48 research outputs found

    Robust sEMG electrodes configuration for pattern recognition based prosthesis control

    Get PDF

    Towards hand-object gesture extraction from depth image

    Get PDF

    Swarm Intelligence In Myoelectric Control: Particle Swarm Based Dimensionality Reduction

    Full text link
    The myoelectric signals (MES) from human muscles have been utilized in many applications such as prosthesis control. The identification of various MES temporal structures is used to control the movement of prosthetic devices by utilizing a pattern recognition approach. Recent advances in this field have shown that there are a number of factors limiting the clinical availability of such systems. Several control strategies have been proposed but deficiencies still exist with most of those strategies especially with the Dimensionality Reduction (DR) part. This paper proposes using Particle Swarm Optimization (PSO) algorithm with the concept of Mutual Information (MI) to produce a novel hybrid feature selection algorithm. The new algorithm, called PSOMIFS, is utilized as a DR tool in myoelectric control problems. The PSOMIFS will be compared with other techniques to prove the effectiveness of the proposed method. Accurate results are acquired using only a small subset of the original feature set producing a classification accuracy of 99% across a problem of ten classes based on tests done on six subjects MES datasets

    Subtle hand gesture identification for HCI using temporal decorrelation source separation BSS of surface EMG

    Get PDF
    Hand gesture identification has various human computer interaction (HCI) applications. This paper presents a method for subtle hand gesture identification from sEMG of the forearm by decomposing the signal into components originating from different muscles. The processing requires the decomposition of the surface EMG by temporal decorrelation source separation (TDSEP) based blind source separation technique. Pattern classification of the separated signal is performed in the second step with a back propagation neural network. The focus of this work is to establish a simple, yet robust system that can be used to identify subtle complex hand actions and gestures for control of prosthesis and other HCI based devices. The proposed model based approach is able to overcome the ambiguity problems (order and magnitude problem) of BSS methods by selecting an a priori mixing matrix based on known hand muscle anatomy. The paper reports experimental results, where the system was able to reliably recognize different subtle hand gesture with an overall accuracy of 97%. The advantage of such a system is that it is easy to train by a lay user, and can easily be implemented in real time after the initial training. The paper also highlights the importance of mixing matrix analysis in BSS technique

    A novel swarm based feature selection algorithm in multifunction myoelectric control

    Full text link
    Accurate and computationally efficient myoelectric control strategies have been the focus of a great deal of research in recent years. Although many attempts exist in literature to develop such strategies, deficiencies still exist. One of the major challenges in myoelectric control is finding an optimal feature set that can best discriminate between classes. However, since the myoelectric signal is recorded using multi channels, the feature vector size can become very large. Hence a dimensionality reduction method is needed to identify an informative, yet small size feature set. This paper presents a new feature selection method based on modifying the Particle Swarm Optimization (PSO) algorithm with the inclusion of Mutual Information (MI) measure. The new method, called BPSOMI, is a mixture of filter and wrapper approaches of feature selection. In order to prove its efficiency, the proposed method is tested against other dimensionality reduction techniques proving powerful classification accuracy. © 2009 - IOS Press and the authors. All rights reserved

    Myoelectric Control Systems for Hand Rehabilitation Device: A Review

    Get PDF
    One of the challenges of the hand rehabilitation device is to create a smooth interaction between the device and user. The smooth interaction can be achieved by considering myoelectric signal generated by human's muscle. Therefore, the so-called myoelectric control system (MCS) has been developed since the 1940s. Various MCS's has been proposed, developed, tested, and implemented in various hand rehabilitation devices for different purposes. This article presents a review of MCS in the existing hand rehabilitation devices. The MCS can be grouped into main groups, the non-pattern recognition and pattern recognition ones. In term of implementation, it can be classified as MCS for prosthetic and exoskeleton hand. Main challenges for MCS today is the robustness issue that hampers the implementation of MCS on the clinical application

    Blind Source Separation Based Classification Scheme for Myoelectric Prosthesis Hand

    Get PDF
    For over three decades, researchers have been working on using surface electromyography (sEMG) as a means for amputees to use remaining muscles to control prosthetic limbs (Baker, Scheme, Englehart, Hutcinson, & Greger, 2010; Hamdi, Dweiri, Al-Abdallat, & Haneya, 2010; Kiguchi, Tanaka, & Fukuda, 2004). Most research in this domain has focused on using the muscles of the upper arms and shoulders to control the gross orientation and grasp of a low-degree-of-freedom prosthetic device for manipulating objects (Jacobsen & Jerard, 1974). Each measured upper arm muscle is typically mapped directly to one degree of freedom of the prosthetic. For example, tricep contraction could be used for rotation while bicep flexion might close or open the prosthetic. More recently, researchers have begun to look at the potential of using the forearm muscles in hand amputees to control a multi-fingered prosthetic hand. While we know of no fully functional hand prosthetic, this is clearly a promising new area of EMG research. One of the challenges for creating hand prosthetics is that there is not a trivial mapping of individual muscles to finger movements. Instead, many of the same muscles are used for several different fingers (Schieber, 1995)
    corecore