1,321 research outputs found

    On Properties of Vacuum Axial Symmetric Spacetime of Gravitomagnetic Monopole in Cylindrical Coordinates

    Get PDF
    We investigate general relativistic effects associated with the gravitomagnetic monopole moment of gravitational source through the analysis of the motion of test particles and electromagnetic fields distribution in the spacetime around nonrotating cylindrical NUT source. We consider the circular motion of test particles in NUT spacetime, their characteristics and the dependence of effective potential on the radial coordinate for the different values of NUT parameter and orbital momentum of test particles. It is shown that the bounds of stability for circular orbits are displaced toward the event horizon with the growth of monopole moment of the NUT object. In addition, we obtain exact analytical solutions of Maxwell equations for magnetized and charged cylindrical NUT stars.Comment: 16 pages, 3 figures, 1 tabl

    Sagnac Effect of Goedel's Universe

    Full text link
    We present exact expressions for the Sagnac effect of Goedel's Universe. For this purpose we first derive a formula for the Sagnac time delay along a circular path in the presence of an arbitrary stationary metric in cylindrical coordinates. We then apply this result to Goedel's metric for two different experimental situations: First, the light source and the detector are at rest relative to the matter generating the gravitational field. In this case we find an expression that is formally equivalent to the familiar nonrelativistic Sagnac time delay. Second, the light source and the detector are rotating relative to the matter. Here we show that for a special rotation rate of the detector the Sagnac time delay vanishes. Finally we propose a formulation of the Sagnac time delay in terms of invariant physical quantities. We show that this result is very close to the analogous formula of the Sagnac time delay of a rotating coordinate system in Minkowski spacetime.Comment: 26 pages, including 4 figures, corrected typos, changed reference

    Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity

    Get PDF
    The intermediate- to high-mass star-forming region IRAS 20343+4129 is an excellent laboratory to study the influence of high- and intermediate-mass young stellar objects on nearby starless dense cores, and investigate for possible implications in the clustered star formation process. We present 3 mm observations of continuum and rotational transitions of several molecular species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations carried out with the Very Large Array, to reveal the properties of the dense gas. We confirm undoubtedly previous claims of an expanding cavity created by an ultracompact HII region associated with a young B2 zero-age main sequence (ZAMS) star. The dense gas surrounding the cavity is distributed in a filament that seems squeezed in between the cavity and a collimated outflow associated with an intermediate-mass protostar. We have identified 5 millimeter continuum condensations in the filament. All of them show column densities consistent with potentially being the birthplace of intermediate- to high-mass objects. These cores appear different from those observed in low-mass clustered environments in sereval observational aspects (kinematics, temperature, chemical gradients), indicating a strong influence of the most massive and evolved members of the protocluster. We suggest a possible scenario in which the B2 ZAMS star driving the cavity has compressed the surrounding gas, perturbed its properties and induced the star formation in its immediate surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Physically adequate proper reference system of a test observer and relativistic description of the GAIA attitude

    Full text link
    A relativistic definition of the physically adequate proper reference system of a test observer is suggested within the framework of the PPN formalism. According to the nomenclature accepted within the GAIA project this reference system is called Center-of-Mass Reference System (CoMRS). The interrelation between the suggested definition of the CoMRS and the Resolutions 2000 on relativity of the International Astronomical Union (IAU) are elucidated. The tetrad representation of the CoMRS at its origin is also explicated. It is demonstrated how to use that tetrad representation to calculate the relation between the observed direction of a light ray and the corresponding coordinate direction in the Barycentric Celestial Reference System of the IAU. It is argued that the kinematically non-rotating CoMRS is the natural choice of the reference system where the attitude of the observer (e.g. of the GAIA satellite) should be modeled. The relativistic equations of rotational motion of a satellite relative to its CoMRS are briefly discussed. A simple algorithm for the attitude description of the satellite is proposed.Comment: 16 page

    Quasars: a supermassive rotating toroidal black hole interpretation

    Get PDF
    A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars whose internal nuclear reactions proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. These events are typically the first supernovae of the host galaxies. Given time the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Due to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiation including the Penrose process and superradiant scattering. This establishes a self-sustaining mechanism whereby the transport of angular momentum away from the quasar by relativistic bi-directional jets reinforces both the modulating magnetic field and the TBH/accretion disk angular velocity differential. Quasar behaviour is extinguished once the BH topology becomes spheroidal. Similar mechanisms may be operating in microquasars, SNe and GRBs when neutron density or BH tori arise. In certain circumstances, long-term TBH stability can be maintained by a negative cosmological constant, otherwise the classical topology theorems must somehow be circumvented. Preliminary evidence is presented that Planck-scale quantum effects may be responsible.Comment: 26 pages, 14 figs, various corrections and enhancements, final versio
    corecore