision scheme to get the approximation
within tolerated error, but global accessibility is not guaranteed. In [Elb95] a free
form surface is approximated by piecewise developable surfaces, by using a simple
developable primitive and a subdivision technique.

Milling with a cylindrical tool produces piecewise ruled surfaces, so they have
also been studied in this context. To improve the tool path [Chi04] shows that

2.2 Method 21

the error in the rough milling can be lowered by separating the ruled surface into
multiple strips. The paper [CC06] constructs a piecewise ruled/developable ra-
tionalization where a subdivision scheme is used if a tolerance is not met. Tool
interference is taken care of, but only to the extent of a fix axis flank milling tool.
In [CD15] the one sided Hausdorff distance is used to minimize the overcutting.

The paper [JKS05] uses an iterative algorithm to automatically obtain rational-
ization consisting of developable patches. In [JTT+14] user input is used to create
a Lobel mesh which has the utility to create developable patches.

Our method distinguishes itself by accepting a general free form surface as input
and guaranteeing the wire does not cut into the model (overcutting) and that the
rationalization is cuttable by a wire.

2.2 Method
Given a surface f , we want to minimize the distance between it and a piecewise
ruled spline surface s of the form:

s(u, v) =
k∑
i=1

h∑
j=1

βpi (u)β1
j (v) ci,j , (2.1)

where c = {ci,j} is the set of control points and βpi is a B-spline of degree p. Observe
that s is a piecewise ruled surface since the basis function β1

j has degree 1.
We now discretize the piecewise ruled surface s by choosing a uniform grid

(ui, vj), i = 1, . . . , N , j = 1, . . . ,M , in the parameter plane and we discretize
the original surface f by sampling points fi,j , i = 1, . . . , N , j = 1, . . . ,M , on
the surface. How the sampling is done is explained in Section 2.2.3 below. We
furthermore make sure that the v-knots are among the parameter values vj , i.e.,
we have indices 1 = j1 < j2 < · · · < jh = M such that the knot vector in the v
direction is vj1 , . . . , vjh

.
We measure the distance between f and s by the discrete square distance

N∑
i=1

M∑
j=1
‖fi,j − s(ui, vj)‖2, (2.2)

2.2.1 Constraints
We need several constraints in the optimization, which we now describe one by one.

One sided approximation

To avoid overcutting the rulings should all be on the outside of the model. So if
Ni,j is the outward normal of f at the point fi,j then we require that

(s(ui, vi)− fi,j) ·Ni,j ≥ 0 , for all i, j. (2.3)

22 Cuttable ruled surface strips for milling

s(ui, vj`
) s(ui, vj`+1)

s(ui+1, vj`
)

ri,`
wi,`

Figure 2.5: The discretized piecewise ruled surface from figure 2.3. The points
s(ui, vj1), . . . , s(ui, vjh) form an instance of the moving polygon. The vector ri,` is a
leg in the polygon, i.e., a ruling. The vectors wi,1, . . . ,wi,h goes from one polygon of
rulings to the next.

Planarity and convexity of rulings

The piecewise ruled surface s given by (2.1) can be considered as swept by a moving
polygon and we require that the polygon s(ui, vj1), . . . , s(ui, vjh

) is planar for all i.
We now let ri,` = s(ui, vj`+1)−s(ui, vj`

), i.e., it is one of the rulings. The difference
in the other direction is denoted wi,` = s(ui+1, vj`

)− s(ui, vj`
). The cross product

ni,` = ri,`×ri,`+1 is a normal to the plane spanned by ri,` and ri,`+1, see Figure 2.5
. If all the normals ni,`, ` = 1, . . . , h−1 are parallel then the polygon is planar and
if they all point in the same direction then the polygon is convex or concave. We
can formulate this condition as

ni,`1 · ni,`2 = ‖ni,`1‖ ‖ni,`2‖ , `1, `2 = 1, . . . , h− 1 . (2.4)

or to simplify it a bit

ni,1 · ni,` = ‖ni,1‖ ‖ni,`‖ , ` = 2, . . . , h− 1 . (2.5)

To rule out the possibility of a concave polygon we require that the normal ni,`
points in roughly the same direction as wi,`. This can be formulated as

wi,` · n`,1 ≥
1
2‖wi,`‖ ‖ni,`‖ . ` = 1, . . . , h− 1 . (2.6)

or as (2.5) secures that ni,` points in the same direction as ni,1 we can simplify it
to

wi,1 · ni,1 ≥
1
2‖wi,1‖ ‖ni,1‖ . (2.7)

Boundary

Ultimately the rationalized surface s is supposed to be cut from a block, which
we assume has the form of a box with axis parallel sides, given by a1 ≤ x ≤ a2,
b1 ≤ y ≤ b2, and d1 ≤ z ≤ d2. So no part of the boundary is allowed to be strictly

2.2 Method 23

inside the block. We furthermore assume that we will be cutting roughly in the x
direction. So we require that

cx1,j ≤ a1 , cxk,j ≥ a2 , j = 1, . . . , h , (2.8)
cyi,1 ≤ b1 , cyi,h ≥ b2 , i = 1, . . . , k . (2.9)

where the superscript denotes the different components of the control points. In
our implementation we start and end with the polygon on the block boundary, so
in (2.8) the inequlities are replaced with equalities.

Limit the directions of the rulings

The rulings are not allowed to turn more than 180◦, and this can be secured if the
y-coordinate is a strictly increasing function. This is the case if it holds for the
control polygon, and we formulate this as

cyi+1,j − c
y
i,j ≥ ε , (2.10)

where ε is some small positive number. Strictly speaking we only need the difference
to be non negative, but using an ε > 0 also prevents any ruling from collapsing into
a single point.

2.2.2 The optimization problem
We are now able to formulate the optimization problem

minimize
c

N∑
i=1

M∑
j=1
‖fi,j − s(ui, vj)‖2 ,

such that
cx1,j = a1 , cxk,j = a2 , j = 1, . . . , h ,
cyi,1 ≤ b1 , cyi,h ≥ b2 , i = 1, . . . , k ,
(s(ui, vi)− fi,j) ·Ni,j ≥ 0 , i = 1, . . . , k , j = 1, . . . , h ,
ni,1 · ni,` = ‖ni,1‖ ‖ni,`‖ , ` = 2, . . . , h− 1 ,

wi,1 · ni,1 ≥
1
2‖wi,1‖ ‖ni,1‖ ,

(2.11)

where

ni,` = ri,` × ri,`+1 , ` = 1, . . . , h− 2 , (2.12)
ri,` = s(ui, vj`+1)− s(ui, vj`

) , ` = 1, . . . , h− 1 , (2.13)
wi,` = s(ui+1, vj`

)− s(ui, vj`
) , i = 1, . . . , k − 1 . (2.14)

We solve this optimization problem using the interior point method, [WB05].

24 Cuttable ruled surface strips for milling

2.2.3 Initialization
All that is left is to explain how we choose the sampling points fi,j and initialize
the optimization.

First the coordinate system is chosen such that outward normal of the surface is
roughly in the z-direction, i.e., upward. Then a cutting direction is chosen and we
create N parallel planes orthogonal to the cutting direction and uniformly spaced.
For each plane the intersection curve with the original surface f is found. Finally
each intersection curve is discretized intoM points. This is illustrated in Figure 2.6,
where N and M both are 30.

Figure 2.6: Illustration of the 3 steps that initialize the model into 900 points. Firstly:
10 of the 30 planes are shown, Secondly: 12 of the 30 intersection curves. Finally: 300 of
the 900 discitization points are shown.

2.3 Results
We have run our algorithm on the five models shown in Figure 2.8.

Model 1 was cut in two different directions, four times in each directions, while
Model 2 – 5 was cut four times in one direction. For comparison we have also
calculated the convex hull, and the bounding box.

We have only considered cutting directions parallel to the sides of the blocks,
but if we consider Model 2 diagonal cuts would be favourable. The depression in
Model 4 poses a problem for wire cutting; no matter what direction a line at the
depression has, it will cut into one of the ‘mountains’ at the edge. On the other
hand we see that even though we sweep the surface using a polygon with four legs
the optimization has put two of the legs on the same line. So we have in effect a
polygon with only three legs and consequently only need three cuts to produce the
rationalization.

If we imagine the surface sitting inside the block and remove the outer part we
are left with a solid object, see Figure 2.7.

2.3 Results 25

No. Model Ruled Convex Hull Bounding Box
1 0.4924 0.0374 0.1541 76% 0.5076 93%
2 0.2435 0.1520 0.3380 55% 0.7565 80%
3 0.5914 0.0201 0.0520 61% 0.4086 95%
4 0.3058 0.1379 0.1453 5% 0.6942 80%
5 0.4533 0.0798 0.2294 65% 0.5467 85%

Table 2.1: In the second column the volume of the model is shown. In column 3,4, and 6
we show how much volume there is left for milling using our method, the convex hull, and
the bounding box respectively. All volumes are normalized with respect to the volume
of the bounding box. In column 5 and 7 we show how much more volume our method
removes compared to the convex hull and the bounding box, respectively.

We have calculated the volume of that object in each case. The results are
summarised in Table 2.1.

We normalize all volumes with respect to the volume of the bounding box, i.e.,
we use Vol /Vol(BB). We show the volume of the model, but in the three other cases
we show the volume that needs to be milled away, i.e., (Vol−Vol(Model))/Vol(BB).

So for Model 1 we can see that the volume of the model is 49% of the bounding
box volume, that our method has left 4% of the bounding box volume for milling,
that the convex hull leaves 15% of the bounding box volume for milling, and that
the bounding box (doing nothing) leave 51% of the volume for milling. We also show
how much more volume our method removes compared to the convex hull and the
bounding box, respectively. That is we show (Vol−Vol(our))/(Vol−Vol(Model)).
For Model 1 this is 76% and 93% respectively.

Figure 2.7: Model 1 with volume shown, the volume is created by intersection the bounding
box with the surface

26 Cuttable ruled surface strips for milling

———————————————————
Model 4 Model 5

Model 1 Model 2 Model 3

Figure 2.8: Five models rationalized by piece-wise ruled surfaces. Model one has been cut
four times in one directions and four times in roughly the orthogonal direction. The four
other models have been cut four times in one direction.

2.4 Conclusion and future work 27

2.4 Conclusion and future work
We have described a novel method that finds a one sided approximation of a free
form surface by a piecewise ruled surface. The method guarantees that no extension
of the rulings cut through the original surface. This allows us to use the method
and wire cutting as a preprocessing step for milling.

Compared to using the convex hull as a preprocessing step we obtain an im-
provent from 5 to 75% and typically around 50%.

For simplicity we have limited ourself to cuts parallel to the coordinate planes,
but relaxing this conditions and allowing any cutting direction will improve the
result.

We represent the piece-wise ruled surface as a tensor product spline surface of
degree one in one direction and the planarity condition of the rulings restrict the
flexibility of the piecewise ruled surface. To overcome this we can choose another
representation where we explicitely move a planar polygon through space.

In this work we have assumed that the full architectural model has been seg-
mented into block sized portions, and we have only considered the piece inside a
single block. An interesting possibility is to use our method to aid in the segmen-
tation. If we allow for non-convex polygons in the optimization we will obtain a
better fit and we could use the concave vertices to guide the segmentation.

28 Cuttable ruled surface strips for milling

Chapter 3

Block Segmentation

This chapter is a manuscript titled Block segmentation and written together with
Andreas Bærentzen, Jens Gravesen, and Alla Sheffer. This work is one of the main
contributions of my PhD.

3.1 Introduction
While the technologies collectively known as 3D printing have not disrupted mass
manufacturing as such, the impact on many industries has been profound. Using 3D
printing for prototypes of small physical objects are now easy to make, architectural
models can be produced directly from CAD designs. Bespoke objects like hearing
aids are simply printed, and objects – whose complex shapes preclude that they
could ever have been physically removed from an injection mold – are quite easily
manufactured with additive processes.

Despite these great strides forward, 3D printing of large scale objects remains
a challenge. In the realm of robotic architecture, there have been several projects
aimed at building through robotic brick stacking [DSG+11], timber construction1,
or fused deposition modeling using concrete.

These efforts are important, but they do not necessarily point toward a general
family of methods that would be useful for 3D printing any object of, say, a cubic
meter or larger; this remains very difficult and expensive.

Within architecture, the use of subtractive manufacturing is probably the best
approach. For instance, large formwork is made possible by casting concrete in
molds created through machining expanded polystyrene (EPS). More recently, cut-

1http://www.spezialschalungen.com/

http://www.spezialschalungen.com/

30 Block Segmentation

ting EPS with a hot blade has opened up the possibility of realizing fairly large
physical objects with positive curvature – based on digital models – both fairly
quickly and inexpensively. However, these processes are still limited by the size of
an EPS block (often about 50 × 50 × 50 cm). Thus, actual designs are often split
into several blocks. This is straight forward as long as it is reasonable to use a
regular arrangement of blocks as would be the case if the design is for a wall or
some other highly regular structure. In the general case, a regular arrangement of
blocks is often an exceedingly bad choice that would lead to far too many blocks,
many of which barely intersect the surface.

Fundamentally, all subtractive and additive manufacturing processes have an
inherent limit to the size of the object to be produced due to the physical limits
of the equipment. We propose a method that divides a 3D object into regions
which are feasible for production. Furthermore, we lower the amount of material
used, by minimizing the number of building blocks need for construction. We have
been motivated by manufacturing using hot wire cutting of expanded polystyrene.
Combined with our method, this process allows the manufacturing of extremely
large objects. However, our method is generic and could also be used with other
techniques for manufacturing.

3.2 Previous work
Approximation of a 3D volumetric model is a sparsely researched subject. The
authors of [YIO+15] uses sticks to create buildings, and the authors of [SFLF15]
segment a model into interlocking parts that are easy to 3D print. The authors
of [SDW+16] create an internal polyhedral base of a model and combine it with
an external shell of 3D printing. Even though these articles present solutions to
volumetric problems, none of the methods can be used for large scale fabrication
in the industry.

Approximating 3D surfaces is a more developed field where large scale structures
are build using different methods. The authors of [ZLAK14] approximate surfaces
with Zometool building bricks that have strict limitations on how they can connect.
The authors of [FNI+12,TSG+15,FP10] approximate surfaces by either glass tiling
or ruled surfaces for fabrication.

We use stochastic optimization in this paper, which is related to work in [ZLAK14]
and [MVLS14] that uses stochastic optimization to solve surface approximation and
layering problems, respectively. However, they do not consider gaps in the layers
or consider the geometry under the surface.

Hexahedral meshing is used to improve fabrications; see [LSVT15] for state of
the art hexahedral meshing. hexahedral meshing algorithms need to have good
looking hexahedral inside the models as well as on the surface, since they are used
for large FEM simulations, and therefore need to consider not only the surface.
Even though quad meshing terminology covers some of the same areas as this
paper, the quads are small and can vary in size, and therefore the methods do not
apply to the same building constraints.

3.3 Method 31

Packing problems have similarities to the problems dealt with in this paper,
but the concepts of allowing overlap and prohibiting gaps is not within the frame
of the packing problem. The packing problem is a NP hard problem that has
been extensively studied in the literature. The article [BLM10] describes a method
for packing identical rectangles into a larger rectangle without overlapping. The
authors of [Pis05] use dynamic programming to solve the knapsack problem in
pseudo-polynomial time. The article [MPV00] describes the 3D case of the knapsack
problem.

3.3 Method

Let the modelM be a closed mesh in R3 contained in a collection of blocks bi ⊂ R3,
i = 1, ..., N . The goal is to remove as many blocks as possible while keeping the
surface contained in the (rearranged) collection of the remaining blocks. That is,
we have the following optimization problem

minimize
Placement of bi,

i=1,. . . ,N

N ,

subject to M ⊆
N⋃
i=1

bi .

(3.1)

We allow each block to be translated and rotated in R3, giving six degrees of
freedom per block. Hence we have a high dimensional, non-linear, discrete opti-
mization problem. This calls for stochastic optimization methods.

We initialize the optimization by calculating the minimum-volume bounding
box, [BHP99], of the model and aligning a 3-dimensional grid of blocks to it. As a
first step we remove all blocks that do not intersect the model, see Figure 3.1. For

Figure 3.1: 2D example of the initialization. Left: the model, middle: a grid of blocks are
laid over the model, and right: non-intersecting blocks are removed.

simplicity we use equal size cubes for the blocks, but the algorithm can easily be
generalized to general blocks. We can also allow blocks of different sizes, but then
the initialization has to be changed.

32 Block Segmentation

3.3.1 The idea
The basic idea behind our algorithm is that if the intersection between a given block
and the model is completely covered by the other blocks, then the chosen block is
superfluous and can be removed.

The objective function, N , in the optimization problem (3.1) is discrete and
does not detect whether a small change is benificial or not. We therefore add a
continuous term that promotes larger overlaps between blocks and hence increses
the chance of removing a block. This leads to the smooth objective function:

E = N − E1 = N −
∑N
i=0

∑N
j=i+1 2Ω(bi,bj)

N(N − 1)V + ε
, (3.2)

where Ω(bi,bj) = Vol(bi∩bj) is the volume of the overlap between two blocks, and
V is the volume of a single block. Observe that we have 0 ≤ E1 < 1, so removing
a block is always better than creating more overlap. The ε in the denominator
ensures that E1 < 1, otherwise we would have E1 = 1 when all blocks are exactly
on top of each other.

We want to have some block completely covered by other blocks. So one large
overlap is better than many small overlaps. We can promote that by introducing a
p ≥ 1, and consider the new objective function:

E = N −
∑n
i=0

∑n
j=i+1(2Ω(bi,bj))p

N((N − 1)V + ε)p . (3.3)

For the examples in this paper we have used p = 2 and ε = 0.00001.

3.3.2 Pure translation
Let us consider a model in R3, see a 2D example in Figure 3.2 left. We wish to
translate the blocks to increase the overlap between the blocks, to be able to remove
a block entirely, as described in Section 3.3.1.

Figure 3.2: How translation works on a 2D example.

We also need to satisfy the constraints at all time. So we pick a block bi, find
the part of the model that is not covered by other blocks, Mi = bi∩ (M \

⋃
j 6=i bj).

For each direction, x, y, and z, parallel to the edges of the block, we can translate
a maximal amount, x+ and x− say, without violating the constraint, Mi ⊆ bi, in

3.3 Method 33

the positive and negative direction, respectively. We then perform the translation
given by (x+ − x−)ex + (y+ − y−)ey + (z+ − z−)ez, where ex, ey, ez are the unit
vectors parallel to the edges of the block, see Figure 3.2.

3.3.3 Rotation
To cover features that are aligned in a non-coordinate direction it is advantageous
to rotate the blocks. So suppose we are given a block, bi. Again we consider the
part of the model, Mi, that is not covered by other blocks. We then calculate a
minimal bounding box of Mi and check its dimensions. If one of the sides has a
length that is larger than the side length of the block, the block cannot cover the
bounding box and we do nothing. Otherwise the bounding box is smaller than the
block and we can rotate the block such that it is aligned with the bounding box,
see Figure 3.3. We then translate the block such that the bounding box is in one

Figure 3.3: How rotation works on a 2D example.

of the corners, see Figure 3.3. In 2D there are four posibilities and in 3D eight.

3.3.4 Alignment
This operation is similar to the rotation operation, but here we choose not one, but
a collection of m neighbouring boxes, bi1 , . . . ,bim , see Figure 3.4. The collection,

Figure 3.4: How alignment works on a 2D example.

I = {i1, . . . , im}, is chosen as a particular block and all blocks that intersects it.
We then determine the part of the model that is not covered by other blocks,
MI =

⋃
i∈I bi ∩ (M \

⋃
j /∈I bj). As before, we calculate the minimal bounding box

ofMI and calculate how many blocks that are needed to cover it, m′ say. If m′ > m

we do nothing, otherwise we removem−m′ blocks and arrange the remaining blocks

34 Block Segmentation

bij , j = 1, . . . ,m′ in a regular grid aligned with the bounding box and translated
so they cover the bounding box, see Figure 3.4.

3.3.5 The algorithm

Lets consider the movement operations above: pure translation and rotation both
act on a single block and create a more compact segmentation (i.e. with more
overlap), where alignment acts on multiple blocks and create a more dispersed seg-
mentation (i.e. with less overlap). Therefore we use pure translation and rotation
until the objective function is in a local minimum, and then align the segmentation
to reset the search space in hopes of finding a better local minimum. Blocks are
never added, so even though we leave a local minimum, the solution never gets
worse.

For each block, taken in random order, we consider the one translation operation
and the eight rotation operations. Of the nine operations, we perform the one that
lowers the objective function most. If none of the operations improve the objective
function, no action is performed. If a block is moved, we check if any of the other
blocks affected by this can be removed. This procedure is repeated until a cycles
of the blocks do not improve the objective function. In this case we assume the
segmentation is in, or close to, a local minimum, and may proceed to alignment.
The alignment procedure traverses the blocks once in random order. If a block
has been part of an alignment operation, it is removed from the list of blocks to
traverse.

The alignment procedure, followed by the rotation/translation procedure, is
repeated until two subsequent alignments do not remove any blocks; in this case
the algorithm terminates.

3.4 Results
The algorithm has been applied to several different models, spanning from a simple
torus to an octopus with eight arms. The results of the segmentations for eight
models are shown in Figure 3.5.

The segmentation of the algorithm, at different iterations, are shown in Figure
3.6: the initial state, two intermediate states, and the result. An iteration refers
to a cycle through all the blocks, either in the translation/rotation procedure or
in the alignment procedure. In this example the algorithm will test around 1500
movement operations in each iteration; however, this scales with the number of
blocks in the segmentation. The number of blocks removed is highest in the first
20 iterations and then decline. This is because it becomes harder too remove a
block, the fewer blocks there are. The algorithm terminates after 77 iterations, but
in iterations 49 to 77, no blocks are removed, and thus any of these segmentations
can be used as the result. This example is a typical case with regard to how the
number of blocks removed decreases with iterations.

3.4 Results 35

Neptun
61 blocks

Man
151 blocks

Dancer
31 blocks

Tyrannosaurus Rex
88 blocks

Octopus
77 blocks

Torus
33 blocks

Hand
96 blocks Dancing Children

182 blocks

Figure 3.5: Eight models and the segmentation of them.

36 Block Segmentation

Model
Man

Initial
187 Blocks

20 Iteration
145 Blocks

40 Iteration
137 Blocks

Result
49 Iteration
136 Blocks

Figure 3.6: The model and four stages of the segmentation. From left to right: the model;
the initialization; after 20 iterations; after 40 iterations; the result after 49 iterations. In
one iteration, each block is been considered at least once.

Model No B Init No B Result Percentage
Torus 52 33 37 %

Octopus 115 68 41 %
Neptun 107 76 29 %

Neptun2-3 143 103 28 %
Neptun3-2 87 61 30 %
Fertility 222 200 10 %

Dancing children 204 182 10 %
Dancer 60 31 48 %
Man 187 136 28 %
Hand 147 96 35 %
Tyra 118 88 25 %

Armadoli 148 117 20 %

Table 3.1: The number of blocks used in the initial state and in the final segmentation for
twelve cases. The reduction in percentage is also shown.

A comparison between the number of blocks in the initial state and in the
result is seen in table 3.1. The algorithm removes between 10% and 37% of the
blocks, which is a significant reduction. The largest improvement is for models with
long slim structures that fit into the dimensions of a block, such as the Torus and
Octopus models. The improvement is smaller in models with large compact regions
with a box-like shape, such as the Fertility and Dancing Children models.

The Neptun model is segmented for three different block sizes, to illustrate how
this affects the algorithm. Defining the blocks in the Neptun model to have a
volume of 1, the blocks in the Neptun2-3 model have the volume 2

3 , and the blocks
in the Neptun3-2 model have the volume 3

2 . The percentage of blocks removed
is nearly the same for the different block sizes, see Table 3.1. In Figure 3.7 is a
comparison of the three segmentations; the Neptun3-2 segmentation looks more
clean even though it is only marginal better than the others. In all three cases the

3.5 Design choices 37

block segmentation follows the underlying geometry of the model.

Neptun model Neptun

Neptun3-2Neptun2-3

Figure 3.7: The Neptun model and its segmentation for three different block sizes.

The examples with the Neptun model shows the effects of changing the block
size on relatively small scale. But how do the problem change if the block size is
changed on a larger scale? If the block size is increased to the point where only
about ten blocks are needed, then the blocks could just as well be placed manually.
If the blocks size is scaled down, then the segmentation would eventually become a
surface problem and not a volumetric problem. Therefore it might be more effective
to use surface algorithms such as [TSG+15] when the segmentation reaches around
1000-10000 blocks, depending on the geometry, even though it is not a problem for
our algorithm to handle such a segmentation.

3.5 Design choices
In this section we discuss some of the choices in the algorithm. In particular, we
analyze the three operations in more detail.

A segmentation of a model aimed for fabrication is only usable if it covers the
entire model and does not leave gaps. Our method ensures the segmentation fulfills
this constraint, and thus is a viable solution, at all times. When developing the
algorithm, we attempted other strategies that allowed gaps during the optimization.

38 Block Segmentation

These methods either resulted in a lot of small gaps that needed to be covered after
the algorithm terminated, or produced an abundance of blocks during the algorithm
trying to cover the gaps that appeared. In both cases the resulting segmentations
had more blocks than the initial state, and thus these methods were not usable.

The three operations have different effects on the segmentation, and to investi-
gate these effects, we utilize that the operations can be applied independently. We
compare four different combinations of the operations: translation only, rotation
only, translation and rotation, and the full algorithm (i.e., translation, rotation and
alignment). The results are shown for one model in Figure 3.8 and for four models
in Table 3.2.

Init
187 Blocks

Pure translation
146 Blocks

Rotation
167 Block

Pure translation
Rotation
145 Blocks

Pure translation
Rotation
Alignment
136 Blocks

Figure 3.8: The initial state and the result of different combinations of operations. The
rightmost case corresponds to the full algorithm.

From Table 3.2 we see that pure translation works quite well alone, whereas
rotation alone does not lower the number of blocks very much. Both operations
serve the purpose of increasing the overlap, by pushing blocks into the model, but
when all the blocks are aligned the pure translation works much better than the
rotation. If a block is translated towards another aligned block, it will produce
an overlap proportional to the length of the movement. Initially, when all the
blocks are aligned and there is no overlap, the minimal bounding box determined
for rotation movement is often too large for the block to cover. As a consequence,
we observed in Figure 3.8, that most of the blocks are not moved from the initial
state when rotation is applied alone. The rotation operation is more suited when
the segmentation is more chaotic, where it can align the blocks to the geometry
of the model. In two of the examples pure translation alone actually produces a
better result than pure translation and rotation combined, suggesting we need to
be mindful of how to include rotation.

Adding the alignment procedure (going from pure translation and rotation com-
bined to the full algorithm) improves the result for all four models, see Table 3.2. In
the optimization there are many local minima with respect to the translation and
rotation operations, and the alignment allows the segmentation to settle in another
minimum.

For all models the full algorithm gives the best result, which indicates that all

3.6 Conclusion 39

Model Initial
state

Translation Rotation Translation
and rotation

Full algo-
rithm

Man 187 146 167 145 136
Octopus 115 73 88 78 68
Armadilo 148 121 137 123 117
Neptun 107 94 94 76 76

Table 3.2: The number of blocks in the initial step, and for different combinations of the
operations.

three operations have their merits. Pure translation appears to be very effective
in reducing the number blocks, and is also the simplest of the three operations.
Alignment has the effect of dispersing the segmentation and creating order in the
chaos again. Rotation can align the segmentation to the geometry, especially in
chaotic segmentations. For a specific model it might be beneficial to try different
combinations of the operations in varying order.

3.6 Conclusion
We have described a novel approach to perform volumetric segmentation of free
form architecture. The focus was on lowering the material needed to construct the
models, and our method achieved up to 48% reduction of blocks in the segmenta-
tion.

40 Block Segmentation

Chapter 4
Segmentation versus

rationalization

To construct a 3D model, we need a segmentation of the model into blocks, and
a recipe for cutting each block with a hot wire or hot blade. In this chapter we
consider an algorithm for finding this for a given model. We focus on hot wire
cutting, which implies the surface of a block needs to be approximated with a
piece-wise ruled surface, though this does not ensure the block is cuttable. We
consider the case where milling and other post-processing tools are not used, so the
aim is for the result to be as close to model as possible, and also pleasing to the
eye. To make the final result smooth, C0 continuity between blocks is required. We
begin by discussing two approaches to rationalization and segmentation, mentioned
in [BBaE+].

4.1 Challenges
If the CAD model is ruled, all the blocks will be ruled regardless of their position,
and there is no need for rationalization. On the other hand, if the model is not
ruled, we can use two different strategies for rationalizing it. Either each block
is approximated separately or the entire model is approximated with a piece-wise
ruled surface. With the first approach the model is segmented into blocks and
then each block is rationalized. With the second approach the entire model is first
rationalized; this segments the model into patches, where each patch is a ruled
surfaced. Then the rationalized model is segmented into blocks. The two strategies
are illustrated in Figure 4.1, where a half sphere model is segmented into two blocks
and rationalized. In the middle column each block is approximated with a ruled
surface, following the first approach. The second approach is shown in the right

42 Segmentation versus rationalization

column, where the entire half sphere is approximated with a single ruled surface
(corresponding to a single patch) and then divided into two blocks.

Figure 4.1: A half sphere model segmented into two blocks and rationalized in two ways.
The top row shows the blocks. Left column: The model. Middle column: Each block
approximated separately. Right column: The entire model approximated with a single
ruled surface.

It turns out that approximating each block separately can result in some unde-
sirable artefacts. This is not so obvious and is easiest to illustrate with an example,
so consider the model in Figure 4.2. The model is segmented into a grid of blocks
and we start to rationalize each block, see middle image. However, a problem
emerges, when we attempt to rationalize the 16th block, which in the figure has no
rulings. There is an artefact on the right side of the block, where the rulings will
have a different direction from the neighboring block. In some cases the problem
can be avoided by choosing the direction of the rulings carefully, but in other cases
this is not possible. We can make the artefact disappear by requiring the rulings
on the neighboring block to lie on a straight line and rationalize this block again.
Unfortunately, this gives a rigid system where it is necessary to rationalize a block
several times. Another option is to use global information when rationalizing a
block. On the other hand, such artefacts do not occur if the entire model is ap-
proximated with a piece-wise ruled surface, see Figure 4.2 right, where the model
is approximated with 14 ruled surfaces. Afterwards the rationalized model can be
segmented into blocks, and regardless of how the blocks are placed, each block will
contain a piece-wise ruled surface. Therefore, the appearance of the final result
does not depend on the block segmentation, except for segmentation seams.

Deciding which approach to use is often a question of what is considered optimal
in the final result. There is a huge difference between optimizing for the minimal
number of cuts and aiming for a result that is pleasing to look. We present a method
where the goal is to have a smooth model, and the strategy is to rationalize the
entire model and then segment it into blocks.

4.2 Algorithm 43

Figure 4.2: Illustration of the artefacts that can occur when rationalizing each block
instead of the entire model. Left: A half sphere model. Middle: The model have been
segmented into blocks and we have started to rationalize each block. The rulings are
shown as black. The block with no rulings have neighbors with conflicting directions of
the rulings. Right: An approximation of the entire model with a piece-wise ruled surface
containing 14 patches.

4.2 Algorithm
Before the model is rationalized, it is important to have good starting guess, and
to get a good approximation, the surface needs to be close to a piece-wise ruled
surface. We achieve this by using a mesh algorithm that divides the model into
regions. These regions are approximated by piece-wise ruled surfaces, which are
combined to create a rationalization of the entire model. The rationalized model
is segmented into blocks using the algorithm from Chapter 3, resulting in a set of
blocks with piece-wise ruled surfaces. However, this does not necessarily imply that
the shape of the blocks can be cut with a hot wire, and thus a post-processing step
is added.

To make a good initial setup for the rationalization, we create a Polar–Annular
Mesh (PAM) of the model, from [BAS14]. The PAM is a quadrilateral mesh and
is created from a standard mesh. See Figure 4.3 for an example on the Armadillo
model. The PAM divides the mesh into different regions, represented with different
colors. The dark blue dots are the dividing line between the regions and the red dots
are the unregular points. Each region have a structure that resembles a cylinder or
a cone. For the Armadillo model the horns, fingers, tail, snout, and toes resemble
cones, and the hands, neck, legs, and arms resemble cylinders. Both cylinders
and cones are ruled primitives. This makes each region in the PAM suited for
approximation into piece-wise ruled surfaces.

The approximation of each region in the PAM is computed by minimizing the
squared distance between a region, f , and a piece-wise ruled surface, s, for a set of
discrete points:

min
N∑
i=1

M∑
j=1
‖fi,j − s(ui, vj)‖2 . (4.1)

This corresponds to the method in section 2.2 without the constraints. The ratio-
nalization of the PAM into a piece-wise ruled surface is shown for the Armadillo

44 Segmentation versus rationalization

Figure 4.3: Left: The Armadillo model. Middle: A Polar–Annular Mesh of the Armadillo
model. Each color represents a different region, except the dark blue that are region
borders and the red dots that are unregular points. Right: Piece-wise ruled surfaces
rationalization of each region.

model in Figure 4.3.
Next we segment the rationalized model into block using the algorithm from

Chapter 3. Each block now has a piece-wise ruled surface, but unfortunately the
blocks might not be cuttable; for more details of what makes a surface cuttable,
see [SNS+]. The process of making the blocks cuttable have not been carried out
for the Armadillo model, but is illustrated using a cross-section of an Armadillo
arm as a 2D example, see Figure 4.4. Notice that some of the blocks cannot be cut,
since an extension of a ruling (representing the wire) would penetrate the model.
If a block is not cuttable, taking the convex hull of the model area covered by the
block, gives a cuttable shape. This is illustrated to the bottom left in the figure,
where the red lines indicates the added material from the convex hull.

The block segmentation method creates solution where the blocks will often
overlap, and this overlap may be used to improve result of making the surface
cuttable. The overlap could be distributed between the blocks, such that the least
amount of material is added, when taking the convex hull for each block. An
example is shown in Figure 4.4 bottom right, where the overlap between the green
and yellow block is divided at the purple line. As this example shows, dividing the
overlap with a line through the intersection of two rulings is optimal, if the two
rulings together create a concave shape. An interesting outlook is to utilize the
optimal way to distribute overlap, to create a block segmentation that reduced the
material added for the blocks to be cuttable.

4.2 Algorithm 45

Figure 4.4: Going from a piece-wise ruled surface to a cuttable shape. Top left: Armadillo
arm approximated with piece-wise ruled surfaces. Top right: Cross-section of the arm
with blocks. Bottom left: The red lines show where the convex hull for each block add
material. Bottom right: The green block has been moved as part of the block segmentation
method, creating overlap with the yellow block. By dividing the overlap at the red line,
both blocks become cuttable without adding material.

46 Segmentation versus rationalization

Chapter 5

Elastica segmentation

Figure 5.1: Two different hot blade shapes, produced by the same robot. Picture are from
a three days workshop at ROBARCH 2016 organized by the BladeRunner team.1

One of the goals of the BladeRunner project is to explore the possibility of using
a hot blade (or a hot tube) cutter instead of a hot wire cutter. In contrast to the
hot wire, which is taut all the time, the hot blade can bend. The shape of the hot
blade is determined by the robot controlling the position and angle of the blade
at the end points. An example of the robot holding the blade curving upwards is
seen in Figure 5.1 left. The hot blade is moved through a block of EPS. The robot
can change the position and the angle at the end points, while melting through the
block, giving large variations in the models that can be produced. In Figure 5.1
right the block has been cut once and is ready for a second cut. Multiple cuts

1http://www.robarch2016.org/workshops/ Superform: Robotic hot blade cutting workshop

http://www.robarch2016.org/workshops/

48 Elastica segmentation

extend the possible variations of the models. The hot blade’s ability to positively
curve increases the possible shapes compared to a hot wire.

All the possible shapes of the blade belong to family of curves known as Euler
elastica. An Euler elastica is defined as the curve that minimizes the energy of an
elastic rod in a plane, which is equivalent to minimizing the squared curvature over
the curve,∫

ζ

κ2(s)ds, (5.1)

where κ is the curvature, and ζ is the curve domain. The mathematics of Euler
elastica is described in tha PhD thesis chapter 5 [Lev09]. Often a desired curve
for the blade is given by a spline and we need to approximate it with an elastica;
an analytic method for this can be found in [BGN15] and a numerical method in
[BBC+]. I will use these methods throughout this chapter. An example of an Euler
elastica is shown in Figure 5.2 in blue. When the blade’s shape is approximated
only a subsection of the infinitely long elastica is used; this is represented by the
red part of the curve. Another approximation might use another subsection of the
same elastica or another elastica all together.

Figure 5.2: An Euler elastica curve in blue. The red subsection of the curve is a possible
shape of the blade.2

In this chapter I present different algorithms for solving the problem of seg-
menting a model, such that it can be cut by the robotic setup introduced above.
To be able to cut the segmentation five production constraints need to be met;
in section 5.1 these constraints are described and how they relate to the physical
setup. Due to the case studies designed in the BladeRunner project, the algorithms
described in this chapter are conducted on facades, implying one side of the models
are facing a building wall. This gives a limited set of cutting directions for the
robots, and a clear indication of what is up and down on the models. We have

2Picture created by Toke Bjerge Nørbjerg

5.1 Robotic setup and constraints 49

developed three segmentation algorithms: The inflection points algorithm, in sec-
tion 5.2, is a method where the model segmentation is governed by the number
and position of inflection points. The trace algorithm, in section 5.3, focuses on
the aesthetic aspect of segmentation by considering the valleys and ridges of the
model geometry. The longest elastica algorithm, in section 5.4, tries to find the
largest region of the surface that can be approximated by elastica, and uses this
information for segmentation.

5.1 Robotic setup and constraints
We want a hot blade robot to cut a block into a given model of a facade, the hot
blade is restricted to always keep the hot blade in a plane.

In most cases, we discretise the model into N curves by taking the intersection
between N parallel planes and the model, see Figure 5.3. Each curve is approx-
imated by an elastica, representing the shape of the blade. Between the given
elastica curves, the robot uses an interpolation method that we do not control.
Therefore the shape of two neighbouring elastica curves should be relatively close.
If each of the N planar curves are well approximated by elastica, we assume the
result is a good approximation of the surface. The core concept of all the algorithms
is making N parallel planar curves and approximating them with elastica, but some
of these restrictions will be relaxed in more advanced algorithms, see section 5.1.5.

Figure 5.3: Left: The original facade. Middle: 26 parallel planes evenly distributed.
Right: the 26 planar curves of the facade ready to be approximated.

If the facade is simple enough, the hot blade can cut the model from a single
block. However, if the model has high curvature, the construction is large, or
the intersection curve is not approximated well by an elastica, it is necessary to
segment the model. We will describe five production constraints that governs when
segmentation is need.

5.1.1 Dimension constraints
The physical dimensions of the model, the building block, and the hot blade imposes
some natural constraints. If the model is larger than the building block, or the
approximated elastica curve is longer than the blade, segmentation is required.
These are hard constraints and can only be circumvented by acquiring a longer

50 Elastica segmentation

Figure 5.4: Left: model surface. Middle: building block. Right: hot blade.

blade or a larger block to cut from. Observe in Figure 5.4 where the model is
clearly larger than the building block, which, in turn, is larger than the blade; here
segmentation is needed, both of the model and the building block.

5.1.2 Approximation constraint

Figure 5.5: Blue line is the desired curve (a spline). Green curve is the approximated
elastica. 3

This constraint focus on how well the elastica approximates the intersection
curve. As a measure of the approximations accuracy, we use the squared L2 distance
between the curves [BGN15]. To cut the model accurately, it is necessary to find
an elastica curve that approximates the desired curve well, since the blade can only
attain elastica shapes. If this is not possible it is necessary to segment the model.

3Picture taken from article [BGN15]

5.1 Robotic setup and constraints 51

5.1.3 Shape constraints
These constraints concern how easily the blade can keep the intended shape, and
if the movement of the blade leads to an ambiguous shape.

Figure 5.6: Illustration of an elastica shape that the blade cannot keep. 4

The difficulty of attaining and keeping a shape of the blade increases with the
number of inflection points, which are points where the curvature changes sign. For
example, bending a plastic blade as in figure 5.6 is far from easy. Even if the blade
has such a shape, a small movement can easily cause it to unravel into a shape
with fewer inflection points suddenly and uncontrollably. Therefore we impose a
maximum of two inflection points for the elastica curve; otherwise segmentation is
needed.

Since an elastica curve has continuous curvature, an intersection curve has the
same number of inflection points as its elastica approximation. Two exceptions
to this are inflection points near the end of the curve, which may disappear or
appear, and pairwise inflection points close to each other, which may cancel, just
like pushing out a small dent. Segmenting the model by placing a partitioning
through the inflection point, does not remove the inflection point.

We find the inflection point by calculating the signed curvature k(t) forM points
on each curve c(t), t = 0, ...,M :

k(t) = det (c(t)′, c(t)′′)
‖c(t)′‖ (5.2)

If two neighbouring points have curvature with opposite sign, there is an inflection
point between them. Such points are denoted by pt,dt, where t is the lower t value
of the pair, and dt is the parameter distance between them. To find a more precise
estimate of the inflection point, bisection is employed: we iterate

pt,dt =
{
pt,dt/2 if sgn(k(t+ dt/2)) = sgn(k(t+ dt))
pt+dt/2,dt/2 otherwise

(5.3)

until dt is under a desired tolerance.
4Picture created by Toke Bjerge Nørbjerg

52 Elastica segmentation

Another issue arises if the blade is straight and its endpoints are moved towards
each other; then it is impossible to predict whether the blade will bend upwards or
downwards. This can be fixed by minutely changing the tangent at one end point.
Segmentation, however, will not help solve this problem, so it is not considered in
the algorithms.

5.1.4 Blade strain constraint
If the blade is bend beyond a certain amount, it can be permanently deformed.
This will occur if the curvature of the model is to high in intersection curves.
An example of this can be seen in figure 5.7, which was takend at a workshop
presenting hot blade cutting. The blade is heavily deformed because the model
designs exceeded the maximum curvature. Unfortunately this cannot be helped by
segmenting, since the new segments will have approximately the same curvature as
the original segment.

Figure 5.7: An 80 cm long hot tube, that was heavily deformed after one day of cutting.
The tube was used to cut models with curvature radii down to 9 cm, far below what it
could withstand. Observe how the ends are still straight, because the robot held it there.5

5.1.5 Multiple cuts constraints
When cutting with a blade in one direction and keeping the blade shape in parallel
planes, the part of the blade which is cutting can change. The front end and the
back end of the blade have the same shape, but are shifted horizontally. When the
blade moves upwards while cutting, the front of the blade cuts the block, while the
backside cuts when the blade moves downwards.

This issue can be resolved by using a tube instead of a blade, having the algo-
rithm compensate for the width of the blade, or rotating the intersection planes.
The latter option is shown in Figure 5.8, and is an alteration of the general setup,
where all the planes are parallel. A cutting direction is given as a curve c on the
surface of the model; observe how the planes follows this curve, marked with red in
the Figure 5.8. The normal of each cutting planes is equal to a tangent of c,

c′(i dt) = pni , (5.4)

where i = 0, ..., N , dt is the curve distance between each plane, c is a parameterised
curve between 0 and N dt, and pni is the normal of plane i.

5http://www.robarch2016.org/workshops/ Superform: Robotic hot blade cutting workshop

http://www.robarch2016.org/workshops/

5.1 Robotic setup and constraints 53

Figure 5.8: Left column: the model where the red curve c is the cutting direction. Middle
column: the rotated planes found by equation 5.4. Right column: the curves are the
intersection between the planes and the model. The two rows show different view points.

Rotation is a further prospect in the robot setup, and therefore only relevant
for more advanced cutting in the future. Unfortunately it entails that the blade
cuts the same plane multiple times, which is undesirable. This can be seen in
Figure 5.8(right), where the intersection curves overlap. In such cases, segmentation
is needed. In some of the segmentation algorithms described below, rotating the
planes is addressed as a side note.

5.1.6 Limitation of the constraints

It would be optimal to incorporate all these constraints in a single algorithm. Un-
fortunately, to test if the approximation constraint 5.1.2 is fulfilled, we need to
approximate a large part of the model surface, and this is slow. Therefore, we
separate the segmentation algorithms into two categories:

a) The slow and reliable algorithms, that repeatedly approximate the surface until
all the constraints are met. These algorithms always give a result that can be
cut.

b) The fast and unreliable algorithms, that handles most constraints and hope to
automatically fulfilled the rest. If some constraints are not fulfilled after such
methods, simple post-processing heuristics are applied until all constraints are
met.

One way of looking at it, is that category a algorithms use the elastica ap-
proximation to guide the segmentation, whereas category b algorithms use the
segmentation to guide the elastica approximation.

54 Elastica segmentation

5.2 Inflection points algorithm
This algorithm belongs to category b and incorporates the shape and dimension
constraints. It is my contribution to the paper [SFN+16]. The problem solved in
this algorithm is: given a facade model, how to segment it into blocks, such that
each block fulfills the mentioned constraints.

To initialize the segmentation a grid of blocks, with M rows in the cutting
direction and N columns in the other direction, are placed such that they cover
the entire model surface. We assume all the blocks have a fixed size. To give the
algorithm flexibility, blocks in the same row are allowed to overlap. An overlap is
not physical possible, and in reality it represent that excess material are cut away
from one of the blocks. The algorithm attempts to fulfill the shape constraint by
adding blocks or moving blocks within a row. If the blocks are small enough to be
cut by a blade, the dimension constraint is automatically fulfilled.

The general setup described in section 5.1 is applied, where the model is dis-
cretized with N intersection curves lying in parallel planes. To fulfill the shape
constraint, the curves can have maximum two inflection points in each block; or
more precisely, the part of each block that is left after overlap is removed. The
inflection points are computed for all the curves, and the curves with more than
two inflection points are marked, as shown in Figure 5.9.

Figure 5.9: Left: Model surface. Middle: Hot blade planar cuts with inflection points.
Right: Close up of two cuts. Points 5 and 6 could potentially cancel each other, depending
on the scale.6

When the inflection points are computed, each of them are assigned to the block
that covers them. If a points is covered by two blocks, it is only assigned to the
block that still covers it after overlap is removed. If a block b has assigned more
than two inflection points on a curve, then one of two options are performed:

1. A copy of block b, denoted bc, is inserted. The copy is translated in the row
such that the area b\bc is as large as possible, while only containing curves
with maximum two inflection point. An illustration of this can be seen in the
two left images of Figure 5.10.

6Picture from [SFN+16], with correction.

5.2 Inflection points algorithm 55

2. Block b is translated along the row so it decreases its overlap with another
block. It is translated as far as possible without the other block is assigned
to many inflection points. This is to distribute the inflection point better
between them. See the two right images in Figure 5.10.

Option b is always tried before a, to minimize the number of block added to the
segmentation. All translation are perpendicular to the cutting direction. This
procedure is repeated until no block has a curve with more than two inflection
points.

b0︷ ︸︸ ︷ b1︷ ︸︸ ︷ b0︷ ︸︸ ︷ b1︷ ︸︸ ︷ b0︷ ︸︸ ︷ b1︷ ︸︸ ︷

︸ ︷︷ ︸
bc

︸ ︷︷ ︸
bc

︸ ︷︷ ︸
b0\bc

Figure 5.10: The algorithm seen from the above with inflection points in red and inter-
section curves in black. Left: The initial state of b0 in gray and b1 in green. Middle: Step
(a) for block b0. The copy bc of b0 is added and moved to the right until b0\bc would have
a curve with three inflection points. Right: Step (b) for block b1. Block b1 is translated
to the right until bc\b1 would have a curve with three inflection points.

An example of running the algorithm is seen in Figure 5.11. To the left is the
model surface and to the right the resulting segmentation from the algorithm. In
this example the segmentation is symmetric, implying all rows are identical. This
was enforced by translating movement and addition of blocks in one row to all the
other rows as well. Furthermore, the segmentation curves were adjusted to follow
the geometry of the surface in the overlap between the blocks.

Figure 5.11: From left to right: First, the inititial state of the algorithm. Second, the initial
state with rotation of the planes. Third and fourth, the final result of the segmentation.7

7Picture from article [SFN+16]

56 Elastica segmentation

As a side note we consider the idea of adding rotation of the planes (sec-
tion 5.1.5), which can be seen in figure 5.11 second from the left. In such an
algorithm additional checks for curve overlap need to be done when a move option
is performed.

5.3 Trace algorithm
This algorithm belongs to category b and handle the dimension and shape con-
straints. The problem solved in this algorithm is: given a facade model, how to
segment it in into regions that follows the model geometry, such that each region
fulfills the constraints. The algorithm described in this section is a collaborate work
between Toke Bjerge Nørbjerg and me. The segmentation idea sprang from a joint
venture in the BladeRunner project on producing the model shown in figure 5.12.
The model was designed by 3XN as the first test case for hot blade cutting in the
BladeRunner project. Currently, the model is in production, and the plan is to put
it on display as an example of hot blade cutting.

Figure 5.12: The test case model designed by 3XN. Observe the scale in comparison to
the silhouettes.8

The concept of the algorithm is to let the segmentation follow natural valleys and
ridges of the model geometry along the cutting direction. Since the segmentation is
visible in the final product, this helps to ensure a natural look of the model. We are
not concerned with segmentation in the cutting direction, since it is only governed
by the block dimension constraint, and thus it can be applied independently of
segmentation in the other direction. The basic idea of the algorithm is to use
local maxima of the curvature (of the intersection curves) to represent the valley
and ridges, even though this is not the local maxima or minima of the curves. At
an inflection point the curvature attains the minimum value zero, so between two
inflection point the curvature must have (at least) one local maximum (unless it is a
straight line). By letting the segmentation follow curvature maxima, the inflection
point constraint is automatically fulfilled.

The general setup described in section 5.1 is applied, where the model is dis-
cretized with N intersection curves lying in parallel planes. The inflection points

8Model created by 3XN http://www.3xn.com/

http://www.3xn.com/

5.3 Trace algorithm 57

Figure 5.13: The blue points are the local maxima of curvature for each curve, the red
points are the inflection points for each curves. Both the red and blue points form curves
on the surface.

are computed for all the curves, and the curvature maxima between them are found,
see Figure 5.13. There are six pairs of inflection point with no curvature maxima
between them; presumably this is because of numerical inaccuracy. The curvature
maxima are connected to form curves on the surface; we will refer to these curves as
traces. The traces can have end points on the edge of the surface, in the middle of
the surface, or they can form closed curves. The traces for the test case are shown
in Figure 5.14 left, and their end points all lie on the edge of the model surface.

Figure 5.14: Left: The traces of curvature maxima. Right: The result after a short trace
is removed. The traces follow the geometry of the model.

The traces on the model constitutes the segmentation, and therefore we do not
want a trace with end points inside the model surface. Each trace ending inside the
model is extended, starting with the longest trace, until it meets the end of another
trace, which then becomes a part of the original trace, or it reaches the edge of the
model. A trace is extended such that the ratio, between the distance to its two

58 Elastica segmentation

neighbor curves, is kept constant. Here neighbor curves are the two closest curves,
taking from the set of already extended traces and the two edges in the cutting
direction. If two traces come so close that inflection points between them can be
smoothed out, the traces are merged. For the test case no extension was needed
since all the traces ended on the edge of the model.

If the model have many short traces before the extension procedure is performed,
the algorithm will produce a segmentation with many small segments. Therefore a
model with many short traces is smoothed, and the traces on the smooth model is
projected onto the original model. If inflection point disappears in the smoothing
process, we assume they can be smoothed out in the final curve.

On the other hand there can also be too few traces to fulfill the dimension
constraint. This implies the distance between traces are larger than the block width
or larger than the length of the blade. In this case additional traces are added,
dividing the band between the original traces down the middle, see Figure 5.15
with an example for the test case.

Figure 5.15: Left: The original traces in black, and extra traces in red. Right: The 7
segments of the result.

For the test case the algorithm works great and creates smooth curves that
follow the model geometry very well. This will also be the case for similar models
with long smooth features. This algorithm is not designed to handle traces that
forms closed curves, and therefore we cannot guarantee it will work for arbitrary
forms of geometry.

This is an algorithm that aims for artistic segmentation, which I personally
think is an interesting field with great potential. This type of algorithms also have
merits in the architectural environment, where computer aided design software are
commonplace. Thus segmentation algorithms can aid the architect design process.

5.4 Longest elastica algorithm
This algorithm is in category a, where elastica approximation guides the segmenta-
tion, and it ensures that the dimension and approximation constraints are fulfilled.
The algorithm described in this section is a collaborate work between Toke Bjerge

5.4 Longest elastica algorithm 59

Nørbjerg and me. As with the trace algorithm in section 5.3 we only consider the
segmentation across the cutting direction. The concept of the algorithm is to start
at a model edge that goes along the cutting direction, and find the largest region
that can be approximated well by elastica curves, i.e. fulfills the approximation
constraint, see section 5.4. After a region is found, it is removed from the model
and the algorithm starts again from the new edge of the now smaller model.

The general setup, described in section 5.1, is applied, where the model is dis-
cretized with N intersection curves lying in parallel planes. For each intersection
curve c we determine the longest subsection of c, which have a good elastica ap-
proximation. The idea is to iteratively divide the curve until an accepted solution
is found, see Figure 5.16. The subsection starts at c0, which is fixed to the starting
point of c, and ends at c1. Initially, c1 is chosen so the length of the subsection
is the maximum cutting length of the blade, denoted L. The initial subsection
is approximated by an elastica, and if the approximation meets the demands, the
subsection of c is accepted; otherwise we iterate over i = [1 . . .M]. For each step
i, if the elastica is acceptable, c1 is moved L

2i away from c0 along the curve. On
the other hand, if the elastica is not acceptable, c1 is moved L

2i towards c0 along
the curve. After M iterations, the last c1, which resulted in an accepted elastica,
represents the solution of finding the longest subsection of c that starts at c0.

c0

c0

c0

c0

c1

c1

c1

c1

Figure 5.16: Three iteration for finding the longest accepted elastica curve. From top to
bottom: the full length curve c; the first subsection with length L (not accepted); the
second subsection (accepted); the third subsection (not accepted); the fourth subsection.
Observe the extension or subtraction of the curve is halved for each step.

This subdividing method assumes that if a curve is approximated well, then
all subsections of the curve are also approximated well. In each iteration the step
length of c1 is halved, and thus c1 never attains the same value twice. The number
of iterations controls the precision: For example, if L =1m, a precision of 1cm
requires M = 7 iterations, and a precision of 1mm requires M = 10 iterations. If
all approximations fail, the final curve between c0 and c1 will have a length under
the desired precision.

When the longest elastica subsection of each intersection curve c is computed,
all the c1 points are connected to create a segmentation of the model. Unfortu-
nately, the subsection length can vary a lot, which is not desirable, since the final
segmentation line should be a smooth. Therefore, a post-processing step is added,

60 Elastica segmentation

to ensure that no subsection curve are more than a maximum distance longer than
its neighbors. The subsections curves are considered in order from shortest to
longest, and if the neighbors of a subsection curve are too long, the neighbors are
cut. A final segmentation line is now obtained by connecting the end points of the
shortened subsections.

To construct the next segmentation, the whole procedure is repeated with the
starting point, c0, of the curves, moved to the edge of the segmentation that was
just found. This is repeated until there are no more model to segment.

The result of applying the algorithm to the same test case as in section 5.3 can be
seen in Figure 5.17, although we have the changed the cutting direction. This was to
lower the maximum curvature of the blade, because the blade strain constraint was
more restrictive than originally assumed. In this example, the algorithm starts at
the left edge of the model, and the segmentation curves become increasingly curved
as the algorithm moves toward the right. This is because a few curves repeatedly
have short subsections, but their neighbors are allowed to be longer, and this effect
is cumulative.

Figure 5.17: Left: The result of the algorithm starting from the top left edge. Right: The
segments of the result.

In contrast with the inflection points algorithm (section 5.2) and the trace algo-
rithm (section 5.3), the longest elastica algorithm in this section ensures that the
cutting curves can be approximated by elastica. However, the many computations
of elastica approximations makes the algorithm costly in terms of run-time. The al-
gorithm does not consider the aesthetics of the segmentation in regard to the model
geometry. To make the segmentation more pleasing to the eye, the end points of
the subsections could be connected by a smooth curve rather than straight lines.

The algorithm could be developed further to also account for the shape con-
straint, by also restricting the length of the subsection curves to include a maximum
of two inflection points. This extended algorithm could be used to make a general
scheme for finding a segmentation that incorporates all constraints. First it would
be necessary to determine a cutting direction, where the blade strain constraint
was fulfilled, i.e. the blade is kept within a maximum curvature. The multiple cut

5.4 Longest elastica algorithm 61

constraint could be fulfilled by using a hot tube and not allowing for rotation of
the intersecting planes. This would guarantee a segmentation that was ready for
fabrication by robots.

62 Elastica segmentation

Chapter 6

Discussion

The stochastic optimization developed in chapter 3 allow us to segment buildings
into the minimum number of blocks, thus saving up to 48% of the material needed
for construction. This lead us to expect that the material saving algorithm will be
of great value in the industry as it is still a relatively untouched area in the scientific
field. Since this is an automatic segmentation, the seams are not controlled by the
architect and this can alter the overall design of the structure. We believe that small
alterations of the algorithm could force the segmentation into a specific pattern,
thus guiding the design into a more aesthetic result. This algorithm can also be
used as the base for other methods where aesthetic considerations are taken into
account, since the algorithm always produces a feasible design.

Rationalization of piece-wise ruled surface to lower the cost of milling was con-
sidered in chapter 2 and the result was a method reducing the material needed to
be milled by up to 95%. The method was highly constrained, and a more relaxed
method could give a more flexible result. A relaxed version of the algorithm could
also be used as a segmentation method if only a few ruling pairs were relaxed.
Many of the constraints was applied on the ruled surface and not on the control
grid. Shifting the constraints to the control grid will make the system more flexible.
From a design perspective, the method is probably best suited for cutting in hard
material like marble, since ruffing in soft material like EPS is quite fast.

When cutting form works using elastica there are many constraints that need
to be taking into account and this was addressed in chapter 5. The architectural
designs currently being produced have sufficiently low curvature to automatically
ensure that many of these constraints are uphold. This means the elastica seg-
mentation algorithms are trying to solve the obstacles in advance. Since hot-blade
cutting is still in the development phase, obstacles not yet encountered will arise in

64 Discussion

the future, but the method can be a stepping stone for further development. The
segmentation algorithm also aims for a aesthetic result, though it is only a small
subset of the tools that architects can choose from when designing.

Many of the methods developed have the purpose of lowering the cost of pro-
duction. One of the project’s goals was to give architects a tool that would allow
them to pick their design from a cost perspective; meaning that an architect should
have the possibility to see the end result of their design for different price cate-
gories (with different production methods) during the design process. Like picking
the correct tiles for a floor: both considering price and style.

Chapter 7

Conclusion

I have presented six algorithms for rationalization and segmentation of architectural
constructions, either for automating production, as design guides when construct-
ing architectural buildings, or for design improvement when segmentation under
constrains.

Our block segmentation algorithm in chapter 3 lowers the amount of material
required for production by up to 48%. The problem is NP hard by nature and
our method shows a large improvement in material compared to state of the art
methods.

The method in the rationalization paper [SNS+] reduces the amount of milling
by precutting the model using a wire. We show that up to 98% of the required
milling can be removed by this method for models with high Gaussian curvature.
This paper also takes into account the robotic constraints in production.

We also introduced three segmentation methods for cutting with hot-blade (elas-
tic) in chapter 5. Each of these methods produce different aesthetic segmentations,
which is shown in the final design by the seams in the segmentation. Each method
takes into account different aspects of the elastica constraints and the production
limitations.

An interactive design tool for elastica segmentation was developed and tested
on a workshop for architect students, which lead to the paper [BBC+] where the
challenges and possible improvements of the interactive tool was discussed.

All in all, there are is a big future for segmentation and rationalization both
when considering the price, the aesthetic design guides, and overcoming production
constraints.

66 Conclusion

Bibliography

[BAS14] J. A. Bærentzen, R. Abdrashitov, and K. Singh. Interactive shape
modeling using a skeleton-mesh co-representation. ACM Transactions
on Graphics (proceedings of ACM SIGGRAPH), 33(4), 2014.

[BBaE+] David Brander, Andreas Bærentze, anton Evgrafov, Jens Gravesen,
Steen Markvorsen, Toke B Nørbjerg, Peter Nørtoft, and Kasper H.
Steenstrup. Hot blade cuttings for the building industries. Unpublish
paper waiting for accpetes.

[BBC+] David Brander, Andreas Bærentze, Kenn Clausen, Ann-Sofie Fisker,
Jens Gravesen, Morten N. Lund, Toke B. Nørbjerg, and Kasper Steen-
strup Asbjørn Søndergaard. Designing for robotic hot-blade cutting.
Unpublish paper waiting for accpetes in AAG 2016.

[BGAA12] J Andreas Bærentzen, Jens Gravesen, François Anton, and Henrik
Aanæs. Guide to computational geometry processing: foundations, al-
gorithms, and methods. Springer Science & Business Media, 2012.

[BGN15] David Brander, Jens Gravesen, and Toke Bjerge Nørbjerg. Approxima-
tion by planar elastic curves. arXiv preprint arXiv:1509.00703, 2015.

[BHP99] Gill Barequet and Sariel Har-Peled. E ciently approximating the
minimum-volume bounding box of a point set in three dimensions. In
Proc. 10th ACMSIAM Sympos. Discrete Algorithms, pages 82–91. Cite-
seer, 1999.

[BLM10] Ernesto G Birgin, Rafael D Lobato, and Reinaldo Morabito. An effective
recursive partitioning approach for the packing of identical rectangles in
a rectangle. Journal of the Operational Research Society, pages 306–320,
2010.

[Bur16] Mark Burry. Robots at the sagrada família basilica: A brief history of
robotised stone-cutting. In Robotic Fabrication in Architecture, Art and
Design 2016, pages 2–15. Springer, 2016.

68 BIBLIOGRAPHY

[CC06] Chih-Hsing Chu and Jang-Ting Chen. Tool path planning for five-axis
flank milling with developable surface approximation. The International
Journal of Advanced Manufacturing Technology, 29(7-8):707–713, 2006.

[CD15] Lixin Cao and Lei Dong. Positioning method of a cylindrical cutter
for ruled surface machining based on minimizing one-sided hausdorff
distance. Chinese Journal of Aeronautics, 28(5):1564 – 1573, 2015.

[Chi04] John CJ Chiou. Accurate tool position for five-axis ruled surface
machining by swept envelope approach. Computer-Aided Design,
36(10):967–974, 2004.

[DSG+11] Kathrin Dörfler, Timothy Sandy, Markus Giftthaler, Fabio Gramazio,
Matthias Kohler, and Jonas Buchli. Mobile robotic brickwork. 2011.

[EF97] Gershon Elber and Russ Fish. 5-axis freeform surface milling using
piecewise ruled surface approximation. Journal of Manufacturing Sci-
ence and Engineering, 119(3):383–387, 1997.

[Elb95] Gershon Elber. Model fabrication using surface layout projection.
Computer-Aided Design, 27(4):283 – 291, 1995.

[Fer14] Jelle Feringa. Entrepreneurship in architectural robotics: The simul-
taneity of craft, economics and design. Architectural Design, 84(3):60–
65, 2014.

[FNI+12] Simon Flöry, Yukie Nagai, Florin Isvoranu, Helmut Pottmann, and Jo-
hannes Wallner. Ruled free forms. na, 2012.

[FP10] Simon Flöry and Helmut Pottmann. Ruled surfaces for rationalization
and design in architecture. LIFE in: formation. On Responsive Infor-
mation and Variations in Architecture, pages 103–109, 2010.

[FS15] Jelle Feringa and Asbjørn Søndergaard. Fabricating architectural vol-
ume. Fabricate, 2015.

[JKS05] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-Charts: Quasi-
Developable Mesh Segmentation. Computer Graphics Forum, 2005.

[JTT+14] Caigui Jiang, Chengcheng Tang, Marko Tomicic, Johannes Wallner, and
Helmut Pottmann. Interactive modeling of architectural freeform struc-
tures - combining geometry with fabrication and statics. In P. Block,
J. Knippers, and W. Wang, editors, Advances in Architectural Geome-
try. Springer, 2014.

[KGW14] F Kohler, M Gramazio, and J Willmann. The robotic touch: How
robots change architecture, 2014.

[Lev09] Raphael Linus Levien. From spiral to spline: Optimal techniques in
interactive curve design. 2009.

BIBLIOGRAPHY 69

[LSVT15] Marco Livesu, Alla Sheffer, Nicholas Vining, and Marco Tarini. Practi-
cal hex-mesh optimization via edge-cone rectification. Transactions on
Graphics (Proc. SIGGRAPH 2015), 34(4), 2015.

[MFS13] Wes McGee, Jelle Feringa, and Asbjørn Søndergaard. Rob | Arch 2012:
Robotic Fabrication in Architecture, Art, and Design, chapter Processes
for an Architecture of Volume, pages 62–71. Springer Vienna, Vienna,
2013.

[MPV00] Silvano Martello, David Pisinger, and Daniele Vigo. The three-
dimensional bin packing problem. Operations Research, 48(2):256–267,
2000.

[MVLS14] Chongyang Ma, Nicholas Vining, Sylvain Lefebvre, and Alla Sheffer.
Game level layout from design specification. In Eurographics 2014, pages
95–104, 2014.

[Pis05] David Pisinger. Where are the hard knapsack problems? Computers &
Operations Research, 32(9):2271 – 2284, 2005.

[Pre10] Andrew N Pressley. Elementary differential geometry. Springer Science
& Business Media, 2010.

[SBB+16] Gregor Steinhagen, Johannes Braumann, Jan Brüninghaus, Matthias
Neuhaus, Sigrid Brell-Cokcan, and Bernd Kuhlenkötter. Path planning
for robotic artistic stone surface production. In Robotic Fabrication in
Architecture, Art and Design 2016, pages 122–135. Springer, 2016.

[SBSG] Kasper H. Steenstrup, Andreas Bærentze, Alla Sheffer, and Jens
Gavensen. Block segmentation. Manuscript for SIGGRAPH asia 2016.

[SDW+16] Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing
Fu, and Ligang Liu. CofiFab: Coarse-to-fine fabrication of large 3d
objects. ACM Transactions on Graphics (SIGGRAPH 2016), 2016.

[SFLF15] Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. Printing 3d ob-
jects with interlocking parts. Computer Aided Geometric design (Proc.
of GMP 2015), 35-36:137–148, 2015.

[SFN+16] Asbjørn Søndergaard, Jelle Feringa, Toke Nørbjerg, Kasper Steenstrup,
David Brander, Jens Graversen, Steen Markvorsen, Andreas Bærentzen,
Kiril Petkov, Jesper Hattel, et al. Robotic hot-blade cutting. In
Robotic Fabrication in Architecture, Art and Design 2016, pages 150–
164. Springer, 2016.

[SNS+] Kasper H. Steenstrup, Toke B. Nørbjerg, Asbjørn Søndergaard, J. An-
dreas Bærentzen, and Jens Gravesen. Cuttable ruled surface strips for
milling. Unpublish paper waiting for accpetes in AAG 2016.

70 BIBLIOGRAPHY

[Søn14] Asbjørn Søndergaard. Odico formwork robotics. Architectural Design,
84(3):66–67, 2014.

[TSG+15] Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner,
and Helmut Pottmann. Form-finding with polyhedral meshes made
simple. In ACM SIGGRAPH 2015 Posters, page 5. ACM, 2015.

[WB05] Andreas Wächter and T. Lorenz Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2005.

[WE14] Charlie CL Wang and Gershon Elber. Multi-dimensional dynamic pro-
gramming in ruled surface fitting. Computer-Aided Design, 51:39–49,
2014.

[YIO+15] Hironori Yoshida, Takeo Igarashi, Yusuke Obuchi, Yosuke Takami, Jun
Sato, Mika Araki, Masaaki Miki, Kosuke Nagata, Kazuhide Sakai, and
Syunsuke Igarashi. Architecture-scale human-assisted additive manu-
facturing. ACM Transactions on Graphics (TOG), 34(4):88, 2015.

[Zho10] Yayun Zhou. Optimization with Ruled Surface. Logos Verlag Berlin
GmbH, 2010.

[ZLAK14] Henrik Zimmer, Florent Lafarge, Pierre Alliez, and Leif Kobbelt. Zome-
tool shape approximation. Graphical Models, 76(5):390–401, 2014.

Hot Blade Cuttings for the Building Industries

David Brander, Andreas Bærentzen, Anton Evgrafov, Jens Gravesen, Steen
Markvorsen, Toke Bjerge Nørbjerg, Peter Nørtoft, and Kasper Steenstrup

Abstract The constructions of advanced architectural designs are presently very
labour intensive, time consuming, and expensive. They are therefore only applied
to a few prestige projects, and it is a major challenge for the building industry to
bring the costs down and thereby offer the architects more variability in the (eco-
nomically allowed) designs - i.e., to allow them to think out of the box. To address
this challenge The Danish National Advanced Technology Foundation (now Innova-
tionsFonden) is currently supporting the BladeRunner project that involves several
Danish companies and public institutions. The project aims to reduce the amount
of manual labour as well as production time by applying robots to cut expanded
polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The
scheme is based upon the so-called Hot Wire or Hot Blade technology where the
surfaces are essentially swept out by driving an Euler elastica through a block of
EPS. This paper will be centered around the mathematical challenges encountered
in the implementation of this idea. They are mainly concerned with the rational-
ization of the architects’ CAD drawings into surfaces that can be created via this
particular sweeping and cutting technology.

1 The need for low cost procedures

A recurring theme in the architectural industry of today is a conflict between the de-
sign ambitions of the architect and the economic realities of fabrication processes.

David Brander, DTU Compute, e-mail: dbra@dtu.dk
Andreas Bærentzen, DTU Compute, e-mail: janba@dtu.dk
Anton Evgrafov, NTNU, Dept. of Math., e-mail: anton.evgrafov@math.ntnu.no
Jens Gravesen, DTU Compute, e-mail: jgra@dtu.dk
Steen Markvorsen, DTU Compute, e-mail: stema@dtu.dk
Toke Bjerge Nørbjerg, DTU Compute, e-mail: tono@dtu.dk
Peter Nørtoft, AutoDesk, Denmark, e-mail: penn@dtu.dk
Kasper Steenstrup, DTU Compute, e-mail: khor@dtu.dk

1

2 David Brander et al.

The desire to create unique and attractive designs, often motivated by the compet-
itive industry climate, leads to the use of curved geometries and bespoke elements
that can be conceived easily within modern CAD systems, but, in reality, are pro-
hibitively expensive to build. This results in compromises at the so-called ratio-
nalization stage, where the design is adjusted within an engineering context for
production purposes. A typical example is where the desired shape of a building
leads to panels (or some other element) of perhaps 200 different shapes. Consulta-
tion with fabrication contractors then reveals that dramatic cost reductions can be
achieved if the design is adjusted so that only 20 unique elements are used, with
repetition, instead of the 200. Finally, budgetary considerations force a compromise
of the original design.

The present project addresses this issue, in particular within the domain of the
production of formwork for concrete constructions. The shape of the surface of
a facade or other element is produced in negative in several pieces of expanded
polystyrene (EPS) foam that is used as a mould for concrete casting. EPS can also be
used in positive shape production for some applications by applying a coating and
retaining the EPS as a structural element. For curved surfaces the currently avail-
able technology for shaping the EPS is computer numerically controlled milling,
a slow, and therefore expensive, process. The BladeRunner project, supported by
the Innovation Fund Denmark, is presently developing new processes, robotic Hot
Wire/Blade cutting, for carving shapes out of EPS using a robotically controlled
heated wire or blade. The technology is projected to reduce production time of ar-
chitectural formwork by a factor of over 100, and to bring the cost of production for
advanced shapes into the domain of financial feasibility.

Fig. 1: Robotic Hot Wire cutting in Odense, Denmark.

Hot Blade Cuttings for the Building Industries 3

2 Principles of Hot Blade cuttings

The essential principle of both Hot Wire and Hot Blade cutting is very simple. A
heated wire or blade, either of which we may think of as a “blade”, is moved relative
to a block of EPS, carving out a surface through the block (Figure 1). Either the
block or the blade, or both, are controlled by a robot. For definiteness, we regard the
block as fixed and the blade as moving.

2.1 Hot wire cutting and its limitations

For the wire technology, the wire is held tight, forming a straight line, and thus
sweeps out a ruled surface. This technology is limited in its ability to approximate
general freeform surfaces. This can be seen by considering the Gaussian curvature
of a surface, which is defined as follows: through any point p on a surface a curve is
obtained by intersecting the surface with a plane perpendicular to the tangent plane
at that point (Figure 2). The normal curvature associated to the tangent direction of
this curve is the curvature of this curve at the point p, with the sign determined by a
fixed choice of surface normal vector (Figure 2, left). The maximum and minimum
values obtained from all possible tangent directions at p are called the principal
curvatures, κ1 and κ2, and their product is the Gaussian curvature K = κ1κ2. In the
saddle surface shown at Figure 2, the principal curves bend in opposite directions
away from the tangent plane and so κ1 and κ2 have opposite signs and K < 0.

Fig. 2: A saddle surface. Left: the normal curvature defined by this intersection curve is positive
if the downward pointing surface normal is chosen. Middle: the planes defining the principal cur-
vatures at the center. Right: this normal section is a straight line; the normal curvature is zero in
this direction.

If the Gaussian curvature is positive, then κ1 and κ2 at p have the same sign,
and any other tangent direction at p has normal curvature κn with κ1 ≥ κn ≥ κ2.
Therefore κn cannot be zero in this case. Now for an arbitrary arc-length param-
eterized curve γ in the surface the acceleration vector decomposes as γ ′′(s) =
κg(s)ν(s)+κn(s)N(s), where N is the surface normal, and κn is the normal curva-

4 David Brander et al.

ture in the direction of γ ′. It follows that, if κn 6= 0, then the acceleration is non-zero
and thus the curve cannot be a straight line. On the other hand, a ruled surface is
defined to be a surface swept out by a smoothly varying family of straight lines:
through every point of a ruled surface there is a straight line lying in the surface.
Therefore, by the discussion above, a ruled surface cannot have positive Gaussian
curvature; moreover, there is no chance of obtaining a good local approximation for
a positively curved surface by a ruled surface (Figure 3).

Fig. 3: At a point of positive Gaussian curvature the surface is bowl-shaped. No straight line
tangent to the surface can approximate a curve in the surface.

Figure 4 shows (center) an approximation of a negatively curved surface by ruled
strips. The ruling directions are chosen to be close to the asymptotic directions,
namely directions where the normal curvature is zero. However, even for negatively
curved surfaces, it is in general not possible to obtain a tangent continuous approxi-
mation - the tangent planes do not match along adjacent strips.

Fig. 4: Left to right: The hyperboloid (a ruled surface); Approximation of a negatively curved
surface by strips of ruled surfaces; Ruled strip approximation of a positively curved surface.

2.2 Hot blade cutting

The blade concept is much more general: the end points and the tangents at the
endpoints vary during the sweeping. We will assume that the curve lies in a plane,
that is, that the end tangents are co-planar. This restriction makes the mechanical
implementation of the process easier, both in terms of choosing the cross-sectional

Hot Blade Cuttings for the Building Industries 5

shape of the blade design and allowing for the possibility that only one edge of the
physical blade is heated.

An elastic rod, of a fixed length and with end points and end tangents at a given
position, assumes the shape of an Euler elastica (discussed below). These curves are
well understood mathematically and are given in terms of elliptic functions.

In order to apply either of these technologies to a given CAD design, a rational-
ization of the relevant surface is necessary: the surface must first be segmented into
pieces, each of which can be approximated within a given tolerance by a surface
swept out by curves of the relevant type (lines or a family of elastica). Next, each
segment is foliated by curves each of which is approximated by a curve of the type
in question. Finally, the data for producing these curve sweepings is given to the
robot control software.

Methods for rationalization for Hot Wire cutting have been given already in the
literature (see below). Therefore, in this article, the rationalization project we are
concerned with consists of both developing a segmentation algorithm for blade-
cut surfaces, and an algorithm for approximating arbitrary spline curves by Euler
elastica.

2.3 Previous related works

Pottmann and Flörey [7] developed a ruled surfaces segmentation algorithm using
the fact that on ruled surfaces one of the asymptotic directions at a point must be
tangent to the ruling, giving natural candidates for the ruling direction in the surface
to be approximated. As such, this segmentation strategy does not generalize to the
case of hot blade cutting, therefore a new strategy must be developed.

For the Hot Blade technology, some work has been done in the late 1990’s to the
early 2000’s by a group at Delft: see [8, 4] and associated references. The use of
the Hot Blade technology there is somewhat different, as the aim is to produce 3-
dimensional solid rapid prototype models from EPS via a so-called “thick-layered
fabrication” process. The solid is built up by stacking many thick slices, and the
curved surface that needs to be cut is only a narrow strip around the boundary of
each slice. Therefore, the segmentation problem is completely different from the
surface segmentation problem that will apply to the BladeRunner process.

The work of the Delft group is concentrated on approximating the blade shape
and algorithms for tool positioning. The approach they use for approximating the
blade shape is to apply a numerical method to minimize the bending energy. Below
we will use a different approach that takes advantage of the known analytic solutions
for this problem to give an explicit parameterization of the space of solutions. This
allows us to move easily in the space of solutions, calculate gradients, and use stan-
dard optimization packages to find an elastic curve that approximates an arbitrary
given curve.

6 David Brander et al.

3 The Euler elastica

We describe here a parameterization of the space of planar elastic curve segments.
More details of this parameterization and further references can be found in [3]. An
introduction to the theory of elastic curves, with historical references, can be found
in [11]. Other works on the topic of elastic curves as splines are [1, 2, 5, 6].

3.1 The Euler-Lagrange equation

We give here a brief derivation of the differential equation that determines the solu-
tions to the elastica problem. The reader unfamiliar with the calculus of variations
could take this derivation for granted and proceed directly to the solutions given in
the next subsection. Let γ : [0, `]→ R2 be a plane curve segment parameterized by
arc-length, and define an angle function θ(s) by γ̇(s) = (cosθ(s),sinθ(s)). A curve
segment of length ` starting at (x0,y0) and ending at (x`,y`) satisfies

x` = x0 +
∫ `

0
cosθ ds , y` = y0 +

∫ `

0
sinθ ds . (1)

Let κ denote the curvature θ ′(s). An elastica is a curve that minimizes the bending
energy

1
2

∫ `

0
κ(s)2 ds . (2)

The equations defining the elastica are obtained from a variational problem: suppose
γ is an elastica from (x0,y0) to (x`,y`) with angle function θ(s). A smooth variation
is given by the family γ t with angle function θt(s) = θ(s)+ tψ(s), where ψ is a
differentiable function with ψ(0) = ψ(`) = 0. Applying the method of Lagrange
multipliers we find that, if γ minimizes the energy among such curves, then the
angle function θ satisfies:

d2θ
ds2 +λ1 sinθ −λ2 cosθ = 0 . (3)

Setting (λ1,λ2) = λ (cosφ ,sinφ), with λ ≥ 0, this becomes d2θ
ds2 +λ sin(θ −φ) = 0.

Note that λ = 0 if and only if κ is constant, i.e the curve γ is either a straight line
segment or a piece of a circle. If λ 6= 0, set

γ̃(s) =
√

λR−φ γ
(

s√
λ

)
, Rφ =

[
cosφ −sinφ
sinφ cosφ

]
. (4)

Then γ̃ is a scaled and rotated version of γ and thus also an elastica. Its tangent angle
is θ̃(s) = θ(s/

√
λ)− φ and it satisfies the normalized pendulum equation d2θ̃

ds2 =

−sin θ̃ . Hence we conclude that, up to a scaling and rotation of the ambient space,

Hot Blade Cuttings for the Building Industries 7

all arc-length parameterized elastica γ : [0,1]→ R2, with non-constant curvature κ ,
can be expressed as:

γ(s) = γ(0)+
∫ s

0
(cosθ(t),sinθ(t))dt (5)

where
θ̈ =−sinθ . (6)

3.2 The space of elastic curve segments

We now find some suitable parameters to describe the space of elastic curve seg-
ments. First, it is well known that the solutions to (6) can be expressed in closed
form via the elliptic functions sn, cn, and dn. These solutions can be found in Love
[12]. There are two classes of solution curves: those with inflection points (i.e.
points where κ = θ̇ = 0) and those without inflections. Each class of solutions is
a 1-parameter family.

k = 0

k = 0.3

k = 0.7

k = 0.83

k = 0.87

k = 0.9089

k = 0.937

k = 0.99

k = 1

Fig. 5: Euler elastica. Left: inflectional. Right: non-inflectional. The respective elastica – with
values of k ranging from 0 at the top to 1 at the bottom – are plotted.

8 David Brander et al.

The inflectional elastica starting at (0,0) with initial angle θ(0) = 0 and θ̇(0)> 0
is

ζk(s) = ζ (s,k) =
(

2E(s,k)− s
2k(1− cn(s,k))

)
, where k = θ̇(0)/2.

A segment of such a curve is determined by the value k, a starting point s0 and a
length `. Finally, adding a scaling S, a rotation φ and a translation (x0,y0), we have a
standard representation γ(k,s0,L,S,φ ,x0,y0)

: [0,1]→R2 for a segment of an inflectional
elastic curve:

γ(k,s0,`,S,φ ,x0,y0)
(t) = SRφ (ζk(s0 + ` t))+

(
x0
y0

)

= SRφ

(
2E(s0 + ` t,k)− (s0 + ` t)

2k (1− cn(s0 + ` t,k))

)
+

(
x0
y0

)
,

where
E(s,k) :=

∫ s

0
dn2(τ,k)dτ .

Note that the arc-length parameter in this representation is s = S (s0 + ` t) and not t
and that the length is L = S`.

Similarly, we obtain a standard representation of a non-inflectional elastic curve
segment:

γ(k,s0,`,S,φ ,x0,y0)
(t) = SRφ


(1− 2

k2)(s0 + ` t)+ 2
k E
(

s0+` t
k ,k

)

2
k (1−dn

(
s0+` t

k ,k)
)


+

(
x0
y0

)
.

4 Sweeping surfaces with Euler elastica

The figures in this section illustrate examples of surfaces foliated by continuously
varying segments of Euler elastica. These examples are constructed by parameter-
izing the space of planar elastica segments, as in the previous section, choosing a
small number of sample curve segments, and then interpolating the data through the
parameter space. Hence each surface is swept by a family of planar elastica.

In principle, all of these surfaces could be produced by robotic hot-blade cutting,
but there are technical issues that depend on the practical implementation. For ex-
ample, the surface on the left in Figure 7 is a surface of revolution, but one end of
the profile curve is much closer to the axis of rotation than the other. This means that
the blade moves much more slowly on the inner end resulting in too much melting
of the EPS. One solution is to segment the surface into several pieces, cut sepa-
rately. Another is to approximate this surface by some other, non-rotational, family
of elastic segments.

Yet another restriction arises if a flat blade is used, rather than a cylindrical rod
(see Figure 8). With the flat blade design, the blade is curved in a plane perpendic-

Hot Blade Cuttings for the Building Industries 9

Fig. 6: Examples of surfaces swept by continuously varying elastic curve segments.

Fig. 7: Two technically problematic situations.

ular to the plane of the blade. If one edge of the blade is heated, the motion of the
blade should be roughly in the direction of this edge, that is, approximately perpen-
dicular to the plane of the curve, in order to cut a path through the material. Another
way to say this is that the elastic curves should be as close as possible to geodesic
curves on the surface under construction. To require that these planar elastic curves
are true geodesics would place too large a restriction on the uses of this method;
so we apply a tolerance instead. Both surfaces shown in Figure 6 are reasonable
candidates for cutting with a flat blade. The second surface in Figure 7 however,
would be impractical with the given elastica foliation. The osculating plane of the
elastic curve shown is very close to the tangent plane of the surface; thus the hot
edge is pointing out of the surface, and the blade would not be able to progress in
the required direction.

5 Approximation by Euler elastica

In this section we consider the problem of approximating a given planar spline curve
x : [0,1]→R2 by a planar elastic curve. We present two different approaches to this
problem. In the first we try to find the parameters (k,s0, `,S,φ ,x0,y0) of the elastica
that has the best fit to the curve x. This is a nonlinear optimization problem, and the
final result depends crucially on a good initial guess. The second approach is purely
numerical – we model the elastica with a spline on a much finer knot vector than

10 David Brander et al.

Fig. 8: Left: A cylindrical rod can cut in any direction that is close to perpendicular to the tangent
of the curve. Right: A flat (or ribbon) blade design (with its hot edge indicated in red) moves well
only in the directions close to the direction of the cutting edge.

the original curve, and then solve a constrained optimization problem minimizing
the elastic energy under the constraint of being within some distance to the original
curve.

5.1 Analytic approach: finding the parameters for the elastica

We describe here the essentials of the gradient driven analytic approach. For full
details, see the article [3].

We wish to find the elastic curve segment which most closely resembles the given
spline curve x. We choose to minimize the L2-distance between the curves. For a
given set of parameters, the elastic curve segment γ(k,s0,`,S,φ ,x0,y0)

is parameterized
with constant speed `S over the interval [0,1]. The spline curve is also defined on
[0,1], but its speed is not necessarily constant. Since the L2-norm compares points at
corresponding parameter values, we need to reparameterize either the spline or the
elastica for the L2-distance to be a good measure of the curves’ resemblance. The
simplest way is to reparameterize the elastica using the arc length s of the spline
which can be calculated as

s(t) =
∫ t

0

ds
dt

dτ =
∫ t

0
‖x′(τ)‖dτ , (7)

and the length of the spline is then L = s(1). We now consider the minimization
problem

minimizek,s0,`,S,φ ,x0,y0 E (k,s0, `,S,φ ,x0,y0), (8)

where

E =
1
2

∫ 1

0

∥∥∥x(t)− γ(k,s0,`,S,φ ,x0,y0)
(s(t)/L)

∥∥∥
2
‖x′(t)‖dt (9)

is the square of the L2-distance between the spline and the elastica segment.
We use a gradient driven optimization package IPOPT [9], so we need the partial

derivatives of the objective function E with respect to the parameters (c1, . . . ,c7) =
(k,s0, `,S,φ ,x0,y0), i.e.,

Hot Blade Cuttings for the Building Industries 11

spline

intial guess

result

Fig. 9: Approximating a spline by elastica. To the left an arbitrary (bad) initial guess and to the
right our guess. The solid line is the spline, the dashed curves are the initial guess, the dash-dotted
curves are the optimized approximations.

spline curve

spline control points

refined spline control points

resulting curve

resulting control points

Fig. 10: A spline approximation of an elastica (blue) constrained by a target spline (red). The end
positions and tangents have been fixed.

∂E

∂ci
=−

∫ 1

0

〈
∂γc
∂ci

(s(t)/L),x(t)− γc(s(t)/L)
〉
‖x′(t)‖dt . (10)

The optimization problem is non-convex, so there are several local minima for
E . Therefore the optimization gives different results depending on the initial values
of the parameters, cf. Figure 9. It is therefore necessary for us to have a good initial
guess. We describe next our method for finding an initial guess. The full details can
be found in [3].

12 David Brander et al.

We find the initial guess by considering the differential equation (3). If we let
u = 1

λ (λ2 x−λ1 y) then the differential equation can be written as d2θ
ds2 = λ du

ds , and
integrating this yields

κ =
dθ
ds

= λ u+α = λ2 x−λ1 y+α . (11)

Letting θu denote the angle between the u-axis and the tangent, we have

cosθu =
1
λ

(
λ2
−λ1

)
·
(

ẋ
ẏ

)
=

du
ds

,

so
dsinθu

du
=

ds
du

dsinθu

ds
=

1
cosθu

cosθu
dθu

ds
= κ = λu+α,

and thus
sinθu =

1
2

λ u2 +α u+β .

As (λ1,λ2) = S−2(cosφ ,sinφ) we get estimates for the scale S and the angle φ by
solving the first equation with respect to λ1,λ2,α in the least square sense. In a
similar manner we can estimate β , and by analysing the resulting parabola we can
determine whether we should use an elastica with or without inflections and estimate
the parameter k. In the next step we determine which segment of the elastica we
should use, i.e., estimate s0 and `. We finally determine the translation (x0,y0) by
a least square fit. If we want end point interpolation then we can achieve that by a
final scaling, rotation, and translation.

5.2 A purely numerical approach

We have described a method for approximating a spline curve x : [0,1]→ R2 by a
segment of an elastic curve, represented by an analytic solution in terms of elliptic
functions. An alternative approach is to approximate the spline by another spline
curve y which is intended to be close to an elastica, in the sense that it minimizes
the elastic energy. This approach could be advantageous for practical reasons. For
example, existing CAD software and other mathematical software and algorithms
already work with the data structure of splines.

We will use a refined knot vector for the new spline curve y. By knot insertion
we express both the target spline x and the elastica approximation y using the same
basis functions (B-splines). This gives us control points xi and yi, i = 1, . . . ,n, that
we can compare. We now seek to minimize the bending energy (2) of the new spline
curve y, with control points yi, while staying close to the original curve x, with
control points xi. The difference between these spline curves is also a spline curve,
with control points xi− yi, and the distance between the curves is captured by the
distance between the control points. These points have coordinates (xi − yi) · ei,

Hot Blade Cuttings for the Building Industries 13

where e1 = (1,0) and e2 = (0,2). That is, we consider the constrained optimization
problem:

minimizey1,...,yn

1
2

∫ 1

0
κ2

y ds , (12)

such that − ε ≤
(
xi−yi

)
· e j ≤ ε , i = 1, . . . ,n, j = 1,2 . (13)

We need to constrain the problem additionally, e.g., by fixing the positions and
tangents at the two end points. On top of this, we thus have an optimization, or
sampling, over end points and tangents. For end point interpolation we simply put
y1 = x1, yn = xn, and remove these two control points from both the optimization
and the constraints. The tangent constraints just specify directions along which y2
and yn−1 can move. The length could also be specified. In any case, we are no longer
looking for the elastica that minimizes the distance to x, but rather for an elastica
that is ε-close x. If none of the constraints are active at the end of the optimization
we conclude that we have obtained an elastica which is closer to the target spline
than ε . This is of course only true up to the discretization error resulting from using
splines to model elastica. By refining the knot vector we obtain a smaller discretiza-
tion error, and we can validate the solution by checking the differential equation
(11). An example of this approach is shown in Figure 10.

A disadvantage of this method is that we cannot guarantee that our solution y is
close to an elastica – only that it has less bending energy than the input curve x.
For this reason, we have chosen to work with the analytic approach outlined in the
previous subsection.

6 Surface rationalization

Before a CAD surface can be realized as a mould in the form of a collection of EPS
blocks it needs to be divided into patches. Each individual patch is approximated by
a surface swept by a hot blade, i.e., a surface foliated by planar elastic curves.

In fact, we need to consider two processes: blocking and segmentation. Blocking
is the process of dividing a surface into blocks such that each block can be cut in-
dividually using either a hot wire or a hot blade. Segmentation on the other hand is
the process of dividing the surface into patches swept by elastica or ruled patches.
If blocking is performed before segmentation, we simply divide the 3D shape into
blocks and then fit the best possible ruled or elastic surface patch to each block -
possibly taking constraints between block boundaries into account. Doing segmen-
tation first is arguably harder, but has certain benefits: knowing which segments
intersect a given block can be used to inform the blocking procedure.

In the following, we consider a more concrete approach to segmentation in the
context where we assume that blocking has been performed first.

We first consider the problem of approximating a single surface by a surface foli-
ated by planar elastic curves. One way to accomplish this is first to foliate the surface

14 David Brander et al.

by planar curves and then approximate these planar curves by elastica. That is, we
sweep a plane through the surface, and thereby foliate the surface by planar curves.
We then pick a finite number of these planes, approximate each of the corresponding
planar sections with a segment of an elastica, calculate endpoints, end tangents, and
lengths and interpolate this data to obtain an approximation of the original surface.

Fig. 11: A simple approach to the rationalization of the red ellipsoid by planar surfaces. No
boundary conditions are enforced in this rationalization.

For the general case we imagine our CAD surface sitting inside a collection of
EPS blocks. This divides the surface into a collection of pieces each of which is the
intersection between a block and the full surface, see figure 11. We now approximate
each of these pieces by an elastica swept surface while demanding that neighbouring
surfaces fit together in a C1 fashion. This can be a large global optimization problem
and at the end we check to see if the result is within the required tolerance. We then
pick the blocks where the tolerance is exceeded, cut these blocks in half and redo
the optimization.

In the more complex approach, where segmentation (of the CAD surface) is per-
formed first, several options can be considered. One way is to fit the largest patch
that upholds the tolerance criteria to the surface and remove this part to create a
reduced surface. This procedure is repeated until the whole surface is removed, i.e.,
the original surface is covered by patches. Another approach is a patch-growing al-
gorithm as in [10]: A number of patches grow on the surface and whenever two
patches meet a competition determines the boundary between the patches. The de-
termining force in the competition is the improvement on the Euler elastica sweep
approximation, i.e., the resulting boundary is the one with the largest combined im-
provement.

For fabrication, each patch needs to be divided into blocks, and this can be dif-
ficult on the boundaries; either the blocks need to be cut smaller to align with the
boundaries or multiple elastica sweeps are needed, i.e., the block can be cut more
than once by the blade.

A third option is a hybrid of the above mentioned methods, where the knowledge
from the patch methods guides the placement of the blocks.

Hot Blade Cuttings for the Building Industries 15

7 Examples

Fig. 12: The skater ramp example.

To illustrate the procedures, we consider the modelling and construction of the
skater ramp shown in Figure 12. This CAD surface consists of spline surfaces, some
of which are doubly curved. The curved surfaces (see Figure 13) are the ones that
need special moulds. Here there are three different types: 1) three ruled parts (the
“sides”), 2) two corners with negative curvature at the front of the image and 3) two
corners with positive curvature at the back. We will approximate each corner by a
surface swept by elastica. The ruled parts can be cut either by the hot wire following
the rulings or by the hot blade approximating the curved cross section curve by an
elastic curve.

For each corner, the control points give rise to a set of planar spline curves which
foliate the surface (see Figure 14 left). These curves can be approximated by elastica
as described in Section 5.

If the splines are approximated independently, the control parameters for the re-
sulting elastica might differ quite a lot between two adjacent curves. This is because,
for a typical (uncomplicated) curve segment, there can be many different elastic
curve segments that approximate it quite closely. To avoid large jumps in the con-
trol parameters we use the elastica that approximates the first spline curve as the
initial guess for the optimization at the next spline, and so forth.

The optimization is performed with constraints: the approximating elastic curve
is in each case required to have the same length and the same end points as the
original spline curve. The resulting elastic curves can be seen in Figure 14 right.

Our optimization algorithm minimizes the square on the L2-distance between the
spline curve and the elastica, see (9). Table 1 shows some of these distance values.

16 David Brander et al.

Fig. 13: The spline surfaces of the skater ramp must be approximated by elastica swept surfaces

Fig. 14: The corner surfaces are foliated by planar spline curves (blue). Each of these are approx-
imated by an elastic curve (red).

For a visual evaluation of the result, in Figure 15 we have plotted the spline and
the approximating elastica in the worst case (i.e. highest L2 distance). For the corner
with negative curvature the curves are nearly indistinguishable. For the positively
curved corner, there is clearly a difference, but the overall shape is the same, and
the approximation is certainly within any conceivable tolerance for this particular
application.

Hot Blade Cuttings for the Building Industries 17

Min Max Average
Negative 0,838846837 0,9107882 0,868163184
Positive 5,738445432 5,788943718 5,778703296

Table 1: The optimized value for the L2-distance for the two corner types. The minimal value
corresponds to the elastic curve which best approximates the spline. The height of the ramp is
854.10 with the lengths of the spline curves varying between 1342.6 and 1459.8.

Fig. 15: The original planar spline curve (black) on top of the approximating elastica (red). These
are the worst cases for the corners with negative curvature (left) and positive curvature (right).

Fig. 16: Left: The surface is foliated by planar spline curves. Right: The surfaces is foliated by
elastic curves which approximate the splines on the left figure.

8 Conclusion

Our work on approximating arbitrary spline curves by elastic curves, illustrated here
by the test case of the skate ramp, indicate that the problem of approximating most of
the CAD surfaces used in architecture by panels of surfaces swept by planar elastica
is feasible. The utility of the technology then depends on the technical problem

18 David Brander et al.

of designing a blade that can be heated and used to cut EPS in a consistent and
predictable way. We will receive input in the near future from project partners who
are in the process of developing this blade technology.

Acknowledgements This work was completed with the support of Innovation Fund Denmark,
project number 128-2012-3.

References

1. Birkhoff, G., Boor, C.D.: Piecewise polynomial interpolation and approximation. Approx-
imation of Functions, Proc. General Motors Symposium 1964, H.L. Garabedian, ed. pp.
164–190 (1965). Elsevier, Publ. Co. Amsterdam.

2. Borbély, A., Johnson, M.: Elastic splines I: Existence. Constr. Approx. 40, 189–218 (2014).
3. D. Brander, J. Gravesen, and T. Nørbjerg. Approximation by planar elastic curves. Preprint,

arXiv:1509.00703.
4. J.J. Broek, I. Horváth, B. de Smit, A.F. Lennings, Z. Rusák, and J.S.M. Vergeest. Free-form

thick layer object manufacturing technology for large-sized physical models. Automation in
Construction, 11:335–347, 2002.

5. Malcolm, M.: On the computation of nonlinear spline functions. SIAM Journal on Numerical
Analysis 14, 254–282 (1977)

6. Mehlum, E.: Nonlinear splines. Computer aided geometric design (Proc. Conf., Univ. Utah,
Salt Lake City, Utah, 1974) pp. 173–207 (1974).

7. S. Flöry and H. Pottmann. Ruled surfaces for rationalization and design in architecture. Proc.
ACADIA, pages 103–109, 2010.

8. I. Horváth, Z. Kovács, J.S.M. Vergeest, J.J. Broek, and A. de Smit. Free-form cutting of
plastic foams: a new functionality for thick-layered fabrication of prototypes. Proceedings of
the TCT’98 Conference, Nottingham, pages 229–237, 1998.

9. A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program., Ser. A 106, pages 25–57,
2006.

10. D. Julius, V. Kraevoy and A. Sheffer. D-charts: Quasi-developable mesh segmentation. Com-
puter Graphics Forum, Proc. of Eurographics, pages 581–590, 2005.

11. Levien, R.: From spiral to spline; optimal techniques for interactive curve design. Ph.D.
thesis, UC Berkeley (2009)

12. A.E.H. Love, A treatise on the mathematical theory of elasticity, Cambridge University Press,
1906.

adfa, p. 3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Robotic Hot-Blade Cutting

An industrial approach to cost-effective production of double

curved concrete structures.

Asbjørn Søndergaard1,*, Jelle Feringa2, Toke Nørbjerg3, Kasper Steen-
strup3, David Brander3, Jens Graversen3, Steen Markvorsen3, Andreas
Bærentzen3, Kiril Petkov4, Jesper Hattel4, Kenn Clausen5, Kasper Jen-

sen5, Lars Knudsen6 and Jacob Kortbek6

1 Odico Formwork Robotics Aps.
asbjorn@odico.dk

2 Odico Formwork Robotics Aps.
jelle@odico.dk

3 Technical University of Denmark, dep. of applied mathematics and computer science
{tono, khor, dbra,jgra,stema, janba} @dtu.dk

4 Technical University of Denmark, dep. of mechanical engineering
{kipekt, jhat} @dtu.dk

5 GXN A/S
{kec, kgj} @3xn.dk

6Danish Technological Institute, Center for Robotics
{lak, jkk} @teknologisk.dk

Abstract. This paper presents a novel method for cost-effective, robotic produc-
tion of double curved formwork in Expanded Polystyrene (EPS) for in-situ and
prefabricated concrete construction. A rationalization and segmentation proce-
dure is developed, which allows for the transliteration of double curved NURBS
surfaces to Euler elastica surface segments, while respecting various constraints
of production. An 18 axis, tri-robot system approximates double curved NURBS
surfaces by means of an elastically deformed and heated blade, mounted on the
flanges of two manipulators. Re-orienting or translating either end of the blade
dynamically deforms the blade’s curvature. The blade follows the contours of
the rationalized surface by continuous change in position and orientation of the
end-effectors. The concept’s potential is studied by a pilot production of a full-
scale demonstrator panel assembly.

Keywords: robotic fabrication, Hot-Blade, EPS-molds, cost-efficiency, con-
crete structures

1 Introduction

The vast majority of contemporary building designs are restrained to a formal lan-
guage of planar surfaces and derivative geometric constructs; a constraint that stems
from the practicalities of construction, which favors the use of mass-produced semi-
manufactures and – for concrete in particular – modular, reusable formwork systems.
An increasing number of high-profile project designs challenge the dominant para-
digm. The challenge is posed by advanced building design projects, such as the
Kagamigahara Crematorium (Toyo Ito Architects, 2006) and Waalbridge Extension
(Zwart & Jansma, under construction), which utilize manual production of formwork
to achieve complex curvatures; and building projects which employ large scale CNC-
milling to realize advanced structures, such as the Museum Foundation Louis Vuitton
by Gehry & Associates (Paris, 2014); the Nordpark cable railway by Zaha Hadid Ar-
chitects (Nordpark, 2007), the Metz Pompidou by Shigeru Ban (Metz, 2010).

Fig. 1. Large scale RHWC production at Odico (left), and hotwire cut production sample (right)

However, neither manual formwork production, nor large scale CNC-milling pro-
vides a cost-effective option for general construction, and projects of this type there-
fore require extraordinary budget frameworks for realization. Recent developments in
architectural robotics by authors of this paper have demonstrated novel, cost-effective
means of producing bespoke formwork with the constraint of being limited to ruled
surface. The Robotic Hotwire Cutting (RHWC) approach is utilized to concrete cast-
ing in Expanded Polystyrene that has been developed to industrial scale (Feringa and
Søndergaard, 2014). Currently, Odico Aps is putting forward RHWC in relation to a
project design by the Danish artist Olafur Eliasson, for the Kirk Kapital HQ in Vejle
[1]. Here, over 4000m2 of formwork are produced, achieving production speeds order
of magnitudes faster than CNC-milling through the principal mechanics of the method
(McGee, 2012). In extension of these developments, experiments at Odico are per-
formed in abrasive wire-sawing. Through this technique, the same digital control pro-
cedures - facilitated by the internally developed control software, PyRapid – is applied
to direct processing of construction materials, such as industrial marble (fig. 2, top). In
further maturation of the concept, the method is being adapted in partnership devel-
opment with Bäumer AG for industrial machining. Prototype production have re-
vealed further significant reductions in machining times, in which full scale elements
may be cut in matter of seconds (fig. 2, bottom).

Fig 2. Robotic abrasive wire-saw cutting of marble blocks at Carrara, Italy (top, left); cut
samples (top, right) Second abrasive prototype tool, developed in collaboration with Bäumer
AG (bottom, right) Sample geometry cut in nonflammable acoustic foam under 16 seconds

(bottom, left)

However, for a number of projects, the realization of general double curved structures
is imperative. Here, no effective methods currently exist for architectural scale, indus-
trial production.

In 2012, Odico Aps. tendered as part of a consortium for the realization of the be-
fore mentioned Extended Waalbridge project (fig 3). Here, the double curvature of the
columns of the bridge elegantly blending with the bridge slab are dominated in a sin-
gle direction. The considerable scale of the project implied large local radii (between
1- 2m) of the surfaces. Since, for this scale, CNC milling molds from EPS would have
been a prohibitively ineffective method, digital manufacturing would not be economi-
cally competitive with the more traditional approach that was chosen. While develop-
ing the tender documents, Odico Aps. realized that the Hot-Blade cutting method pre-
sented in this paper would represent a competitive solution.

Fig. 3. The Waal Bridge Extension Impression of the artist (left) (© Zwart & Jansma)

Ongoing construction work using traditional formwork systems (right)

2 State-of-the-Art

Contemporary construction currently employs either manually produced, bespoke
formwork or CNC-milling of foam molds for the realization of complex concrete
structures. In addition to these techniques actuated mold systems have been explored
by Danish Adapa and in the EU FP7 project TailorCrete (Jepsen et. Al., 2011; Hesse,
2012). This technique employ actuation of a flexible membrane as a casting surface;
however, the method is limited to concrete prefabrication; by the casting pressure the
individual systems can take; and the need for multiple casting aggregates for large
volume production due the curing time for concrete elements. In addition, dynamic
slip-casting for column elements is being explored (Lloret et al., 2014), as a variant of
the additive manufacturing of concrete structures (Khosnevic, 2004; Lim et al., 2012).
These and related methods attempt avoiding the need for formwork altogether – how-
ever does so at the cost of significant degrees of freedom, such as the capacity to real-
ize cantilevered designs. Finally fabric formwork have been proposed and experimen-
tally applied as an alternative technique for the casting of advanced designs (Veenen-
daal et al, 2011). This approach is challenged by the capacity of the fabric to achieve
desired designs, as well as the unpredictability of the fabric behavior in combination
with the required complexity of creating bespoke molds. A common denominator of
the described developments is the requirement of shifting to entirely new modes of
construction, which creates a high barrier for full scale implementation; or limits the
degrees of freedom achievable compared to existing means of realization. Adversely,
the here presented method proposes a production cycle which is fully compatible with
current in-situ and prefabrication in concrete construction, while achieving doubly
curved formwork designs at machining times more than a hundred times faster than
comparable CNC-milling, the most developed and applied strategy for industrial scale
production.

Double curved surfaces with positive Gaussian curvature can in a vast majority of
cases be described via swept splines. The term “splines” nowadays refers to piecewise
polynomial or rational functions used in CAD systems to model curves and surfaces.
However, prior to the introduction of computers, which began in the 1950s, the word
was used for thin wooden rods the shapes of which were manipulated by the place-
ment of so-called “ducks” at various points to create a naturally smooth curve for
drawing designs. These were used in ship building and, later, in the aviation and au-
tomotive industries. The placement of the ducks simulates the placement of ribs in the

hull of the ship, and hence the curve drawn by following the spline is an accurate re-
flection of the natural shape adopted by the planks forming the ship’s hull. The use of
splines for the storage and transmission of a design goes back to the Romans, in the
form of physical templates for the ribs of ships (Farin, et al., 2002). Splines and ducks
suitable for drawings of ship designs were developed later, perhaps in Hull in the
1600s.

Fig. 4. Design of the Concorde wing-section using physical splines (1964) (© Bristol Archives)

The mathematical shape of a physical spline can be described exactly, although it
requires the use of so-called elliptic functions, which are nonlinear in nature. The cor-
rect mathematical model for an elastic rod bent by a force at one end with the other
end fixed was given by James Bernoulli in 1691 (Truesdell, 1983). In his approxima-
tion of the solution for the case that the ends of the rod are at right angles to each oth-
er, he recognized that the solutions would require non-standard functions. Later, in
1743, Bernoulli’s nephew, Daniel, suggested the problem to Euler, who then, in an
appendix to his famous treatise on the calculus of variations found all possible shapes
for these so-called Euler elastica (Euler, 1744; Love, 1906).

 Geometry Rationalization

The presented geometry rationalization approximates the physical behavior of the the
Hot-Blade in order to convert arbitrary input surfaces to producible geometry. The
HotBlade is fixed between two robot arms, which enable us to choose the location and
rotation of the blade’s ends. The shape of the blade is the curve that, subject to the
endpoint constraints, minimizes the elastic energy. These curves are the above-
mentioned Euler elastica or elastic curves. Before discussing the approximation of a
CAD surface, let us consider the class of surfaces defined by this cutting process,
namely the surfaces swept out by continuously varying families of planar Euler elasti-
ca. A planar curve is geometrically determined by its curvature function 𝜅(𝑠) = 𝜃′(𝑠),
where \theta is the angle function of the unit tangent.
One can show that the equation defining an elastica is the normalized pendulum equa-
tion 𝜃′′(𝑠) = − sin(𝜃(𝑠)) and the solution is the curve:

𝐶𝑘(𝑠) = (2𝐸(𝑠, 𝑘) − 𝑠, 2𝑘(1 − cn(𝑠, 𝑘))) , 𝑘 = 𝜃′(0)/2,
where cn(s,k) and E(s,k) are standard elliptic functions depending on a parameter k.

Applying all possible dilations, translations and rotations to 𝐶𝑘, one obtains all possi-
ble elastic curve segments. Allowing all of these parameters to vary with time, and
then generating the time sweep so defined, one obtains all possible elastica-swept
surface patches. One can implement this numerically, to obtain examples (Fig.5).

Fig. 5. Elastica surfaces generated through implementation of the above formulation in Matlab

When rationalizing a CAD surface to Euler-elastica for Hot-Blade cutting, the surface
is segmented into patches that can be approximated by surfaces of the type exempli-
fied in Fig. 5. We essentially do this simply by finding planar curves on the original
surface and then approximating these by segments of planar elastic curves.

2.1 Curve Approximation

Given a parameterized planar curve segment we wish to find a piece of an elastic
curve which has the same shape. We do this via an optimization algorithm that mini-
mizes the distance between two curves. By choosing a standard parameterization, we
are able to describe any elastic curve segments by four control parameters, which
determine the length and shape of the segment. Three more parameters determine the
position and rotation of the curve in the plane. The distance between the given curve
and any elastic curve is thus a function of the seven control parameters.

The approximation algorithm has two steps: first, we analyze the geometry of the
given curve in order to find control parameters for an elastic curve segment, which has
the same overall shape (Fig. 6). Then, starting from this initial guess, we tweak the
parameters, using the optimization tool IPOPT (Wächter and Biegler, 2006), until we
get the closest fit .We can do this either with or without endpoints fixed.

Fig. 6. Original spline curve (blue) and initial guess for approximating elastic curve (red dotted)

& Original spline curve (blue) and best approximating elastic curve (green) (left). Input
NURBS surface (center); Rationalized surface (right)

2.2 Surface Approximation

We now consider a given CAD surface, and we want to approximate it by a surface
that can be obtained by moving elastic curves through space. From the CAD design
we extract planar curves on the surface and approximate each of these by an elastic
curve. By interpolating the control parameters we obtain a rationalized design - a new
surface, which is swept out by elastic curves moving through space. For larger designs
we need to segment the surface into pieces that can be cut individually. Because we
control the endpoints and directions of the blade, we can ensure smooth transition
from one piece to another (Fig. 7).

Fig. 7. A selection of planar curves (splines) on the original CAD surface (left); The original

surface with elastic curves that approximate the splines. Note that these curves do not lie exact-
ly on the surface (center); Rationalized surface swept by elastic curves (right)

3 Surface Segmentation

A number of segmentation procedures are developed, targeting three production con-
straints: a) plain segmentation when exceeding the dimensions of the input EPS work
object; b) instability of the blade due to multiple inflection points, or c) cutting the
same area multiple times due to rotation of the blade profile. Fig. 8, left illustrates an
example of a surface with too many inflection points. An inflection point is a point
where the sign of the curvature changes; in other words the tangent at the point will
cut the curve in two. We use a subdivision scheme to find the inflections. Analysis of

one of the curves shows six inflection points and since many inflection points on the
curve make the blade less stable, segmentation is required.

Fig. 8. An input surface (left); The Hot-Blade planar cuts with inflection points (center); One of

the cuts close up (right)

Assuming the rationalization of each cut is curvature continuous, there will be the
same number of inflection points on the cut and the rationalization. Two exceptions to
this are inflection points near the edge of the cut that may disappear, and pairwise
inflections close to each other, which may cancel out, just like pushing out a small
dent.

Taking the above into account, we propose the following algorithm.
1. Find the planar curves on the surface.
2. Calculate inflection points for each curve.
3. Segment the surface into a grid of blocks.
4. For each block test if there are more than two inflection points; if so try to

a. Move the block if there are overlaps to improve.
b. Remove inflection points close to each other.

If there still too many inflection points continue to step 5.
5. Take two new blocks, each of the same size as the original block, and place

them so that they overlap both each other and the two adjacent blocks in the
row. Go to step 4.

In this algorithm we can control whether we keep the same number of blocks in all
rows or not. This affects the aesthetics of the segmentation. In the overlap of the
blocks we choose a cutting plane such that the segmentation follows the geometry. An
example of the output of this algorithm can be seen in Fig. 8 (right), showing the sur-
face subdivision.

Fig. 9. Segmentation schemes

The problem of cutting the same area multiple times arises when rotation of the blade
in the cutting direction is allowed (Fig. 9, column 2 from the left). We see here that
the curves intersect each other, and thus part of the surface will be cut multiple times,
which is undesirable. In most cases this problem can be solved by segmenting the
surface, as described above. We only need to add a test for intersecting curves in step
4.

4 Dataflow and Robotic System Configuration

Fig. 10. Deformation of the blade through orientation and positioning of the two end-effectors

The experimental setup consists of three robots. Robot 1 holds the EPS work object,
which is to be cut, and moves the block linearly through space, thus acting in principle
like a conveyer belt. Robots 2 and 3 control the ends of the HotBlade thereby deter-
mining its shape and its position in relation to the EPS block. When the geometry
rationalization is completed, we know a set of planar elastic curves on the rationalized
surface. The curve segments which lie on the surface are shorter than the HotBlade
cutting tool, but since we know not just the curve segments, but the entire curves we
can easily extend the curves to the required length, i.e. the length of the HotBlade.
These extended curves are the target shapes for the HotBlade during the cutting. We
extract the relevant data for the extended curves, that is, we find the coordinates for
the endpoints and the tangents at the endpoints. The endpoint coordinates determine

the position of the tools of robots 2 and 3 relative to the EPS block. The tangents de-
termine the rotation of the tools, which in turn controls the shape of the blade.

For our experiments the robots were given 51 targets. That is, for each block that
was to be cut, we provided 51 sets of positions and rotations for the tools of robots 2
and 3. The robot program then interpolates between these targets to follow a smooth
path from the first to the last target, thus moving the blade while changing its shape,
resulting in an EPS surface of the rationalized design.

5 Blade Mechanics and Cutting Experiments

The main cutting tool used in the process is a thin metal strip - usually referred to as a
blade - made of a nickel-chromium super alloy. The blade is pre-heated to a tempera-
ture of 300-400°C by means of Joule heating and then it is slowly brought into contact
with an EPS block to produce melting, and subsequently to form or cut the block into
a desired shape (also referred to as thermal cutting). At such high operating tempera-
tures, the blade has to be displaced (or bent) into an elastic shape with predefined
curvature and at the same time maintain its elastic and flexibility properties. Using
FEM simulations, the effect of mechanical properties on the target geometry was in-
vestigated and a particular material was chosen to ensure smooth cutting. The blade is
attached to two robots, one at each end, by specially designed sandwich based holders
to ensure strong and safe supports during all cutting operations. The physical dis-
placement of the blade is achieved by moving the robots into an appropriate position,
at the same time maintaining the elastica-strain-curvature relations. The temperature
dependent variations of the blade shape are to be incorporated in the computational
algorithm to secure proper shape representation (Fig 11).

Fig. 11. tri-robot hot-blade cutting configuration.

Two experiments were designed and performed in order to test the utility of the setup.
In the first experiment a convex doubly curved surface was cut. The curvature of the
blade was continually changing during cutting in order to test the limit of complexity
that can be achieved and ensure proper geometrical representation. The presence of
two inflection points on the discretized surface was considered as a possible problem,
but the experiments showed that it does not make the blade unstable, since the robots
compensate with the angles of the holders and the curvatures involved were moderate.
Good surface quality was achieved at cutting with an absolute speed of motion of
7mm/s. The EPS block to be cut had the dimensions of 600x600x600mm.

The second test aimed to cut a number of EPS blocks and then assemble them into
a single structure that should represent a ready-made mold for concrete casting. Dif-
ferent discretized pieces of doubly curved surfaces of both convex and concave types,
as well as hyperbolic surfaces (negative Gauss curvature), were successfully cut with
the setup. The size of each individual block was approx. 600x785x600mm, resulting
in an assembly of size 1800x2345mm, comparable to the size of production frame
molds. The cutting experiments are currently continued for production of doubly
curved concrete panels with expected completion December 2015.

6 Formwork Systems and Production Workflow

The efforts described in the previous chapters outline the general method for the cost-
effective production of doubly curved formwork in Expanded Polystyrene. From this,
the following process is developed (Fig. 12):

Fig. 2. General production workflow diagram: segmentation (left); cut foam (center) and in-situ

mould (right)

The cyclical workflow links conventional CAD-modelling operations with the robotic
Hot-Blade fabrication and standard concrete casting techniques. This requires the
rationalization and segmentation of geometry types before rebuilding the geometry to
the constraints of the blade, robot work envelope, work object dimensions and toler-
ances. After the input geometry has been translated to segments of swept Euler elasti-
ca surfaces and data deducted for tri-robot motion, EPS-mold pieces are produced.
The mold pieces are subsequently used in combination with existing pre-fabrication
and in-situ workflows. For element pre-fabrication, molds are mounted on vibration
tables and sides enclosed with metal or wooden frames. For in-situ applications, mold
pieces are used in combination with standard scaffolding modules for casting pressure
support. These applications ensure a full compatibility of the end-products of the Hot-
Blade with established industry workflows, critically ensuring a low barrier to adop-
tion.

7 Conclusion

A general purpose robotic fabrication method for producing doubly curved formwork
has been presented. The efficacy of the method has been demonstrated through geom-

etry rationalization and pilot production of a sample formwork panel design. The
method is being implemented for industrial scale fabrication by one of partners of the
research consortium, and the identified challenges are being addressed through this
work.

Acknowledgements The work presented in this paper is part of the larger 3-year re-
search effort, ‘BladeRunner’ established and generously supported under the program
of the Innovation Fund Denmark for advanced technology projects. The project is
conducted by the partners Odico Aps (project lead), the Technical University of Den-
mark, Department of Applied Mathematics and Computer Science and Department of
Mechanical Engineering, the Danish Institute of Technology; GXN A/S and Confac
A/S.

References

Euler, L 1744, Methodus inveniendi lineas curvas maximi minimive proprietate
gaudentes; Additamentum I: de curvis elasticis.

Farin, G 2002, ‘A History of Curves and Surfaces in CAGD’, in Handbook of
Computer Aided Geometric Design, North-Holland Publishers, Amsterdam, pp. 1-23.

Feringa, J and Søndergaard A 2014, ‘Fabricating Architectural Volume’ in Kohler,
M and Gramazio, F (eds), Fabricate : negotiating design and making, gta-Verlag, Zü-
rich, pp. 44-51.

Hesse, P 2012, ‘TailorCrete, Flight Assembled Architecture’ in Archi-
tekturteilchen. Modulares Bauen im Digitalen Zeitalter, Köln, pp. 126-127, 164-165.
Jepsen, C, Kristensen M, Kirkegaard, P 2011, ‘Dynamic Double Curvature Mould
System’ in Gengnagel, C, Kilian, A, Palz, N and Scheurer, F (eds), Computational
Design Modeling : Proceedings of the Design Modeling Symposium, Springer, Berlin,
pp. 291-300.

Khosnehvis B, 2004, ‘Automated Construction By Contour Crafting – Related Ro-
botic and Information Technologies’, in Journal of Automation in Construction Spe-
cial Issue: The Best of ISARC 2002, vol.13, no.1, January 2004, pp 5-19.

Lim, S, Buswell, RA, Le, TT, Austin, SA, Gibb, AGF and Thorpe, A 2012, ‘De-
velopment in Construction-Scale Additive Manufacturing Processes’, Automation in
Construction, vol. 21, no. 1, pp. 262-268.

Lloret, E, Amir, R, Shahab, Mettler, L, Flatt, RJ, Gramazio, F, Kohler, M and
Langenberg, S 2014, ‘Complex Concrete Structures: Merging Existing Casting Tech-
niques with Digital Fabrication’, Computer-Aided Design, Elsevier, Amsterdam, NL,
vol. 60, March, pp. 40–49.

 Love, A 1906, A Treatise on the Mathematical Theory of Elasticity, Cambridge
University Press, Cambridge, UK.

McGee, W., Feringa J., Søndergaard, A Processes for an Architecture of Volume:
robotic hotwire cutting. In: Brell, S., Braumann, J (eds) Robarch 2012: Robotic Fabri-
cation in Architecture, Art & Design. Springer Verlag, Vienna, pp 62-71.

Truesdell, C 1983, ‘The Influence of Elasticity on Analysis: the Classic Heritage’
Bulletin of the American Mathematical Society, vol. 9, no. 3, pp. 293-310.

Veenendaal, D, West, M and Block, P 2011, ‘History and Overview of Fabric
Formwork: using Fabrics for Concrete Casting’, Structural Concrete, Ernst & Sohn,
Berlin, vol.12, no 3.

Wächter,A., and Biegler L.T, 2006, ’On the implementation of a primal-dual inte-
rior point filter line search algorithm for large-scale nonlinear programming.’
Mathematical Programming, Springer Berlin, 106(1):25-57.

[1] http://www.domusweb.it/en/news/2011/12/01/kirk-kapital-a-s-by-eliasson.html

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Designing for Robotic Hot-Blade Cutting

David Brander1 Andreas Bærentzen2 Kenn Clausen3 Ann-Sofie Fisker4 Jens Gravesen5 Morten N.
Lund6 Toke B. Nørbjerg7 Kasper Steenstrup8 Asbjørn Søndergaard9,*,

1 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
dbra@dtu.dk

2 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
janba@dtu.dk

3 GXN A/S
kec@3xn.dk

4 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
ansofi@dtu.dk

5 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
jgra@dtu.dk

6 GXN A/S
mnl@3xn.dk

7 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
tono@dtu.dk

8 Technical University of Denmark, Dept. of Applied Math. and Comp. Sci.
khor@dtu.dk

 9 Odico Formwork Robotics Aps.
asbjorn@odico.dk

Abstract. This paper presents a novel method for generation of doubly curved, architectural
design surfaces using swept Euler elastica and cubic splines. The method enables a direct de-
sign to production workflow with robotic hot-blade cutting, a novel robotic fabrication meth-
od under development by authors of the paper, which facilitate high-speed production of dou-
bly curved foam molds. Complementary to design rationalization, in which arbitrary surfaces
are translated to hot-blade-cuttable geometries, the presented method enables architects and
designers to design directly with the non-trivial constraints of blade-cutting in a bottom-up
fashion, enabling an exploration of the unique architectural potential of this fabrication ap-
proach. The method is implemented as prototype design tools in MatLAB, C++, GhPython
and Python and demonstrated through cutting of expanded polystyrene foam design examples.

Keywords: robotic fabrication, Hot-Blade, digital design, EPS-molds, cost-efficiency, con-
crete structures

1 Introduction

In contemporary architectural practice, a rising number of projects employ advanced build-
ing geometries, which departs with the orthogonality of mainstream construction, incorporating
digital design tools and manufacturing for the realization of expressive or dynamic design features
[Pottman 2007]. A group of projects within this category, such as Kagamigahara Crematorium
(Toyo Ito Architects, 201) and Waalbridge Extension (Zwart & Jansma, 2015), rely on the doubly
curved geometries which may be constructed either via production of manual formwork, which

relies on digitally produced guides to bend plate material in place over large radii. Alternatively,
large scale CNC-milling of either foam molds for concrete casting or direct milling of construction
materials are employed enabling the realization of shorter radii designs with more detail and sur-
face controls. Such projects include for example Spencer Dock Bridge (Amanda Levete Archi-
tects, 2010), Louisiana State Museum and Sports Hall of Fame (Trahan Architects, 2013), Muse-
um Foundation Louis Vuitton by Gehry & Associates (Paris, 2014); the Nordpark cable railway by
Zaha Hadid Architects (Nordpark, 2007), the Metz Pompidou by Shigeru Ban (Metz, 2010).

Fig. 1. Louisiana State Museum and Sports Hall of Fame, courtesy Trahan Architects (left). Kagamigahara

Crematorium, Courtesy Toyo Ito Architects (right)

However, none of these general construction processes provides a cost-effective option for
general construction, and projects of this type therefore require extraordinary budget frameworks
for realization: manual onsite formwork processing in this category is a highly laborious and de-
manding process, with resulting difficulties in cost-engineering to follow; large scale CNC-milling
on the other hand, provides cost transparency due to the digital nature of the process – however the
mechanical principle of CNC-milling, which subtracts material through incremental removal, is
inherently slow when applied to architectural scale production, hence resulting in exuberant ma-
chining times and high costs.

Recent developments in architectural robotics and digital manufacturing have seen the
emergence of a number of approaches to diversify the machining options available, with the pur-
pose of realizing structures of more advanced geometries. This includes actuation of a flexible
membrane as a casting surface [Jepsen et. al, 2011; Hesse, 2012]; dynamic slip-casting for column
elements [Lloret et. Al 2014], as a variant of the additive manufacturing of concrete structures
[Khosnevic 1998, Lim et al 2012]; fabric formwork applied as an alternative technique for the
casting of advanced designs [Veenendaal et. al 2011]; spatial wire cutting [Rust et al 2015], as
well as large scale robotic hot-wire cutting of EPS molds by authors of this paper [reference omit-
ted for blinding purposes, 2014]. None of these approaches however, are capable of delivering
combined 1) unconstrained degrees of freedom which enables general purpose realization equiva-
lent to that of CNC-milling; 2) machining efficiencies which significantly supersedes that of CNC-
milling; 3) process predictability which ensures the delivery of a pre-controlled geometry.

2 Robotic Hot-blade Cutting

In an effort to develop a new manufacturing process, which would satisfy these criteria, authors
of this paper initiated in 2012 the Bladerunner project, which targets the cost-effective production
of double curved foam molds. The technique developed in this effort - dubbed Robotic Hot-blade
cutting - employs a multi-robotic process, in which a 18-axis cell consisting of 3 industrial manip-
ulators translates a flexible, heated blade through expanded polystyrene blocks in a thermal cutting
process, while controlling the distance and rotation of end-effectors to achieve variable cross-
section curves along the trajectory of cutting sequences [reference omitted for blinding purposes,
2016]. Pilot production experiments currently under development seek to explore and demonstrate
the applicability of this method for production of pre-fabricated concrete elements under a general
CAM paradigm, in which arbitrary design input – understood here as geometry which is conceived
without particular regard to the specific constraints of the process – is rationalized for hot-blade
production using a set of algorithms developed within the project [reference omitted for blinding
purposes, 2016]. These early developments point to the perspective of a highly time-efficient pro-
duction method, up to 126 times faster than comparable CNC. However, complementary to a top-
down process of rationalization, a second trajectory is also possible, in which the geometric con-
straints of the hot-blade cutting is incorporated already in the design process, thus operating under
a generative design paradigm. The work in the following chapters outlines tools and processes that
can facilitate such approach.

Fig. 2. Bladecutting experiments in progress. Top: 18-axis tri-robot hot-blade pilot-cell.

Below: concrete panel design and cut foam result.

3 Designing with elastica

An Euler elastica is the shape assumed by an elastic rod with planar constraints of position and
tangents placed only on its endpoints. A planar curve is geometrically determined by an angle
function 𝜃𝜃(𝑡𝑡), the angle between the tangent and some fixed direction. The angle function for the
elastica are given by solutions of the normalized pendulum equation 𝜃𝜃′′ = − sin𝜃𝜃, a nonlinear
equation the solutions of which can fortunately be given explicitly in terms of elliptic functions.

Mathematically, the correct model for an elastica was given by James Bernoulli in 1691 (see
Truesdel, 1983). He approximated the solution for the case that the ends of the rod are perpendicu-
lar to each other, recognizing that non-standard functions were needed for an analytic expression.
The problem was subsequently suggested to Leonhard Euler in 1743, who gave all possible shapes
for the elastica in his famous treatise on the calculus of variations (Euler (1744)).

Fig 3. Use of physical splines for ship-hull manufacturing. William Sutherland, The Shipbuilders
Assistant: or, Some Essays Towards Completing the Art of Marine Architecture (London, 1711)

People have in fact been designing with elastica for centuries, albeit in a physical rather than

mathematical format. Prior to the introduction of computers for draughting in the shipping, avia-
tion and automobile industries, which began in the 1950s, the curves needed in the designs were
created by tracing the shapes of thin wooden rods, known as splines, manipulated by the place-
ment of so-called “ducks” at various points to create a naturally smooth curve. This practice start-
ed in the ship-building industry, where the placement of the ducks simulates the placement of ribs
in the hull of the ship: hence the curve drawn by following the spline is an accurate reflection of
the natural shape adopted by the planks forming the ship’s hull. The drawing took place at the loft
of the shipyard, hence the word “lofting”, now used in the CAD industry. Going further back in
time, splines were used for the storage and transmission of designs in Ancient Rome, in the form
of physical templates for the ribs of ships (see Farin, et. Al 2002).

When computers became cheaper and more powerful, a desire for electronic storage and editing
appeared. The word “spline” now began to be used for piecewise polynomial or rational curves
used in design. Paul de Casteljau at Citroën and Pierre Bézier at Renault used what are now known
as Bézier curves to describe the designs. In the USA, Carl de Boor at GM used B-splines (basis
splines) for the designs. In the aircraft industry, at Boeing, similar developments took place.

3.1 Design vs. rationalization for hot-blade cutting

For a CAD surface to be produced using hot-blade cutting, it needs to be segmented into suitable
pieces and each surface segment then swept by planar curves that are subsequently approximated
by elastic curve segments. We have described this rationalization process in recent and forthcom-
ing work.
An alternative to rationalization of a CAD design is to provide design tools that allow designers to
create fabrication-ready surfaces. There are a number of reasons for doing this: firstly, the ration-
alization of an arbitrary design is non-trivial and in general can result in some regions of the sur-
face needing to be produced by another method such as milling. Secondly, a design tool can give
the designer control over the cast-lines between the segments, which will in many cases be visible
from close range.

 A third reason is the additional complexity arising when we consider a surface created by more
than one cut to the same EPS block. For example, consider the surface shown on the left in Figure
4. By cutting the same EPS block twice, the second time with a 90 degree rotation, the surface on
the left in Figure 5 is produced. Now the surface on right in Figure 4 approximates the first sur-
face very well at the end-points of the cutting blade, but deviates slightly in the middle. Such an
approximation is likely to arise in surface rationalization, because we will usually need the patches
to fit together with tangent continuity, which requires a little more freedom away from the patch
edges. Doing the same two cuts with the new surface results in the surface on the right in Figure
5, and here we can see that the intersection curves are no longer the same as the design.

Fig. 4 & 5. (Top) Matlab generated surface. (Bottom) rotated double cut of the same design

Of course there are solutions for this kind of issue in the rationalization approach, but this sce-
nario illustrates the kind of advantages one has with a fabrication-ready design tool.

3.2 Single block designs

For the simple case of just one block, we design with curves of the desired length, i.e. the length
of the cutting tool. During cutting the cutting tool is kept in a horizontal plane perpendicular to the
cutting direction. The data needed for the robot movement is thus simply the positions of the ends
of the blade and the angles of its ends relative to horizontal. The positions are given as y,z-
coordinates (the x-coordinate describes how far the curve is in the cutting direction), see Figure 6.
In the design space (e.g. Rhino) we know the position of the design curves relative to the EPS
block, so we can obtain the robot data directly from the design curves by computing the positions
of the endpoints relative to the EPS block, and their angles relative to horizontal.

Fig 6. Configuration of input data

The plugin for the discrete elastica ensures that we get a representation of the final design in
Rhino, before going to production. In the following, we describe the numerical algorithm used to
find this solution given end points, tangents at the end point, and the length of the curve (see
Bruckstein et al (2001)). This method does not find the elastica in terms of the elliptic functions:
instead we return to the defining property of elastic curves, namely that they minimize ∫𝜅𝜅2𝑑𝑑𝑑𝑑. In a
discrete setting where we represent the curve using 𝑛𝑛 line segments of equal length, the analogous
energy for the piecewise linear curve is:

𝐹𝐹𝑎𝑎(𝛼𝛼) = �𝛼𝛼𝑖𝑖2
𝑛𝑛−1

𝑖𝑖=0

where 𝛼𝛼𝑖𝑖 is the turning angle at segment 𝑖𝑖 as illustrated in figure 7.

Fig 7. Turning angles

Thus, to find the discrete curve, we minimize 𝐹𝐹𝑎𝑎 subject to two constraints that both serve to en-

force the boundary conditions. To ensure that the tangent at the last point has the correct direction,
we require that

0 = 𝐹𝐹𝑡𝑡(𝛼𝛼) = �𝛼𝛼𝑖𝑖 − (𝛼𝛼𝑛𝑛 − 𝛼𝛼−1)
𝑛𝑛−1

𝑖𝑖=0

where 𝛼𝛼−1 and 𝛼𝛼𝑛𝑛 are the angles that correspond to the direction of the first and last line segment
respectively. Clearly, we also require that the curve ends at the right point. This is taken care of by
the second energy

𝐹𝐹𝑝𝑝(α) = �� �cos(� 𝛼𝛼_𝑘𝑘)
𝑗𝑗

𝑘𝑘=−1

, sin(� 𝛼𝛼 𝑘𝑘)
𝑗𝑗

𝑘𝑘=−1

 �

T

− (𝑝𝑝𝑛𝑛 − 𝑝𝑝−1)
𝑛𝑛−1

𝑗𝑗=−1

�

We can construe the discrete elastic curve problem as an inverse kinematics problem. In this

light, 𝐹𝐹𝑝𝑝 simply ensures that the end of the curve (end effector) coincides with 𝑝𝑝𝑛𝑛 - the end point of
the elastic curve.

Fig 8. Turning angles for a discrete elastica

In practice, we find the elastic curves using a two step procedure. In an outer loop, we reduce

𝐹𝐹 𝑎𝑎 and in the inner loop, we solve for 𝐹𝐹 𝑝𝑝 = 0 and 𝐹𝐹 𝑡𝑡 = 0. 𝐹𝐹 𝑎𝑎 and 𝐹𝐹 𝑝𝑝 are minimized
using gradient descent whereas 𝐹𝐹 𝑡𝑡 can be solved exactly in each step. The outer loop runs for a
fixed number of iterations whereas the inner loop terminates when a desired tolerance has been
reached. Fig. 11. shows a test. The green figure-eight is an analytic elastic curve. The black curve
on top is the discrete approximation computed from the boundary conditions shown in red.

3.3 Examples

The images below show a surface defined as the graph of a bivariate function

𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑘𝑘 cos�2 �
𝜋𝜋
2
− 𝑦𝑦�

4
�sin(𝑥𝑥) exp(−0.1𝑥𝑥2) [𝑥𝑥,𝑦𝑦] ∈ �−

𝜋𝜋
2 ,
𝜋𝜋
2
�× [−0.75,0.75]

z = f(x,y) =k(2(/2-y)4)(x)(-0.1 x2) [x,y] [-/2, /2][-0.75,0.75]
As the initial design created using a Python script in Rhino, as a rationalized surface and as a

styrofoam block cut with the hot blade.

Fig 9. Examples of a generated and a cut surface.

3.4 Design using multiple blocks

For the more complex case with several blocks a more advanced procedure is used to ensure a

smooth transition from one block to the next. Consider a curve design that passed over two blocks
(see figure 10, left). We need to produce this in two cuts – one per block – and we want the two
block segments to match at the boundary after cutting.

If we run our plugin independently on the two parts of the curve, we would automatically obtain
the smooth transition, but we would be unable to get the necessary data for the robots, since the
curves (which are inside the blocks) are shorter than the cutting tool and we have no quick way to
extend these while preserving the elastic properties. If we simply extend the original curve and
then use our plugin on parts with the desired length, we do not ensure smooth transition (see Fig-
ure 10, right).

Fig 10. In blue an exact elastic curve and in black a discrete approximation calculated from the

boundary conditions shown in yellow.

The solution is, instead of finding a discrete representation of the elastic curve that models the

shape of the cutting tool, we find an analytic mathematical description of the elastic curve in terms
of elliptic functions. This requires a more cumbersome optimization in order to find the parameters
that describe the rationalized curve. However, when these parameters are found, the entire (infi-
nitely long) elastic curve that contains the required segment is known. It is then simple to extend
the segment to an elastic segment of the length of the blade (see Figure 11) and from this extract
the position data for the robots.

Fig 11. Transitions between elastica

4 An alternative approach: Bézier curves as a proxy for elastic

Historically the use of cubic splines as a design tool was often motivated by saying that they are
a good substitute for real physical splines. This is justified by the fact that if the speed of a curve is
constant then the square of the curvature is the same as the square of the second derivative and if
the latter is minimized we obtain exactly a cubic spline (see Yamaguchi (1988)). Now a cubic
curve does not have constant speed unless it is a straight line; but if the control polygon of a cubic
Bézier curve is reasonably well behaved then the curve is close to an elastica: see Figure 12,
where 24 Bézier curves are plotted together with elastic curves having the same endpoints, end
tangents, and length.

Figure 12: In blue Bézier curves, in black their control polygons, and in dashed red elastic curves
with the same endpoints, end tangents, and lengths.

If the angles in the control polygon are not too acute then there is very little difference between

the Bézier curve and the elastic curve of the same length and end conditions.
Based on this observation we have implemented a design tool in Rhino™ where the surfaces

and their rationalization are very close. The idea is that we imagine space filled with EPS-blocks
and define our surfaces such that the parameter curves have exactly one planar cubic piece in each
block. As a simple example consider Figure 13, where we have three blocks and have defined
three Bézier curves at both the front and the back of the blocks in such a way that they have
common endpoints and tangents, i.e., they form two tangent continuous curves (see Figure 14).
The surface is defined by a lofting process. We can of course have several layers of blocks and we
could also have included more curves in the middle of the blocks. The inputs are planar curves
with exactly one cubic piece in each block, and the surface is defined by lofting.

Figure 13: A Rhino design tool. Top: three blocks with two tangent continuous curves. Lower
left: lofted Bézier curve surface. Lower right: rationalized elastica curve surface.

Figure 14: The tangent continuous construction. In each block we have a cubic Bézier curve
and we require that adjacent curves have control polygons the first and last legs of which form a
single line segment. In dashed red we have plotted the true elastica having the same length and

boundary conditions as the Bézier curves.

Figure 15 : The curvature continuous construction. A single cubic spline curve where the im-

ages of the knots are on the block boundaries. In dashed red we have plotted the true elastic curves
that have the same length and endpoints as the polynomial pieces. The tangents corresponding to

the extreme points of the cubic curve are also prescribed.

One can achieve a curvature continuous construction by replacing the sequence of Bézier

curves by a single planar cubic spline (with simple interior knots). Between the knots we have a
cubic polynomial, so we if we require that the image of the knots are on the block boundaries then
we obtain a single cubic polynomial piece in each block (Figure 15).

If we replace the spline with an elastica having the same length in each block as the spline,
passing through the images of the knots, and having the same tangent angles in the beginning and
end as the spline curve, we obtain almost the same result. This corresponds exactly to the classical
design using a physical spline and ducks. We just have to place the ducks at the images of the
knots.

5 GH Workflow

For the development of design experiments as well as participatory workshop design sessions, a
toolset is developed in McNeel Grasshopper, implementing the above approaches. The toolset is
linking the full cycle of research, innovation, implementation and production, creating a frame-
work for geometric operations consistent with the robotic setup. The overall logic of the workflow
connects conventional digital modeling approaches with the robotic hot-blade process. This re-
quires the identification and rationalization of geometry types before rebuilding the geometry to
the accuracy of the robot, EPS-segmentation and tolerances.

The Grasshopper-definition is developed with the purpose of designing with rationalization
through Euler elastica. It is a Real-Time process that allows for fast interpolations from design to
production and ensures a smooth curve continuity transition from one block to the next. The tool is
very flexible and allows for large variation of form typologies when designing with single or mul-
tiple cuts in the design explorations.

The setup is part of a larger digitized workflow; “Interpolation of Geometry”, “Euler Elastica
Approximation”, “Mathematical Elastica Extension”, which is is a linear process that allows for
feedback loops when data or geometry are outside of preset conditions and/or needs changes.
The Grasshopper tool “Design with Elastica” inputs arbitrary surfaces and/or curves, converts
them into planar elastica curves that describe the cut-direction and the movement of the robot-
setup. The setup is structured in four overall processes; “Global Parameters”, “Input”, “Process
(Machine)”, “Output (Export)”.

Figure 16: pre-test cuts from the workshop. From the left: while single, continuously swept
surfaces are readily achievable through rationalization, the ripple and curvature effect on the right

most samples requires careful alignment with the blade directions, and hence is difficult to obtain
aside from directly controlling it in an elastica-swept surface.

5.1 Global parameters

The backbone of the setup is the global parameters that are changeable within the workflow en-
vironment. Its settings, syntax and data are adapted in both the approximation plugin and the ex-
tension script while the workflow recalibrates when global settings are re-configured or need addi-
tional inputs. The global parameters allow you to toggle between “Design” or “Production” which
are value bases and changes the resolution of the Elastica approximation.

One block is locally defined by its XYZ-Values (dimensions), Cut-Plane (orientation) and its
local location in the XYZ-World-coordinate system and global location in a multiple-block-
system.The block and blade length are interconnected to each other, if too short, the robot will
move into the EPS-Block, while too large the physical implications will increase and affect the
precision.

5.2 Input

A multiple block configuration is developed as framework for generation of continuous surfaces
over several blocks. The “block setup” is framed in a Data-Tree-Structure that matches and sorts
the input designs for each block and subsequently for each face of the block (6 sides). The proce-
dure generates a data-list for each block containing cut-plane, cut-direction, number of cuts, rota-
tion and location. By defining a clear data-flow from the input step you gain full control from de-
sign intent till export code and production.

5.3 Preprocessing of geometry

The pre-processing step first matches each block (nested in a data-tree-structure representing
the design framework and block number within the design framework) with cutting geometries
related to the blocks design framework. The cutting geometry is then sorted according to cut prior-
ity, primary cut being closest to the blocks base, and remaining cuts are checked for collision with
the primary cut and removed if no collision occurs. The final operation generates a number of
planar curves for each cut by sampling the cut geometries in the X direction of the blocks. The
sampling is extended beyond the block domain to allow the robots to have lead-in and -out of each
block. The number of sampling points is triggered by the current mode selected (design or produc-
tion).

5.4 Elastica approximation

To approximate the Nurbs curves we made a Rhino plugin. The ElasticaNum Plugin operates
on curve start-, end-points, tangent vectors at start- and end-points and the desired length of the of
the elastica curve. The ElasticaNum Plugin is interfaced through the Rhino command-line and
python code using a custom data-structure. The final operation in the Elastica approximation is
reorienting the curves back into 3D space.

5.5 Output

The “Design with Elastica” tool generates two outputs that work parallel within the workflow
and connect the designer with the final rationalization output while still designing in the beginning
of the process. Output one is data driven exports to the “Mathematical Elastica Extension”, while
output two is representing the desired geometry by Elastica Curves. By defining a data-structure a
mutual adaptation of data import and export was defined from Input, Process and Output. The
digitized workflow outputs data from the “Design with Elastica” tool to the “Mathematical Elasti-
ca Extension” and weave the tools together. To ensure a smooth transition from one block bounda-
ry to the next, the necessity for data conversion is important to perform a mathematical extension
that preserve the elastica properties.

The setup allows for a real-time design to fabrication workflow and a comparison between the

Design-Geometry and the Elastica-Geometry are processed. While the Design-Geometry is an
arbitrary input, the “Euler Elastica Approximation” curves are lofted with the setting on tight,
which uses square root of chord length parameterization in the loft direction.

5.6 Design workshop

The developed toolset was subsequently tested in a workshop setting with 16 participants in the
format of the Superform: Robotic Hot-Blade Cutting workshop, held March 15th-18th 2016 in
extension to the Robarch 2016 conference at Walsh Bay, Sydney. The workshop tasked partici-
pants with formal explorations of hot-blade design potentials, produced through a dual robot setup
consisting of 2x ABB IRB 1600 manipulators in a MultiMove configuration. The explorations
uncovered several benefits of working directly in a production ready geometry: firstly, the exploi-
tation of double (or more) cuts, in which two intersecting surfaces creates a sharp crease is a fea-
ture difficult to approximate through rationalization (Fig. 13, second row, middle). Secondly, the
design of expressive ripple or wave-effects (fig. 14) requires careful alignment with blade-cutting
direction and curvature description to remain feasible. As such, they exemplify design potentials
difficult to achieve through linear rationalization.

6 Conclusion

A set of methods has been proposed for design generation of surfaces which incorporates the
constraints of an elastic blade swept mechanically by two or more industrial robot manipulators.
The methods are implemented as prototype design tools in C++, MatLAB, Python and GhPython

to enable interaction with non-specialist designers. The toolset was tested with 16 participants in
the RobArch 2016 workshop: Superform – robotic hotblade cutting. The workshop design experi-
ments revealed several design features that would be difficult to achieve in pure rationalization
workflows, as a result of the direct incorporation of constraints and live design feedback enabled
by the framework.

Figure 17: examples of the workshop participants design explorations.

7 References

Pottman et al: Architectural Geometry. Bentley Institute Press, 2007.
Brander, D., Gravesen, J., Nørbjerg, T.: Approximation by planar elastic curves.

arXiv:1509.00703[math.NA].
Bruckstein, A.M., Holt, R.J., Netravali, A.N.: Discrete elastica. Applicable analysis, 78:3-4,

(2001), pp. 453-485.
Bruckstein, A.M., Netravali, A.N., Richardson, T.J.: Epi-convergence of discrete elastica. Ap-

plicable Analysis, Vol. 79, (2001), pp. 137-171.
Hesse, Petra, Hg. "TailorCrete, Flight Assembled Architecture ." In Architekturteilchen. Modu-

lares Bauen im Digitalen Zeitalter, 126-127, 164-165. Köln: 2012
Jepsen, C., Kristensen M., Kirkegaard, P: “Dynamic Double Curvature Mould System”
In: Computational Design Modeling : Proceedings of the Design Modeling Symposium, Berlin

2011 Editors: Christoph Gengnagel, Axel Kilian, Norbert Palz, Fabian Scheurer. Springer,
2011Pp. 291-300

Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G.F. and Thorpe, A., “Development in con-
struction-scale additive manufacturing processes”, Automation in Construction, Vol. 21, Issue 1,
pp.262-268, 2012

Lloret Ena, Amir R. Shahab, Linus Mettler, Robert J. Flatt, Fabio Gramazio, Matthias Kohler
and Silke Langenberg. "Complex concrete structures: Merging existing casting techniques with
digital fabrication." Sciencedirect.com (2014):

Veenendaal, D, West, M., Block, P.: “History and overview of fabric formwork: using fabrics
for concrete casting” Structural Concrete, 12, no 3. Ernst & Sohn, Berlin 2011.

Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes; Addita-
mentum I: de curvis elasticis (1744).

Farin, Gerald. "A History of Curves and Surfaces in CAGD." In: Handbook of Computer Aided
Geometric Design (2002): 1-23.

Søndergaard, A., Feringa, J., Nørbjerg, T., Steenstrup, K., Brander, D., Gravesen, G., Markvor-
sen, S., Bærentzen, A., Petkov, K., Hattel, J., Clausen, K., Jensen, K., Knudsen, L., Kortbek, J.:
Robotic hot-blade cutting. In Robotic Fabrication in Architecture, Art and Design 2016, proceed-
ings of RobArch 2016, (2016).

Truesdell, C. "The influence of elasticity on analysis: the classic heritage." Bulletin of the Amer-
ican Mathematical Society 9.3 (1983): 293-310.

Yamaguchi, F.: Curves and Surfaces in Computer Aided Geometric Design, Springer-Verlag
Berlin Heidelberg, (1988).

	Introduction
	BladeRunner
	Chapters
	Preliminaries
	Splines
	Ruled surface
	Curvature

	Cuttable ruled surface strips for milling
	Introduction
	Method
	Constraints
	The optimization problem
	Initialization

	Results
	Conclusion and future work

	Block Segmentation
	Introduction
	Previous work
	Method
	The idea
	Pure translation
	Rotation
	Alignment
	The algorithm

	Results
	Design choices
	Conclusion

	Segmentation versus rationalization
	Challenges
	Algorithm

	Elastica segmentation
	Robotic setup and constraints
	Dimension constraints
	Approximation constraint
	Shape constraints
	Blade strain constraint
	Multiple cuts constraints
	Limitation of the constraints

	Inflection points algorithm
	Trace algorithm
	Longest elastica algorithm

	Discussion
	Conclusion
	Paper: Hot Blade Cuttings for the Building Industries
	Paper: Robotic Hot-Blade Cutting
	Paper: Designing for Robotic Hot-Blade Cutting

