13,270 research outputs found

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Analysis and Output Tracking Design for the Direct Contact Membrane Distillation Parabolic System

    Full text link
    This paper considers the performance output tracking for a boundary controlled Direct Contact Membrane Distillation (DCMD) system. First, the mathematical properties of a recently developed mathematical model of the DCMD system are discussed. This model consists of parabolic equations coupled at the boundary. Then, the existence and uniqueness of the solutions are analyzed, using the theory of operators. Some regularity results of the solution are also established. A particular case showing the diagonal property of the principal operator is studied. Then, based on one-side feedback law the control problem, which consists of tracking both the feed and permeate outlet temperatures of the membrane distillation system is formulated. A servomechanism and an output feedback controller are proposed to solve the control problem. In addition, an extended state observer aimed at estimating both the system state and disturbance, based on the temperature measurements of the inlet is proposed. Thus, by some regularity for the reference signal and when the disturbance vanishes, we prove the exponential decay of the output tracking error. Moreover, we show the performance of the control strategy in presence of the flux noise.Comment: 32 pages, 4 figure

    Robust Control Strategy for a Conduction–Convection System Based on the Scenario Optimization

    Get PDF
    International audienceThis paper deals with the robust control of an uncertain conduction–convection system in the framework of probabilistic control design based on both the geometric control and the scenario optimization approach. Thus, a robust control strategy that copes with parameter uncertainties is proposed for a heated rod taken as an application example of a conduction–convection system. The design approach consists in two steps. In the first step, assuming a nominal model, a state feedback that yields a stable linear lumped parameter system, of first order, in closed loop is designed by means of geometric control theory. The stability of the resulting closed-loop system is demonstrated based on the perturbation theorem from semigroup theory. The second step consists in defining the input reference of the designed state feedback by a structured robust controller. The parameter tuning of the structured controller is formulated as a semi-infinite (or robust) optimization problem which is, then, relaxed using the scenario approach leading to a standard finite optimization problem. The solution of this scenario optimization problem is achieved using a genetic algorithm. The proposed control strategy is adopted to cope with parameter uncertainties in the problem of heating a steel rod. The effectiveness of the proposed robust control strategy is demonstrated by simulation

    Multiple input control strategies for robust and adaptive climate engineering in a low order 3-box model

    Get PDF
    A low-order 3-box energy balance model for the climate system is employed with a multivariable control scheme for the evaluation of new robust and adaptive climate engineering strategies using solar radiation management. The climate engineering measures are deployed in three boxes thus representing northern, southern and central bands. It is shown that, through heat transport between the boxes, it is possible to effect a degree of latitudinal control through the reduction of insolation. The approach employed consists of a closed-loop system with an adaptive controller, where the required control intervention is estimated under the RCP4.5 radiative scenario. Through the online estimation of the controller parameters, adaptive control can overcome key issues related to uncertainties of the climate model, the external radiative forcing and the dynamics of the actuator used. In fact, the use of adaptive control offers a robust means of dealing with unforeseeable abrupt perturbations, as well as the parametrization of the model considered, to counteract the RCP4.5 scenario, while still providing bounds on stability and control performance. Moreover, applying multivariable control theory also allows the formal controllability and observability of the system to be investigated in order to identify all feasible control strategies

    Robust control strategy for a conduction-convection system based on the scenario optimization

    Get PDF
    International audienceThis paper deals with the robust control of an uncertain conduction-convection system in the framework of probabilistic control design based both on the geometric control and the scenario optimization approach. Thus, a robust control strategy that copes with parameter uncertainties is proposed for a heated rod taken as an application example of a conduction-convection system. The design approach consists in two steps. In the first step, assuming a nominal model, a state feedback that yields a stable linear lumped parameter system, of first order, in closed loop is designed by means of geometric control theory. The stability of the resulting closed loop system is demonstrated based on the perturbation theorem from semigroup theory. The second step consists in defining the input reference of the designed state feedback by a structured robust controller. The parameter tuning of the structured controller is formulated as a semi-infinite (or robust) optimization problem which is, then, relaxed using the scenario approach leading to a standard finite optimization problem. The solution of this scenario optimization problem is achieved using a genetic algorithm. The proposed control strategy is adopted to cope with parameter uncertainties in the problem of heating a steel rod. The effectiveness of the proposed robust control strategy is demonstrated by simulation

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Temperature control in transport delay systems

    Get PDF
    A control architecture is proposed for temperature control in manufacturing applications based on the internal model principle. It is applied to a problem where the material exit temperature is to be controlled by changing the transportation speed to influence the amount of heat loss. The internal model is used to achieve a fast response with minimal overshoot. The controller tuning is carried out using constraints on the sensitivity function to map out the controller parameter region to achieve this performance. The robustness of the controller to parametric uncertainty is also considered. Results are shown from the application of this controller to the temperature controller for a hot strip rolling mill

    Low cost solar cell arrays

    Get PDF
    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given
    • …
    corecore