5 research outputs found

    Homomorphisms on the monoid of fuzzy implications and the iterative functional equation I(x,I(x,y))=I(x,y)

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the ⊛⊛-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ⊛⊛-composition does not always generate new fuzzy implications. In this work, we study the generative power of the ⊛⊛-composition. Towards this end, we study some specific functional equations all of which lead to the solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y) involving fuzzy implications which has been studied extensively for different families of fuzzy implications in this very journal, see [Information Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take an algebraic approach towards solving these functional equations. Viewing the ⊛⊛-composition as a binary operation ⊛⊛ on the set II of all fuzzy implications one obtains a monoid structure (I,⊛)(I,⊛) on the set II. From the Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations. We determine the complete set KK of fuzzy implications w.r.t. which the right translations also become semigroup homomorphisms on the monoid (I,⊛I,⊛) and show that KK not only answers our questions regarding the generative power of the ⊛⊛-composition but also contains many as yet unknown solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y)

    The ⊛-composition of fuzzy implications: Closures with respect to properties, powers and families

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications from a given pair of fuzzy implications. Viewing this as a binary operation ⊛ on the set II of fuzzy implications they obtained, for the first time, a monoid structure (I,⊛)(I,⊛) on the set II. Some algebraic aspects of (I,⊛)(I,⊛) had already been explored and hitherto unknown representation results for the Yager's families of fuzzy implications were obtained in [53] (N.R. Vemuri and B. Jayaram, Representations through a monoid on the set of fuzzy implications, fuzzy sets and systems, 247 (2014) 51–67). However, the properties of fuzzy implications generated or obtained using the ⊛-composition have not been explored. In this work, the preservation of the basic properties like neutrality, ordering and exchange principles , the functional equations that the obtained fuzzy implications satisfy, the powers w.r.t. ⊛ and their convergence, and the closures of some families of fuzzy implications w.r.t. the operation ⊛, specifically the families of (S,N)(S,N)-, R-, f- and g-implications, are studied. This study shows that the ⊛-composition carries over many of the desirable properties of the original fuzzy implications to the generated fuzzy implications and further, due to the associativity of the ⊛-composition one can obtain, often, infinitely many new fuzzy implications from a single fuzzy implication through self-composition w.r.t. the ⊛-composition

    A Deep Study of Fuzzy Implications

    Get PDF
    This thesis contributes a deep study on the extensions of the IMPLY operator in classical binary logic to fuzzy logic, which are called fuzzy implications. After the introduction in Chapter 1 and basic notations about the fuzzy logic operators In Chapter 2 we first characterize In Chapter 3 S- and R- implications and then extensively investigate under which conditions QL-implications satisfy the thirteen fuzzy implication axioms. In Chapter 4 we develop the complete interrelationships between the eight supplementary axioms FI6-FI13 for fuzzy implications satisfying the five basic axioms FI1-FI15. We prove all the dependencies between the eight fuzzy implication axioms, and provide for each independent case a counter-example. The counter-examples provided in this chapter can be used in the applications that need different fuzzy implications satisfying different fuzzy implication axioms. In Chapter 5 we study proper S-, R- and QL-implications for an iterative boolean-like scheme of reasoning from classical binary logic in the frame of fuzzy logic. Namely, repeating antecedents nn times, the reasoning result will remain the same. To determine the proper S-, R- and QL-implications we get a full solution of the functional equation I(x,y)=I(x,I(x,y))I(x,y)=I(x,I(x,y)), for all xx, y[0,1]y\in[0,1]. In Chapter 6 we study for the most important t-norms, t-conorms and S-implications their robustness against different perturbations in a fuzzy rule-based system. We define and compare for these fuzzy logical operators the robustness measures against bounded unknown and uniform distributed perturbations respectively. In Chapter 7 we use a fuzzy implication II to define a fuzzy II-adjunction in F(Rn)\mathcal{F}(\mathbb{R}^{n}). And then we study the conditions under which a fuzzy dilation which is defined from a conjunction C\mathcal{C} on the unit interval and a fuzzy erosion which is defined from a fuzzy implication II^{'} to form a fuzzy II-adjunction. These conditions are essential in order that the fuzzification of the morphological operations of dilation, erosion, opening and closing obey similar properties as their algebraic counterparts. We find out that the adjointness between the conjunction C\mathcal{C} on the unit interval and the implication II or the implication II^{'} play important roles in such conditions

    The *-composition -A Novel Generating Method of Fuzzy Implications: An Algebraic Study

    Get PDF
    Fuzzy implications are one of the two most important fuzzy logic connectives, the other being t-norms. They are a generalisation of the classical implication from two-valued logic to the multivalued setting. A binary operation I on [0; 1] is called a fuzzy implication if (i) I is decreasing in the first variable, (ii) I is increasing in the second variable, (iii) I(0; 0) = I(1; 1) = 1 and I(1; 0) = 0. The set of all fuzzy implications defined on [0; 1] is denoted by I. Fuzzy implications have many applications in fields like fuzzy control, approximate reasoning, decision making, multivalued logic, fuzzy image processing, etc. Their applicational value necessitates new ways of generating fuzzy implications that are fit for a specific task. The generating methods of fuzzy implications can be broadly categorised as in the following: (M1): From binary functions on [0; 1], typically other fuzzy logic connectives, viz., (S;N)-, R-, QL- implications, (M2): From unary functions on [0,1], typically monotonic functions, for instance, Yager’s f-, g- implications, or from fuzzy negations, (M3): From existing fuzzy implications

    Implikacje rozmyte generowane z kopuł

    Get PDF
    Implikacje rozmyte sa jednymi z najwazniejszych spójników logiki rozmytej, które uogólniaja klasyczne implikacje dla klasycznej logiki na odcinek. Ponadto implikacje rozmyte odgrywaja wazna role w takich zastosowaniach jak wnioskowaniu przyblizonym, rozmytym rozpoznawaniu obrazu, problemach decyzyjnych, logice wielowartosciowej, itd. Celem nastepujacej dysertacji jest uporzadkowanie informacji o implikacjach rozmytych generowanych z dwuwartosciowych kopuł, badz z funkcji ogólniejszych (np. z semikopuł). Kopuły sa waznymi funkcjami w probabilistyce. Waznosc kopuł w rachunku prawdopodobienstwa wynika z twierdzenia Sklara. Rozdział I zawiera informacje wstepne dotyczace podstawowych spójników logicznych, kopuł, qausikopuł i semikopuł wraz z ich najwazniejszymi własnosciami oraz kilka przydatnych własnosci funkcji rzeczywistych. Rozdział II jest poswiecony rozwiazaniu równania Franka, który to dowód jest rzadko prezentowany w monografiach, ale t-normy Franka, które sa rozwiazaniem równania Franka, sa dosc czesto przytaczane w wielu pracach. Ponadto okazuje sie, ze wiele równan dla kopuł, wynikajacych z odpowiednich własnosci dla implikacji s-probabilistycznych, mozna rozwiazac wykorzystujac t-normy Franka. Dlatego tez prezentujemy pełny dowód rozwiazania równania Franka w wersji dla t-norm i dla kopuł. Rozdział III jest poswiecony omówieniu dwóch waznych klas implikacji. Pierwsza z nich sa implikacje indukowane z semikopuł. W rozdziale IV pokazano jak przy pomocy twierdzenia Sklara mozna otrzymac takie funkcje jak implikacje probabilistyczne, s-probabilistyczne, warunkowe, dualne oraz s-dualne. Ponadto przedstawiano podstawowe własnosci tych klas funkcji. W ostatni rozdziale V zaprezentowane sa nowe wyniki z pracy, uzyskane przez Autora we współpracy z M. Baczynskim, P. Grzegorzewskim, W. Niemyska oraz nieopublikowane wyniki uzyskane przez Autora. W skład tych wyników wchodza takie własnosci implikacji z rozdziału IV jak prawa kontrapozycji, prawo importacji, Tconditionality oraz przeciecia klas tych funkcji z innymi znanymi klasami implikacji rozmytych. W niniejszej pracy przyjeto konwencje, w której wszystkie rezultaty sa podane z odnosnikami do zródeł, z wyjatkiem nieopublikowanych rezultatów uzyskanych przez Autora, które sa podane bez odnosników
    corecore