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Abstract: Feature extraction is one of most important step in the control of multifunctional 
prosthesis based on surface electromyography (sEMG) pattern recognition. In this paper, a 
new sEMG feature extraction method based on muscle active region is proposed. This paper 
designs an experiment to classify four hand motions using different features. This 
experiment is used to prove that new features have better classification performance. The 
experimental results show that the new feature, active muscle regions (AMR), has better 
classification performance than other traditional features, mean absolute value (MAV), 
waveform length (WL), zero crossing (ZC) and slope sign changes (SSC). The average 
classification errors of AMR, MAV, WL, ZC and SSC are 13%, 19%, 26%, 24% and 22% 
respectively. The new EMG features are based on the mapping relationship between hand 
movements and forearm active muscle regions. This mapping relationship has been 
confirmed in medicine. We obtain the active muscle regions data from the original EMG 
signal by the new feature extraction algorithm. The results obtained from this algorithm can 
well represent hand motions. On the other hand, the new feature vector size is much smaller 
than other features. The new feature can narrow the computational cost. This prove the AMR 
can improve sEMG pattern recognition accuracy rate. 
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1. Introduction 

Using bio-signals for human-robot interface (HRI) is an important method to achieve 
intuitive and friendly human-robot interface [1]. The best-known commercial application is 
hand prostheses, such as i-Limb [2], Cyberhand [3], Yokoi Hand [4], SJT-2 hand [5]. Many 
researchers have researched the control methods of prosthetic hand. In the control algorithm 
aspect, adaptive fuzzy sliding mode control algorithm [6], modified adaptive orthogonal 
matching pursuit algorithm [7] and improved local sparse representation classification 
algorithm [8] are put forward. Many researchers research the multi-fingered dexterous robot 
hand to make the hand prostheses close to the human hand. For example, optimal grasp 
planning of multi-fingered robotic hands [9], hand gesture recognition based on convolution 
neural network [10], gesture recognition based on binocular vision [11] and hand motions 



recognition based on kinect and sEMG signal fusion, mobile networks and applications [12]. 
The surface electromyography (sEMG) signal is a biological signal that is collected on the 
surface of the skin. The muscle control information of central nervous system (CNS) includes 
sEMG. It can be used to control electrical powered prostheses [13]. 

In recent years, hand motions recognition based on sEMG is an important way to control 
hand prosthetic devices [14], human-assisting manipulators [15,16]. Generally, the sEMG 
signal contains a lot of information about body movement and muscle state. [17]. Pattern 
recognition algorithms were introduced to discriminate the sEMG signals of different hand 
motions. Therefore, this method can provide human hand movement control for prosthetic 
hands [18]. Figure 1 shows the basic flow of sEMG pattern recognition. Distinct and repeatable 
patterns extracted from sEMG contribute to a successful application of pattern recognition 
methods. There has been an increase in both the quantity and quality of identifiable motions 
[19]. 

  
Figure 1. sEMG pattern recognition flow chart 

The three main modules composing a pattern recognition method is data segmentation, 
feature extraction and classification [20]. Data segmentation divide sEMG data stream into 
segments of same window length. Feature extraction extract the most representative features 
of the signals to be classified. Classification classify samples into predefined categories 
according to their features and classification criteria. The first step mainly depends on the 
experience of the experimenter. As shown in Fig.1, in pattern recognition, feature extraction is 
the most important step to improve the recognition accuracy rate [21]. 

Therefore, many researchers have begun to study the features of the sEMG signals, such 
as time domain features [22], time-frequency features [23] and high order statistics [24]. 
Autoregressive model analysis is also a common method to get signal feature [25]. As a new 
feature, the feature DRMS, median frequency (MDF) and mean frequency (MNF) have been 
proposed in recent years [26,27]. However, the performances of these features were weak [28]. 
Some researchers began to study some new features which are not part of time domain and 
frequency domain, such as nonlinear properties [29] and fractal features [30,31]. In addition, 
multiple features are studied or evaluated to improve the hand motion classification accuracy. 
[32,33]. 

This paper focus on proposing a new feature extraction method for improving sEMG 
classification. This new feature is based on active muscle patterns for dynamic hand motions. 
We prove the mapping relationship between the active muscle areas and the hand motions 
based on previous research. sEMG can evaluate and record the degree of muscle activity and 
also can quantify the contraction of the muscles [1]. This paper chooses sEMG to measure the 
intensity of muscle activity. Firstly, we divide the forearm skin surface and mark the number. 
This paper extract more active muscle regions during hand motions. We get new feature 
through muscle active regions.  

sEMG time domain features have been proved to have good performance in hand gesture 
recognition. [21]. This paper compares the new feature with several traditional time domain 
features, such as ZC (Zero Crossing counts) [34], SSC (Slope Sign Changes) [35] and WL 
(Waveform Length) [36]. The experimental result shows that this new feature can improve the 
accuracy of different hand motions classification based on sEMG. At the same time, the data 
quantity of the new feature is much smaller than the traditional one. The new features can 
reduce the computation cost and computation time of pattern recognition methods. The new 
method mentioned in this paper helps to realize the friendly human-machine interaction 



between intelligent prosthetic hand and user. It also helps to realize the real-time and accurate 
control of prosthetic hand. 

The rest of this paper is organized as follows. Section 2 describe the experimental data 
collection methods and feature extraction methods. Section 3 analysis experimental results. 
Section 4 draws the conclusion, gives the discussion of future work. 

2. Methods 

2.1. sEMG signals collection 

Nine subjects were involved in the experiment. All of them were healthy able-bodied 
subjects, without any prior neuromuscular disorders (eight males and one female, aged 20–30, 
denoted as P1 to P9). 

sEMG is usually collected by one or more electrodes were placed on the skin surface [37]. 
Electrode shift and electrode distribution will obviously affect the recognition accuracy of the 
hand motion [38,39,40]. Experiments use a 16-channel electrode sleeve to collect experimental 
data. Wet/dry electrodes can collect sEMG signals [41]. In this paper the electrodes are 
modified from standard disposable Ag/AgCl ECG electrodes by gel removing means. Elastic 
fabrics are used to fix electrodes in advance. This method can reduce the time and position 
error of arranging electrodes. To obtain better skin impedance, the subjects must use alcohol to 
wash the forearm skin before the experiment [26]. In this paper, sEMG signal sampling 
frequency is set to 1 kHz, which is twice higher than the maximum frequency of sEMG signals 
and conforms to the nyquist sampling theorem. 

Electrode sleeve is worn in the subject's right hand to collect data. Subjects use the ulna as 
a reference to wear the 16-channel electrode sleeve. The ulnar coincides with the midline of the 
connection of electrode 8 and electrode 16 and the connection of electrode 1 and electrode 9. 
Sleeve wear position is shown in Figure 2.  

 
Figure 2. The reference position to wearing the 16-channel electrode sleeve 

Each subject wears the electrode sleeve for about 2 minutes. This operation can make the 
electrode fully contact with the skin to reduce signal noise. The experiment collects the sEMG 
signals of 4 different hand motions of each subject. The four motions were fist firstly and then 
turn left wrist, turn right wrist, turn the wrist up and down the wrist. Experimental motions 



are shown in Figure 3. The subjects repeated each action 12 times. The experimenter needs to 
complete the hand motions within 3 seconds. 

 
Figure 3. The experimental motions 

The sEMG collector comes with a 50HZ comb filter and a 20HZ high-pass butter worth 
filter [42]. It could filter out most of the common noise and the dry electrode on the sleeve is 
uniformly distributed on the forearm [43]. The original sEMG signals are filtered skin surface 
voltage. The subject's experimental motions are completed in 3 seconds. Each action window 
contains 2 seconds of rest time and 1 second of action time. The experimental process is shown 
in Figure 4. The captured sEMG signal consists of four phases: The relax state of a hand, the 
dynamic procedure for forming a hand motion, the steady state for maintaining a hand motion 
and the dynamic procedure for releasing a hand motion [44,45]. In order to avoid the influence 
of redundant signals, this paper intercepts the action signal with a window size of 1 second. 
This paper collected 432 hand motion signals. 

	
Figure 4. The experimental process 



2.2. Feature extraction 

The collected data with 16 channels are put into a buffer under a customized format. Once 
the buffer is full, a data parcel would be copied to a special buffer in the USB unit and 
prepared to be read by the USB host in a PC. 

sEMG can evaluate and record the degree of muscle activity and also can quantify the 
contraction of the muscles. Different actions are done by different muscles. The contractions of 
the major active muscles are significantly higher than others. The degree of muscle contraction 
is positively correlated with the intensity of sEMG signal. Different muscles are distributed in 
different regions of the forearm. Subject motions and muscle active areas would show 
mapping relations. 

This paper chooses mean absolute value (MAV) to measure the intensity of sEMG signal. 
Mean absolute value (MAV) is calculated for each hand motion signals. MAV is the average 
rectified value (ARV) and the moving average of full-wave rectified sEMG can be used to 
calculate it. It is defined as (1). where N represents the length of the signal and nx  represents 

the EMG signal in a segment [46]. 
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The 2-D arrangement of the experimental electrodes are shown in Figure 5, where 17 and 
18 electrodes are ground wire. According to the reference position to wearing the 16-channel 
electrode sleeve, the positional relationship between the muscle and the electrode shown in 
Figure 6. the experimental positional relationship will have a small deviation. 

 
Figure 5. The 2-D arrangement of the experimental electrodes (17 and 18 electrodes are ground wire) 



 
Figure 6. Positional relationship between the muscle and the electrode 

According to this positional relationship and the distribution of signal intensity, this 
paper combines image technology to build a muscle activity visualization system. This system 
is based on the position relationship between the location of muscle and electrodes, and the 
mapping between the H value in HSV color space and the intensity of EMG signal. Different 
colors represent different intensity of muscle activity. This system can display the muscles 
active level in different hand motions. For example, the corresponding muscle activity of two 
different hand motions is shown in Figure 7. 

 
Figure 7. Muscle activity of two different hand motions (Color represents the degree of muscle activity) 
According to the results of Figure 7, when the hands do different movements, different 

muscles show different degrees of activity. Based on the above analysis, the forearm surface is 
divided into 16 regions. Each region uses an electrode to measure muscle activity level. This 
paper uses the Mean Absolute Value (MAV) to quantify the muscle activity level. This paper 
equally divides the 1s complete motion signal into 5 sections. Each section contains a 200ms 
motion signal which has been widely accepted to signal acquisition systems [47,48]. This paper 
calculates the MAV of each channel for each signal. The calculation is a set of 16 elements. 
Each element is a two-dimensional coordinate. This set is shown in (2). x  is the number of 
muscle region. y  is the Mean Absolute Value (MAV) of the corresponding region. 2M  is a 

set of y , this set is shown in (3). 3M  and 4M  are subsets of 2M . If 2M , 3M  and 4M  



satisfies the conditions in (4) and (5), the result of 3M  is output. The 3M  is shown in (6). 

According to 3M  and 1M , the results of 5M  can be obtained. The 5M  is shown in (7). 

Vector V  can be obtained from 5M , which is defined as (8). 
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The new feature is named Active Muscle Region (AMR). The window length determines 
how many samples will be used to generate one decision. Here we compared the window 
length from 50ms to 400ms for offline evaluation and the result is shown in Figure 8. The trend 
is easily observed that larger window length contributes to better recognition accuracy. 
However, there exists a tradeoff between delay and recognition accuracy. It has been reported 
that a delay of more than 300ms is perceivable to prosthetic users. Based on the above reasons, 
sEMG features were extract by a moving window algorithm of 1000-ms time window with 
200-ms increase window. This algorithm was trying to smooth sEMG signals and avoid edge 
effects [49]. As shown in Figure 9. A hand motion signal is calculated to get 5 sets. This paper 
uses the 20 elements in the set to get a vector. Therefore a 20 (1×20) dimensional feature vector 
for each frame of sEMG signals is obtained. 

 
Figure 8. The effect of segmented window length on recognition error rate 



 
Figure 9. 1000-ms time windows and 200-ms increase window 

2.3. Performance evaluation 

This paper compares this new kind of feature with other four time-domain features to 
prove the effectiveness of the proposed method. The traditional feature set contains mean 
absolute value (MAV), waveform length (WL), zero crossing (ZC) and slope sign changes 
(SSC). 

Waveform length (WL) is the cumulative length of the waveform over the time segment 
[36]. WL is related to the waveform amplitude, frequency and time. Where N represents the 
length of the signal and nX  represents the EMG signal in a segment. It is given by (9). 
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Zero crossing (ZC) is the number of times that the amplitude value of EMG signal crosses 
the zero y-axis [34]. This feature provides an approximate estimation of frequency domain 
properties. Where N represents the length of the signal and nX  represents the EMG signal in 

a segment. It can be formulated as (10). 
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Slope Sign Change (SSC) is similar to ZC and another method to represent the frequency 
information of EMG signal [35]. The number of changes between positive and negative slope 
among three consecutive segments are performed with the threshold function for avoiding the 
interference in EMG signal. Where N represents the length of the signal and nX  represents 

the EMG signal in a segment. It is defined as (11). 
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In terms of classifiers, many researchers proposed and applied lots of methodologies to 
process and discriminate sEMG signals, including Neural Networks [50,51,52] such as Radial 
Basis Function Artificial Neural Network [53], statistic approaches such as Hidden Markov 
Models (HMMs) [54] and Gaussian Mixture Models (GMMs) [50,55], and fuzzy methods 
[56,57,58]. The support vector machine (SVM) is adopted to classify the hand motions classes 
[59]. SVM is the most widely used and the most comprehensive classifier [60,62,63]. It has 
equivalent performance comparing to other complex classifiers while needs less computing 
time. This paper uses the LIBSVM software package. LIBSVM is a simple, easy-to-use, fast and 
effective SVM pattern recognition and regression software package developed by Professor 
Lin Chih-Jen of Taiwan University. He not only provides compiled executable files that can be 
used in Windows system, but also provides source code, which is convenient for 
improvement, modification and application in other operating systems. The software has 
relatively few adjustments to the parameters involved in SVM, and provides many default 
parameters, which can solve many problems. It also provides the function of cross validation. 
When SVM is used in pattern recognition or regression, there is no unified model for SVM 
method and its parameters, kernel functions and their parameters. Optimal SVM algorithm 
parameter selection can only rely on experience, experimental comparison, a wide range of 
search or the use of software packages to provide interactive checking function for 
optimization. 

In this paper, the kernel function of SVM is radial basis function (RBF). RBF is a scalar 
function along the radial symmetry. It is usually defined as a monotone function of Euclidean 
distance between x of any point in space and xc of a center. It can be represented as k(‖x-xc‖). 
The most commonly used radial basis function is the Gauss kernel function [64,65,66]. It can be 
represented as k(‖x-xc‖) = exp{-‖x-xc‖^2/((2*σ)^2)}. xc is the center of the kernel function, and 
σ is the width parameter of the function, which controls the radial action range of the function 
[67,68,69]. If x and xc are very close, then the kernel function value is 1. If the difference 
between x and xc is very large, then the kernel function value is about 0. Because this function 
is similar to the Gauss distribution, it is called the Gauss kernel function, also known as radial 
basis function (RBF). It can map the original features to infinite dimensions [70,71,72]. Based 
on the above advantages of RBF, this paper chooses it as the kernel function of SVM. 

Half of the trials data are used as training data to construct the classifier and the other half 
are used as testing data. This papers each feature 12 times [73,74]. On the other hand, this 
paper tests the average classification errors of specific motion classes among five sEMG 
features, AMR, MAV, SSC, ZC and WL. This paper uses SVM classifier test five different 
features (AMR, MAV, SSC, ZC and WL). Their performance is compared to test whether the 
proposed new feature extraction method can improve the classification accuracy rate of hand 
motions based on sEMG. 

3. Results 

Figure 10 shows the classification errors over 12 tests by using the five sEMG features. For 
every test, the AMR obtains the lowest classification error. In addition, the difference of 
classification error among the tests is stable. This result proves that the training data and 
testing data are reasonable. At the same time, the results of the experiment are reliable. The 
average classification errors of AMR, MAV, SSC, ZC and WL across 12 tests are 13%, 19%, 
26%, 24%, 22% respectively as showed in Figure 11 The result shows the classification error of 
AMR is lower than other traditional features. 



 
Figure 10. Classification errors over 12 tests by use the five sEMG features 

 
Figure 11. Average classification errors 

Figure 12 shows the average classification errors rate of each feature to each hand motion. 
Comparing with other features, the classification error rate of each motion class of AMR is 
lower. The feature vector size of AMR is 1×20. The other time domain feature vector size is 
1×90. AMR can be directly input into the classifier for hand motion classification. The other 
time domain feature vector need to be normalized firstly. This paper extracts a kind of simple 
and effective hand motion feature in sEMG signal. This is a nonlinear feature. Compared with 
the time domain characteristics, this feature has better robustness to various noises. 

 
Figure 12. Average classification errors of each feature to each hand motion 

 
 



4. CONCLUSION AND DISCUSSION 

In this study, a new sEMG feature extraction method is proposed. The new feature, active 
muscle region (AMR), obtains the lowest classification error (average 13%) when the support 
vector machine (SVM) is used to compare with other four tradition sEMG feature (average 
19%, 26%, 24% and 22%). While the new feature improves the accuracy of recognition, the new 
feature vector size is much smaller than other features. This proves that this feature removes 
redundant information in traditional features. The feature can be directly input into the 
classifier for hand motion classification. The other time domain feature vector needs to be 
normalized firstly. Based on the above two reasons, the new features can reduce the 
computation cost and computation time of pattern recognition methods. 

In conclusion, the new sEMG feature extraction method is effective and suitable for the 
sEMG pattern recognition. The new EMG features are based on the mapping relationship 
between hand movements and forearm muscle activities. This mapping relationship has been 
confirmed in medicine. We obtain the active muscle position data from the original EMG 
signal by the new feature extraction algorithm. The results obtained from this algorithm can 
well represent hand motions. Future research will use more subjects and more hand motions 
for data collection and validation. Therefore, more efforts should be used this new feature to 
establish a real-time hand motion recognition system with machine learning methods. If the 
high-density electrode is introduced into the experiment, a better classification result is 
expected. High density electrodes can make fine division of skin surface region. The feature 
extraction method combined with high density electrode is used to get the active muscle 
region cloud map. Future, we can use the active muscle region cloud map characterizes hand 
motions. Finally, we hope to realize the real-time control of prosthetic hand based on EMG by 
optimizing the algorithm. 
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