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Abstract This paper deals with the robust control of an uncertain conduction-convection system in the framework
of probabilistic control design based both on the geometric control and the scenario optimization approach. Thus, a
robust control strategy that copes with parameter uncertainties is proposed for a heated rod taken as an application
example of a conduction-convection system. The design approach consists in two steps. In the first step, assuming a
nominal model, a state feedback that yields a stable linear lumped parameter system, of first order, in closed loop
is designed by means of geometric control theory. The stability of the resulting closed loop system is demonstrated
based on the perturbation theorem from semigroup theory. The second step consists in defining the input reference
of the designed state feedback by a structured robust controller. The parameter tuning of the structured controller
is formulated as a semi-infinite (or robust) optimization problem which is, then, relaxed using the scenario approach
leading to a standard finite optimization problem. The solution of this scenario optimization problem is achieved using
a genetic algorithm. The proposed control strategy is adopted to cope with parameter uncertainties in the problem of
heating a steel rod. The effectiveness of the proposed robust control strategy is demonstrated by simulation.

Keywords distributed parameter system · geometric control · characteristic index · semigroup theory · robust
control · semi-infinite optimization · scenario approach · PID controller

1 Introduction

Most physical systems are distributed in nature, i.e., the characteristic variables (states, controls and outputs) depend
on several independent coordinates that are often space and time variables (Christofides, 2001; Li and Qi, 2010; Ray,
1989; Singh, 1977). These systems are termed distributed parameter systems (DPSs) and their dynamic behavior is
described by partial differential equations (PDEs) involving bounded variable parameters that represent uncertainties.
To ensure both stability and desired performance specifications, in closed loop, despite parameter uncertainties, a
robust controller must be implemented.

Robust control theory of DPSs is an active research area and constitutes a challenging field (Christofides, 2001;
Curtain and Zwart, 1995; Keulen, 1993). A survey of the different established developments in this field can be
found in (Padhi and Faruque Ali, 2009). For DPSs, which are of infinite dimension, the design of a robust controller
is more difficult and few contributions are reported in the literature (Armaou and Christofides, 2001; Christofides,
1998; Christofides and Baker, 1999; Christofides and Daoutidis, 1998; Ding et al., 2009). A straightforward approach,
termed early lumping, consists in approximating the DPS by a lumped parameter system (LPS) commonly obtained
by discretization of either the PDEs or their solution (Li and Qi, 2010). The aim is to exploit the existing robust
control theory for lumped parameter systems (LPSs) that provides powerful controller design methods. This approach
presents the drawback that it requires an approximate LPS with a high dimensionality (order) to capture the dynamics
of the original DPS. Consequently, due to the dimension of the obtained LPS, the design of the robust controller is a
complex and seldom tractable task, being NP-hard (Alamo et al., 2015). An alternative approach, termed late lumping,
consists in using directly the PDE model without any approximation. This approach, also, leads to NP-hard robust
optimization problems, in infinite dimensional space, which remains NP-hard even though it is discretized (Borz̀ı and
Schulz, 2012).
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Robust control of LPSs has attained a certain level of maturity and sophisticated design methods have been
developed. For robust control of LPSs, two major approaches can be distinguished (Calafiore and Campi, 2006; Petersen
and Tempo, 2014). The first approach, termed worst-case design, tries to enforce the design constraints over the domain
of potential uncertainties (Calafiore and Campi, 2006; Campi et al., 2009; Toscano, 2013). This approach leads to robust
(semi-infinite) optimization problems, which are classified NP-hard and their degree of complexity increases with the
dimension of the system (Alamo et al., 2015; Blondel and Tsitsiklis, 1997, 2000; Toscano, 2013). The second approach,
which is an interesting and promising alternative to the worst-case, is the probabilistic robust design (Alamo et al.,
2015; Calafiore and Campi, 2006; Dabbene and Tempo, 2010; Tempo et al., 2013). This approach can be seen as
a relaxation of the robust optimization problem by a random sampling of the constraints. In this case, a standard
optimization problem with a finite number of constraints is obtained and solved with a risk of violation of the desired
performances for a very small fraction of uncertainties (Calafiore and Campi, 2006; Dabbene and Tempo, 2010).
Among the probabilistic robust design methods, the scenario approach is a well-established method that can tackle
robust optimization problems (Calafiore and Campi, 2006; Campi et al., 2009; Tempo et al., 2013). This non-sequential
approach has been applied with success to solve several control design problems (Calafiore and Campi, 2006; Campi
et al., 2009).

In this work, based on the scenario approach for non-convex robust optimization problems (Grammatico et al.,
2014), a robust control strategy is proposed for an uncertain conduction-convection system. To the best knowledge
of the authors, the probabilistic robust design was never applied for DPSs, which makes the present work a first
contribution in this field. The main idea is to overcome the NP-hardness of the robust optimization problem due
to the high dimensionality of the linear diffusion-reaction equation. From this point of view, it is proposed first to
design, based on the characteristic index from geometric control (Christofides and Daoutidis, 1996), a state feedback
that ensures both output-tracking and stabilization in closed loop. Then, to cope with parameter uncertainties, a
structured linear robust controller that defines the input reference of the state feedback is designed using the scenario
approach. For the design of the structured robust controller, a non-convex robust optimization problem is formulated
where the objective is the minimization of a performance index, with respect to the controller tuning parameters,
subject both to stability and robustness constraints. This constrained non convex robust optimization problem is
then relaxed by the scenario approach. The resulting non convex standard finite optimization problem is solved by a
genetic algorithm. Note that this design approach of the structured robust controller can be applied to linear LPSs,
which constitutes another contribution of the present work. The performance of the proposed control strategy is
demonstrated, through simulation, in the case of problem of heating a steel rod with uncertain radius and physical
parameters. The objective is to achieve a desired set point for the average temperature, along the rod, despite these
parameter uncertainties.

The rest of the paper is organized as follows: the control problem of a heated rod, taken as an example of conduction-
convection system is presented in Section 2. Section 3 is devoted to the proposed robust control strategy. In the first
subsection, a geometric control law that enforces the output-tracking is designed in the framework of geometric control
based on the characteristic index concept and the stability of the resulting closed loop system is demonstrated using
the perturbation theorem from semigroup theory. In the second subsection, a design approach of a structured robust
controller is proposed and applied to define the reference input of the state feedback to enhance the performance. The
design problem is formulated as a semi-infinite optimization problem, which is relaxed using the scenario approach
leading to a standard finite optimization problem. An application example that illustrates, by simulation, the effec-
tiveness of the proposed control strategy, concerning the problem of heating a steel rod with uncertain radius and
physical parameters, is given in Section 4 while Section 5 concludes the paper.

2 Control problem statement

As an example of conduction-convection system, let us consider a one dimension metal rod, of length L, heated with a
distributed heat flux Q′′(t) (Figure 1). It is assumed that the rod is subject to heat exchange, across the lateral sides,
with the environment and both boundaries are in contact with the surrounding medium. The energy balance, in the
case of a cylindrical rod of radius R, yields the following model (Farlow, 1993)

ρ cp
∂T (z, t)

∂t
= λ

∂2T (z, t)

∂z2
−

2 h

R
(T (z, t)− Tenv) + d(z)Q′′(t), 0 < z < L (1)

T (0, t) = Tenv (2)

T (L, t) = Tenv (3)

T (z, 0) = T0(z) (4)

where T (z, t) ∈ L2(0, L) is the rod temperature, z ∈ [0, L] and t ∈ [0, ∞[ are the space and time variables, respectively.
ρ, cp, λ and h are the rod physical properties and denote density, heat capacity, thermal conductivity and heat transfer
coefficient, restrictively. Tenv is the environment temperature and T0(z) ∈ L2(0, L) is the spatial temperature profile
at t = 0. Q′′(t) ∈ L2([0, L[,,ℜ) is the manipulated heat flux and d(z) ∈ L2([0, L]) is a known smooth function that
characterizes the distribution of Q′′(t) on the space domain ]0, L[. L2(0, L) is the Hilbert space of the Lebesgue square
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Fig. 1: Heated rod with a distributed heat flux Q′′(t).

integrable functions, defined on the domain space [0, L], endowed with inner product (Atkinson and Han, 2009)

〈f(z) , g(z)〉L2(0, L) =

∫ L

0

f(z) g(z) dz (5)

and the norm
‖f(z)‖2L2(0, L) = 〈f(z) , f(z)〉L2(0, L) (6)

Using the dimensionless variables

θ(ξ, τ) =
T (z, t)− Tenv

Tf − Tenv
, ξ =

z

L
, τ =

λ t

ρ cp L2
(7)

where Tf is the fusion temperature of the metal, the following dimensionless model results

∂θ(ξ, τ)

∂τ
=

∂2θ(ξ, τ)

∂ξ2
− β θ(ξ, τ) + b(ξ) q′′(τ), 0 < ξ < 1 (8)

θ(0, τ) = 0 (9)

θ(1, τ) = 0 (10)

θ(ξ, 0) = θ0(ξ) (11)

where

b(ξ) =
L2 d(ξ L)

λ (Tf − Tenv)
, q′′(τ) = Q′′

(

ρ cpL
2 τ

λ

)

, θ0(ξ) =
T0(z)− Tenv

Tf − Tenv
(12)

and the uncertain parameter

β =
2 hL2

λR
(13)

The problem addressed in this work consists in heating a rod with uncertain radius and physical parameters before
crossing a rolling mill. In the following, it assumed that the heat transfer coefficient, the thermal conductivity λ and
the radius R are bounded uncertain parameters within well-known regions, that is, [hmin, hmax], [λmin, λmax] and
[Rmin, Rmax] leading, according to (13), to the following bounded interval for the parameter β, that is,

β ∈ [βmin, βmax] (14)

The control objective is to design a heat flux profile q′′(τ) that achieves, despite the uncertainty in the parameter
β, a desired temperature for the controlled output defined as the spatial weighted average of the temperature, along
the rod, expressed mathematically as follows

θm(τ) =

∫ 1

0

c(ξ) θ(ξ, τ) dξ (15)

where c(ξ) is a smooth function chosen so that the control design specifications are met. Note that the functions b(ξ)
and c(ξ) represent key design elements for DPSs (Christofides and Daoutidis, 1996). In the present study, the choice
of the two functions b(ξ) and c(ξ) is stated in the following Assumptions 1 and 2.

Assumption 1 The two smooth functions b(ξ) and c(ξ) are chosen not orthogonal (Atkinson and Han, 2009), that
is,

〈b(ξ), c(ξ)〉L2(0, 1) =

∫ 1

0

b(ξ) c(ξ) dξ 6= 0 (16)

Assumption 2 The function c(ξ) ∈ H2
0 (0, 1) with H2

0 (0, 1) being the Sobolev space of order 2 defined as follows
(Atkinson and Han, 2009)

H2
0 (0, 1) =

{

c(z) ∈ L2(0, 1) : c(k)(z) ∈ L2(0, 1); k = 1, 2 and c(0) = c(1) = 0
}

(17)
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3 Proposed robust control strategy

To make the formulated robust control problem tractable and to exploit the full potential of the probabilistic control
design, the idea is to use the geometric control theory. This well-developed theory, that belongs to early lumping
approach (Christofides and Daoutidis, 1996; Maidi and Corriou, 2011), allows to design a state feedback that yields
an uncertain LPS of first order in closed-loop. Then, to cope with parameter uncertainties of the resulting closed
loop system, it is proposed to define its reference input by a structured robust controller designed using the scenario
approach. These two steps are discussed at length in the following subsections.

3.1 State feedback design

To design the state feedback, a nominal value βn is assigned to the uncertain parameter β, which is taken equal to the
mean value, that is, βn = (βmin + βmax)/2. The design process is based on the use of the characteristic index, from
geometric control theory of DPSs, introduced by Christofides and Daoutidis (1996). Hence, the calculation of the first
derivative of the controlled output (15) yields

dθm(τ)

dτ
=

∫ 1

0

c(ξ)
∂θ(ξ, τ)

∂τ
dξ (18)

=

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ) + b(ξ) q′′(τ)

]

dξ (19)

=

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ +

[
∫ 1

0

c(ξ) b(ξ) dξ

]

q′′(τ) (20)

Note that the manipulated heat flux q′′(τ) appears linearly in the first derivative (20) of the controlled output
θm(τ). Now, since Assumption 1 holds, this means that the characteristic index of the system is σ = 1. Consequently,
a control law q′′(τ) that preserves σ = 1 between a reference input ϑ and the controlled output θm(τ) can be obtained
(Christofides and Daoutidis, 1996). In this case, the dynamics of the obtained closed loop is described by the following
first order differential equation

γ
dθm(τ)

dτ
+ θm(τ) = ϑ (21)

where γ is the desired time constant in closed loop and ϑ is an external input reference assumed to be constant in this
work, that is, a given temperature.

By substituting θm(τ) and dθm(τ)/dτ by their expressions, given by (15) and (20), respectively, into (21) and
solving the resulting equation with respect to the heat flux q′′(τ), the following control law results

q′′(τ) =
1

γ
∫ 1

0
c(ξ) b(ξ) dξ

(

ϑ− θm(τ) − γ

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

)

(22)

which yields the following closed loop system

∂θ(ξ, τ)

∂t
=
∂2θ(ξ, τ)

∂ξ2
− β θ(ξ, τ) +

b(ξ)

γ
∫ 1

0 c(ξ) b(ξ) dξ
×

(

ϑ− θm(τ)− γ

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

)

(23)

From the closed loop dynamics (21), it follows that the external stability is ensured since the time constant γ > 0.
This is not sufficient, of course, to ensure the internal stability of the closed loop system (23),which must be guaranteed.

Hence, in order to derive the closed loop internal stability condition, let us first write the open-loop (8) and the
state feedback (22) under the following abstract forms (Curtain and Zwart, 1995; Emirsjlow and Townley, 2000)

dθ(τ)

dτ
= Aol θ(τ) + Bol q

′′(τ) (24)

and

q′′(τ) = −K θ(τ) +H esf(τ) (25)

where the operators are defined as follows

Aol =
∂2

∂ξ2
− β, Bol = b(ξ), K = I

∫ 1

0

c(ξ)

[

∂2

∂ξ2
− βn

]

dξ, H = I γ−1 (26)

with I = [
∫ 1

0
c(ξ) b(ξ) dξ]−1 and esf(τ) = ϑ− θm(τ) (sf = state feedback).
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Hence, since ϑ is a constant temperature, the closed loop system (23) can be rewritten as an interconnection, in
abstract form, as follows

desf(τ)

dτ
= −

1

γ
esf(τ) (27)

dθ(τ)

dτ
= Acl θ(τ) +H esf(τ) (28)

where Acl = (Aol − BolK) is the resulting state operator in closed loop.
From (21), since γ > 0 (time constant), it follows that

‖esf(τ)‖ ≤ |esf(0)| e
−τ/γ (29)

consequently, the closed loop system (27)–(28) is internally stable if the state operator Acl generates a stable semi-
group (Christofides and Daoutidis, 1996). The internal stability condition of the closed loop system (23) is provided
by Proposition 1.

Proposition 1 The closed loop system (27)–(28) for which Assumptions 1 and 2 hold is internally stable, that is, the
operator Acl generates an exponentially stable semigroup if

|I|

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

∥

∥b2(ξ)
∥

∥

L2(0, 1)
< βmin + π2 (30)

Proof The resulting closed loop state operator Acl represents the open-loop state operator Aol perturbed by the
operator Bol K. Thus, according to the bounded operator theorem (Engel and Nagel, 2006, Page 116), since Aol is a
generator of a stable semigroup (Afifi et al., 2012), that is,

‖U(τ)‖ ≤ e−(β+π2) τ , (β > 0 according to (13)) (31)

and if the perturbation BolK is bounded, then the operator Acl is a generator of the following semigroup

‖S(τ)‖ ≤ e(−β−π2+‖Bol K‖L2(0, 1)) τ (32)

which is stable if the following condition

−(β + π2) + ‖BolK)‖L2(0, 1) < 0 (33)

holds.
The linear operator Bol K is bounded, that amounts to verify the existence of the constant C such that

‖BolK θ(τ)‖L2(0, 1) ≤ C ‖θ(τ)‖L2(0, 1) (34)

and the smallest C is the norm of ‖BolK‖L2(0, 1).
The first step of the proof is to demonstrate that the operator Bol K is bounded. Calculating the norm of Bol K

gives

‖BolK θ(τ)‖2L2(0, 1) =

∥

∥

∥

∥

I b(ξ)

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

∥

∥

∥

∥

2

L2(0, 1)

(35)

=

∫ 1

0

[

I b(ξ)

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

]2

dξ (36)

= I2
∫ 1

0

[

b(ξ)

∣

∣

∣

∣

∫ 1

0

c(ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

∣

∣

∣

∣

]2

dξ (37)

By taking into account assumption (2) and boundary conditions (9) and (10), the integration by parts of the first
term of the internal integral in (37) yields

‖BolK θ(τ)‖2L2(0, 1) = I2
∫ 1

0

[

b(ξ)

∣

∣

∣

∣

∫ 1

0

(

d2c(ξ)

dξ2
− βn

)

θ(ξ, τ) dξ

∣

∣

∣

∣

]2

dξ (38)

Now, Cauchy-Schwartz inequality allows to write

∣

∣

∣

∣

∫ 1

0

(

d2c(ξ)

dξ2
− βn

)

θ(ξ, τ) dξ

∣

∣

∣

∣

≤

∫ 1

0

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

‖θ(ξ, τ)‖L2(0, 1) dξ (39)
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θm(τ)

κ

a s+ 1

Fig. 2: Proposed robust control strategy (dotted lines mean equivalence).

hence

‖BolK θ(τ)‖2L2(0, 1) ≤ I2
∫ 1

0

b2(ξ)

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

2

L2(0, 1)

‖θ(ξ, τ)‖
2
L2(0, 1) dξ (40)

‖BolK θ(τ)‖L2(0, 1) ≤ |I|
∥

∥b2(ξ)
∥

∥

L2(0, 1)

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

‖θ(ξ, τ)‖L2(0, 1) (41)

≤ C ‖θ(ξ, τ)‖L2(0, 1) (42)

where

C = |I|

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

∥

∥b2(ξ)
∥

∥

L2(0, 1)
(43)

Consequently, it can be concluded that the operator BolK is bounded and its norm is ‖BolK‖L2(0, 1) = C.
The second step of the proof is to derive the internal stability condition (30). Consequently, according to the above

development, the closed loop state operator Acl generates the semigroup

‖S(τ)‖ ≤ e−(β+π2−C) τ (44)

which is stable if β + π2 − C > 0, that is,

|I|

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

∥

∥b2(ξ)
∥

∥

L2(0, 1)
< β + π2 (45)

Since 0 < βmin ≤ β ≤ βmax, it follows that the closed loop system (27)–(28) is exponentially stable if

|I|

∥

∥

∥

∥

d2c(ξ)

dξ2
− βn

∥

∥

∥

∥

L2(0, 1)

∥

∥b2(ξ)
∥

∥

L2(0, 1)
< βmin + π2 (46)

Remark 1 The left-hand side of condition (46) depends on both b(ξ) and c(ξ), hence it can be checked by an appropriate
choice of these two functions which represent key elements for the control design. �

Now, the designed control law (22) achieves an exact output-tracking with the desired dynamics characterized by
the time constant γ when β = βn. In the case of deviation of β from the nominal value βn, the closed loop dynamics
characterized by (21) will not be exactly achieved and a deterioration of the performance will be observed on the
controlled output θm(τ). Thus, the settling time will be affected and important bounded steady-state errors will occur
(this is illustrated in the case of the example studied in Section 4). Consequently, the closed loop system can be
described by the following uncertain continuous transfer function

G(s, δ) =
Θm(s)

V(s)
=

κ

a s+ 1
(47)

with a ∈ [amin, amax] and k ∈ [κmin, κmax] denote the bounding intervals for the uncertainties a and κ, respectively.
These uncertainties are grouped in the vector δ ∈ ∆, that is, δ = [a, κ]. Θm(s) and V(s) are the Laplace transforms
of the controlled output θm(τ) and the reference input ϑ(τ), respectively.

Since the upper and lower bounds of the uncertain parameters a and κ cannot be determined analytically as
functions of β, one can estimate them from the observed output θm(τ) by assuming several values of the deviation of
the parameter β. This can be easily done through simulation.

To avoid the deterioration of the performance in spite of the variation of the parameters a and κ, it is proposed
to define the reference input ϑ, of the state feedback (22), by an external structured robust controller as shown by
Figure 2 that summarizes the adopted control strategy. To design the robust controller, it is proposed to use the
scenario optimization following a proposed approach developed in Subsection 3.2.
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3.2 External robust controller design

In this subsection, a design approach of a structured robust controller for a LPS is developed. The approach consists,
first, in formulating the design specifications as a semi-infinite (or robust) optimization problem, which will be then
solved using the scenario approach (Calafiore and Campi, 2006; Campi et al., 2009).

3.2.1 Formulation of the controller design as a semi-infinite optimization problem

To design the structure robust controller Gc(s, p), that is, to determine the tuning parameters p (p ∈ ℜnp), it is
proposed to minimize a given performance index. In the following development, the Integral of Square Error (ISE) is
assumed. The ISE is defined as follows

J(p, δ) =

∞
∫

0

e2sp(τ) dτ (48)

where the tracking error is esp(τ) = θdm(τ)− θm(τ) (sp = set point) with θdm(τ) the desired set point of the controlled
output θm(τ). Note that the value of the ISE depends both on the controller parameters p and the system uncertainties
δ.

Assumption 3 In the following development, it is assumed that the controller Gc(s, p) includes an integral action,
that is, the tracking error esp(τ) for a setup input θdm(τ) is zero, which implies that the value of the ISE (48) is finite.

Our objective is to seek controller parameters p that ensure best performance by minimizing the ISE whatever the
system uncertainties δ. Thus, the design of the robust controller Gc(s, p) can be formulated as a min-max optimization
problem as follows

min
p

max
δ

J(p, δ) (49)

where J(p, δ) is the objective function.
In addition, the controller parameters p can be constrained by assuming robustness and stability constraints of

inequality kind. In this case, the controller design optimization problem takes the following form

min
p

max
δ

J(p, δ) (50)

subject to:

gr(p, δ) ≤ 0 (51)

gs(p, δ) ≤ 0 (52)

where gr and gs are the robustness and stability constraints, respectively. These constraint functions are the relations
between the controller parameters p and the uncertain parameters δ defined so as to meet both robustness and stability
specifications. For instance to define the stability constraints gs(p, δ), the Routh-Jury criterion (Corriou, 2004) can be
used.

The formulated min-max optimization problem (50)–(52) can be rewritten under the following form (Campi et al.,
2009)

min
p, w

w (53)

subject to:

J(p, δ) ≤ w (54)

gr(p, δ) ≤ 0 (55)

gs(p, δ) ≤ 0 (56)

which is a semi-infinite optimization problem (finite number of optimization variables p and infinite number of con-
straints due the uncertainties δ) termed also robust optimization problem, which is NP-hard (Blondel and Tsitsiklis,
1997, 2000) and generally non-convex.

Let us first determine the analytical expression of the performance index J(p, δ). The transfer function between
the step input θdm(τ) and the tracking error esp(τ) is given as follows

Esp(s)

Θd
m(s)

=
1

1 +Gc(s, p)G(s, δ)
(57)

where Esp(s) and Θd
m(s) are the Laplace transforms of tracking error esp(τ) and the external input reference θdm(τ),

respectively.
The value of the ISE (48) can be evaluated using the Laplace transform properties as follows (Åström, 1970; Puri

and Weygandt, 1964)

J(p, δ) =
1

2 π j

+j ∞
∫

−j ∞

Esp(s)Esp(−s) ds (58)
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To evaluate this complex integral, in general, there are two methods: the transfer function and the state-space
methods. These methods are discussed by Puri and Weygandt (1964), Åström (1970) and Borne and Rotella (1996).

Once the analytical expression of the objective function J(p, δ) is determined, the robust optimization problem
(53)–(56) can be transformed into a standard finite optimization problem, with a finite number of constraints, using
the scenario approach based on the sampling of constraints (Calafiore and Campi, 2006; Campi et al., 2009).

3.2.2 Solving the semi-indefinite optimization problem using the scenario approach

The Scenario approach is a probabilistic tool used to solve semi-infinite optimization problems. Its principle consists in
deriving a standard optimization problem with a finite number of constraints by assuming a random sampling process
of the constraints. In this approach, a probability measure of the uncertainty is assumed over the uncertainty domain
and the sample set is generated according to this measure (Calafiore and Campi, 2006; Campi et al., 2009).

By using the scenario approach, the solution of the formulated non-convex robust optimization problem (53)–(56)
is reduced to the solution of the following standard optimization problem (Alamo et al., 2015; Campi et al., 2009;
Toscano, 2013)

min
p, w

w (59)

subject to:

J
(

p, δ(i)
)

≤ w (60)

gr
(

p, δ(i)
)

≤ 0 (61)

gs
(

p, δ(i)
)

≤ 0, i = 1, . . . , N (62)

where δ(i) = [a(i), κ(i)] are the independent identically distributed samples, generated according to the assumed
probability measure, and N is the number of samples.

In this case, the solution p∗ of the scenario optimization (59)–(62) satisfies all constraints with a probability not
smaller than 1 − η, η ∈ (0, 1), with an expectation of constraint violation probability not larger than ε (ε ∈ (0, 1)).
ε and η are termed violation and confidence parameters, respectively, that constitute the design parameters of the
scenario approach that fix the number of samples N (Calafiore and Campi, 2006; Campi et al., 2009).

The number of samples N plays a key role in solving robust optimization problems with a desired probabilistic
specification (η and ε). For convex optimization problems, several bounds for the sample size are proposed and refined
in the literature (Alamo et al., 2015; Calafiore and Campi, 2006; Campi et al., 2009). On the other hand, the sample
size of a non convex optimization problems remains very challenging. This issue has not been widely investigated and
only few interesting results are reported in the literature (Alamo et al., 2009; Grammatico et al., 2014). In this work,
the bound on the sample size N developed recently by Grammatico et al. (2014) is used to relax the non convex robust
optimization problem (59)–(62). This bound is given by the following formula (Grammatico et al., 2014, Corollary 1)

N ≥

exp(1)

exp(1)− 1
(d+ 1)

ε

(

d− 1 + ln

(

M

η

))

(63)

where the integer M satisfies M ≥ d+ 1.
It is worth noticing that the bound (63) is easy to determine since it is a function of the parameters ε, η and the

number of the optimization variables d, of the scenario optimization problem (59)–(62), that is, d = np+1 (the number
of the tuning parameters np of the structured robust controller Gc(s, p) plus the introduced optimization variable w).

4 Application example

In this section, the tracking performance of the proposed robust control strategy is demonstrated through numerical
simulation runs. The rod is made of steel that has the physical properties (Taler and Duda, 2006): ρ = 7350.8kg·m−3,
cp = 570J·kg−1·K−1 and h = 4.19 W·m−2·K−1. The rod length is L = 1m while the radius R is uncertain with the
bounded interval [0.15m, 0.35m], which gives, according to (13), β ∈ [0.6667, 1.3317]. The distribution function of
the heat flux is b(ξ) = 1 (uniform distribution) and the sensing function c(ξ) = ξ (1 − ξ). The assumed data leads,
according to (22), to the following state feedback

q′′(τ) =
6

γ

(

ϑ− θm(τ) − γ

∫ 1

0

ξ (1 − ξ)

[

∂2θ(ξ, τ)

∂ξ2
− βn θ(ξ, τ)

]

dξ

)

(64)

The closed loop system is simulated using the method of lines (Van de Wouwer et al., 2001) by assuming a = 3 and
βn = 0.8889 (the nominal value βn is obtained using (13) for R = Rn with the nominal radius Rn = (Rmin+Rmax)/2).

The first simulation run, consists in determining the bounded intervals for the uncertain parameters a and κ.
Thus, the input reference ϑ is taken equal to 0.5 and several values of β, linearly spaced between its bounds, are
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Fig. 3: Performance of the state feedback control law (64). The solid line is the controlled output θm(τ), dotted line
is the input reference ϑ and the filled area (in gray) is the variation domain of the controlled output θm(τ) for all
possible uncertainties in δ ∈ ∆.
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Fig. 4: Variations of the model parameters a and κ with respect to the uncertain parameter β.

considered. The evolution of the controlled output θm(τ) is given by Figure 3. The obtained results show clearly that
in the presence of uncertainties β 6= βn, the designed state feedback (64) is unable to achieve the set point tracking,
that is, the controlled output θm(t) does not track its set point ϑ. Note that the set point tracking is achieved only
when β = βn, which is expected because the state feedback (64) is designed by considering the nominal value βn

of the uncertain parameter β. The evolutions of the parameters a and κ, of the uncertain model (47), with respect
the variation of the parameter β are depicted in Figure 4, which shows a nonlinear evolution of both parameters.
The bounded intervals are identified as a ∈ [0.4293, 2.9925] and κ ∈ [1.2872, 8.9770] leading to δ = [a, κ] ∈ ∆ =
[0.4293, 2.9925]× [1.2872, 8.9770] ∈ ℜ2.

Now, let us define the input reference ϑ by means of a structured controller. The PID controller remains the widely
used structured controller in industry (Toscano, 2013). In this section, the proposed design approach, based on the
scenario optimization, is applied to design this kind of structured controller for the resulting LPS (21).

The transfer function of the PID controller is

Gc(s, p) = Kc

(

1 +
1

Ti s
+ Td s

)

(65)

where Kc, Ti and Td denote the tuning parameters, that is, the gain, integral constant and derivative constant,
respectively. Thus, p = [Kc, Ti, Td].



10 Ahcène Triki et al.

The Laplace transform of the tracking error is

Esp(s) =
Ti κ s+ Ti

Ti (κ+ aKc Td) s2 + Ti (1 + aKc) s+ aKc
(66)

The evaluation of ISE (48), using the Åström method (Åström, 1970), yields

J(Kc, Ti, Td, δ) =
Ti

2 (1 + aKc)

(

1

aKc
+

κ2

Ti (κ+ aKc Td)

)

(67)

with δ ∈ ∆.

In addition to the choice of the controller structure, some robustness constraints on its tuning parameters p can be
imposed (Åström and Hädgglund, 2006). These constraints define the robustness region. For instance, for a commercial

PID controller, the time constants are constrained by (Åström and Hädgglund, 2006)

gr(Kc, Ti, Td, δ) : Td −
Ti

4
≤ 0 (68)

To ensure the stability of the robust control strategy, the stability constraints are derived based on the Routh-Jury
criterion (Corriou, 2004), which yields the following constraints

gr(Kc, Ti, Td, δ) = −Kc ≤ 0 (69)

In addition, the two time constants Ti and Td must be positive, that is,

Ti > 0, Td > 0 (70)

The scenario optimization problem to solve, to determine the robust PID controller parameters, is summarized as
follows

min
Kc, Ti, Td, w

w

subject to:

Ti

2 (1 + a(i) Kc)

(

1

a(i) Kc
+

(

κ(i)
)2

Ti (κ(i) + a(i) Kc Td)

)

≤ w, i = 1, . . . , N

Td −
Ti

4
≤ 0 (71)

−Kc ≤ 0

−Ti ≤ 0

−Td ≤ 0

where N = 12093 is the number of samples, obtained using the formula (63), that corresponds to ε = 10−2 and
η = 10−3. The samples are generated by assuming a uniform probability measure. Note that the number of decision
variables of (71) is d = 4 (Kc, Ti, Td and w) and M is taken equal to d+ 1, i.e., M = 5.

The scenario optimization problem (71) is solved using the genetic algorithm, which yields the following solution:

K∗
c = 24.2867, T ∗

i = 13.0724, T ∗
d = 3.1732 and w∗ = 0.1353 (72)

Figure 5 gives the different values of the performance index (67) for all possible uncertainties of the parameters
a and κ. It follows that, with the obtained optimal tuning (72), the first constraint of (71) is violated for a very
small portion of ∆, that is, when a and κ are very close to 0.4293 and 8.9770, respectively. In this case, since the
constraint is not significantly violated, a low performance deterioration is observed in the output response. Note that,
in the simulation run, the desired set point θdm(τ) is filtered by a first-order filter to avoid sudden fluctuations of the
controlled output θm(τ) (see Figure 2). The evolution of both output θm(τ) and manipulated heat flux q′′(τ) in closed
loop for a set of uncertainties generated randomly are given by Figure 6. The reported results show and demonstrate
the robustness of the proposed control strategy. It is clear that despite the parameter uncertainty, the output-tracking
is achieved with low and tolerable deviations with respect to the nominal response. The moves of the manipulated
heat flux q′′(τ) remain also physically reasonable whatever the deviation of the parameter β.

Remark 2 In this application, it is assumed that R ∈ [0.15, 0.35] leading to β ∈ [0, 6667, 1.3317], our aim is to give
an example, which is correct from a practical point of view. Therefore reasonable physical limit values of R are assumed.
It is worth noting that the proposed strategy performs well even for large uncertainty of β. �



Robust control strategy for a conduction-convection system based on the scenario optimization 11

Fig. 5: Values of the of performance index (67) for random uncertainties. The flat surface represents w∗ whereas the
second surface is J .
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Fig. 6: Performance of the proposed robust control strategy. Left : solid line is the nominal response (β = βn ) of the
controlled output θm(τ) and its variation domain (filled area in gray) in the case of uncertainties (β 6= βn). Right :
evolution of the manipulated heat flux q′′(τ). Solid line for β = βn (nominal case) and filled area in gray for β 6= βn.

5 Conclusion

In this paper, a robust control strategy for a heated rod, modeled by a linear diffusion-reaction equation, with bounded
parameter uncertainties is developed by means of late lumping approach. First, the system is lumped by means of a
state feedback designed in the framework of geometric control using the characteristic index concept. It is demonstrated
that by an appropriate choice of the sensing and actuation functions, the resulting closed loop system is exponentially
stable despite the bounded parameter uncertainties. Nevertheless, the output-tracking is significantly affected when
the system parameters deviate from their nominal values. Thus, to achieve a perfect output-tracking, in the presence
of uncertainties, it is proposed to define the input reference of the state feedback by a structured robust controller.
From this point of view, a designed approach of a robust structured controller for LPS is proposed. By assuming that
the structure of the robust controller is well known and includes an integral action, the parameter tuning problem of
the structured controller is formulated as a semi-infinite optimization that guarantees both robustness and stability in
closed loop. Then, the formulated robust optimization problem is relaxed using the scenario approach. The performance
of the developed control strategy is demonstrated by an application example that concerns the heating problem of a
steel rod with uncertain radius and physical parameters. The simulation results show the effectiveness of the developed
control strategy in coping with parameter uncertainties.
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The probabilistic control design approach is a promising framework for robust control. This approach fully relaxes
the design problem and allows to overcome the complexity and the intractability of the robust control problems. To
the best of our knowledge, the present work is the first attempt to apply the probabilistic control design approach for
a DPS. The results obtained, in our opinion, are conclusive and open the opportunity to investigate this field in the
case of DPS with parameters that exhibit spatio-temporal variation, which is under investigation of the authors.
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K. J. Åström. Introduction to Stochastic Control Theory. Academic Press, New York, 1970.
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