153 research outputs found

    Response surface methods applied to submarine concept exploration

    Get PDF
    CIVINS (Civilian Institutions) Thesis documentIt is estimated that 70 to 85 percent of a naval ship's life-cycle cost is determined during the concept exploration phase which places an importance in the methodology used by the designer to select the concept design. But trade-off studies are guided primarily by past experience, rules-of-thumb, and designer preference. This approach is ad hoc, not efficient and may not lead to an optimum concept design. Even worse, once the designer has a 'good' concept design, he has no process or methodology to determine whether a better concept design is possible or not. A methodology is required to search the design space for an optimal solution based on the specified preferences from the customer. But the difficulty is the design space, which is non-linear, discontinuous, and bounded by a variety of constraints, goals, and thresholds. Then the design process itself is difficult to optimize because of the coupling among decomposed engineering disciplines and sub-system interactions. These attributes prevent application of mature optimization techniques including Lagrange multipliers, steepest ascent methods, linear programming, non-linear programming, and dynamic programming. To further improve submarine concept exploration, this thesis examines a statistical technique called Response Surface Methods (RSM). The purpose of RSM is to lead to an understanding of the relationship between the input (factors) and Output (response) variables, often to further the optimization of the underlying process. The RSM approach allows the designers to find a local optimal and examine how the design factors affect the response in the region around the generated optimal point.http://archive.org/details/responsesurfacem1094510921CIVIN

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 128, November 1980

    Get PDF
    This bibliography lists 419 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1980

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 159)

    Get PDF
    This bibliography lists 347 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1983

    NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    Get PDF
    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.

    Effects of Automation on Aircrew Workload and Situation Awareness in Tactical Airlift Missions

    Get PDF
    In tactical aviation, decision superiority brought upon by high situation awareness remains the arbiter of combat effectiveness. The advancement of sophisticated avionics and highly automated cockpits has allowed for the reduction of aircrew size, and in certain platforms, removal of the crew from the aircraft entirely. However, these developments have not reduced the complex and dynamic interaction between situation awareness and crew workload. While many predictive and experimental methods of evaluating workload exist, situation awareness can only be measured by conducting trials with human operators in a functional prototype. This thesis proposes an innovative methodology to predicatively determine situation awareness potential with discrete-event simulation software. This methodology measures situation awareness as both a function of task accomplishment and workload experienced. Utilizing two common but complex tactical scenarios, this method and existing workload measurement techniques can derive a direct comparison between a reduced-crew highly automated cockpit and a less automated legacy aircraft. Finally, conclusions regarding the effectiveness of replacing human operators with automation in tactical events can be made and tested in future experiments with actual aircraft and aircrews

    Fault Tolerant Flight Control of Unmanned Aerial Vehicles

    Get PDF
    Safety, reliability and acceptable level of performance of dynamic control systems are the major keys in all control systems especially in safety-critical control systems. A controller should be capable of handling noises and uncertainties imposed to the controlled process. A fault-tolerant controller should be able to control a system with guaranteed stability and good or acceptable performance not only in normal operation conditions but also in the presence of partial faults or total failures that can be occurred in the components of the system. When a fault occurs in a system, it suddenly starts to behave in an unanticipated manner. Thereby, a fault-tolerant controller should be designed for being able to handle the fault and guarantee system stability and acceptable performance in the presence of faults/damages. This shows the importance and necessity of Fault-Tolerant Control (FTC) to safety-critical and even nowadays for some new and non-safety-critical systems. During recent years, Unmanned Aerial Vehicles (UAVs) have proved to play a significant role in military and civil applications. The success of UAVs in different missions guarantees the growing number of UAVs to be considerable in future. Reliability of UAVs and their components against faults and failures is one of the most important objectives for safety-critical systems including manned airplanes and UAVs. The reliability importance of UAVs is implied in the acknowledgement of the Office of the Secretary of Defense in the UAV Roadmap 2005-2030 by stating that, ”Improving UA [unmanned aircraft] reliability is the single most immediate and long-reaching need to ensure their success”. This statement gives a wide future scenery of safety, reliability and Fault-Tolerant Flight Control (FTFC) systems of UAVs. The main objective of this thesis is to investigate and compare some aspects of fault tolerant flight control techniques such as performance, robustness and capability of handling the faults and failures during the flight of UAVs. Several control techniques have been developed and tested on two main platforms at Concordia University for fault-tolerant control techniques development, implementation and flight test purposes: quadrotor and fixedwing UAVs. The FTC techniques developed are: Gain-Scheduled Proportional-Integral-Derivative (GS-PID), Control Allocation and Re-allocation (CA/RA), Model Reference Adaptive Control (MRAC), and finally the Linear Parameter Varying (LPV) control as an alternative and theoretically more comprehensive gain scheduling based control technique. The LPV technique is used to control the quadrotor helicopter for fault-free conditions. Also a GS-PID controller is used as a fault-tolerant controller and implemented on a fixedwing UAV in the presence of a stuck rudder failure case

    Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    Get PDF
    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 256)

    Get PDF
    This bibliography lists 426 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Flying Beyond the Stall: The X-31 and the Advent of Supermaneuverability

    Get PDF
    This is the story of a unique research airplane-unique because the airplane and the programs that supported it did things that have never been done before or since. The major purpose of this book is to tell the story of NASA's role in the X-31 program. In order to do this, though, it is necessary to put NASA's participation in perspective with the other phases of the program, namely the genesis of the concept, the design and fabrication of the aircraft, the initial flight testing done without NASA participation, the flight testing done with NASA participation, and the subsequent Navy X-31 Vectoring ESTOL (extreme short takeoff and landings) Control Operation Research (VECTOR) program
    corecore