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Abstract—Electromyographic (EMG) signal is the electrical
manifestation of a muscle contraction. Surface EMG signal can
be obtained by electrodes on the skin to control prosthetic hand.
However, surface EMG is sensitive to environmental interference,
which leads to a low motion recognition rate of prosthesis control
when encountering unexpected interferences, like electrodes shift.
Electrodes shift occurs particularly in the day-to-day use of
wearing electrodes. As a reslut, a long-term training procedure
is necessary. To solve this problem, this paper proposes a new
sEMG electrodes configuration to reduce the interference caused
by electrodes shift. Experiments are designed to verify the
improvements through evaluating the classification accuracy of
discriminating eleven hand motions by pattern recognition ap-
proach. The comparison results show that the proposed electrodes
configuration increases the pattern recognition rate by 4% and
8% when applied kNN and LDA classifier, respectively. This
paper suggests that optimising electrodes configuration is able
to improve the EMG pattern discrimination and the proposed
electrodes configuration has reference value.

Index Terms—Surface EMG, Electrodes Shift, Prosthesis,
Hand Motion, Pattern Recognition

I. INTRODUCTION

A myoelectric signal, or electromyogram (EMG), is the
electrical manifestation of a muscle contraction[1]. In detail,
the EMG signal is the summation of the action potentials
discharged by the active muscle fibers in the proximity of the
recording electrodes[1]. One promising application of EMG
is prosthetic extremes control, since EMG signals captured
from the arm of patients are originally the control signals of
the human hand. Therefore, EMG may supply a natural and
intuitive approach to help amputees to control prosthetic hand.
Researches on EMG based prosthetic extremes control can be
found in [2], [3], [4]. In addition, a variety of myoelectric
prosthetic hands have been appeared in the market recent years,
like BeBionic3 (Steeper ltd., UK), i-limb ultra (Touch Bionics,
Uk), and Michelangelo[5].

EMG signal is generally divided into two groups: surface
EMG (sEMG) and needle EMG (also be known as intramuscu-
lar EMG or internal EMG). Needle EMG is of high selectivity,
and is less representative of the global muscle activity and thus
may provide precise control signal[6]. However, needle EMG
is invasive, thus few researchers apply needle EMG signal for
prosthetic hand control. Surface EMG, a technique by which
muscle activation potentials are gathered by electrodes placed
on the patients forearm skin; these potentials can be used to

track which muscles the patient is willing to activate, and with
what force[7]. In principle, sEMG is a cheap and easy way
of detecting what the patient wants the prosthesis to do [7].
Although needle EMG have less muscular crosstalk allowing
for more independent control sites, the results show that there
is no significant difference in classification accuracy in wrist
and grip movements[8].

EMG signal is non-stationary[9] and easy to be contami-
nated by a wide variety of factors, not only including equip-
ments inherent noise, ambient noises and motion artefacts, but
also physiological and anatomical properties[10], which would
lead to the changes in EMG patterns for prosthetic control.
Therefore, advanced signal processing technology should be
considered to deal with the variability of EMG signal. In-
terpreted by [8], there are two major approaches that can be
pursued to increase the accuracy of prosthetic controllers: 1)
use signal processing to extract more information from the
input signals; or 2) provide more informative raw signals to
the controller.

The placement of sEMG electrodes is a critical issue for
the successful identification of EMG patterns. Generally, the
configuration of surface electrodes falls into three groups: 1)
Traditional configuration, which requires to pinpoint muscles
and adhere pairs of electrodes on the belly of them. The
process of identification is highly inefficient and inconvenient
because users typically have no knowledge about muscle
distribution[11]. Besides, the recognition accuracy is highly
depends on the precise electrodes placement. 2) Low-Density
surface electrode layout[12], [13], which arranges electrodes
evenly on the skin[14], [11]. When apply LD electrode con-
figuration on the arm to identify hand motion, the electrodes
usually form a ring or belt structure with more than two EMG
channels. In this approach, user is regardless of the muscle
anatomy. 3) Hight-Density surface electrodes layout is the
enhanced version of the LD one with much higher electrodes
density. The interval-electrode distance is designed less than
10 mm to avoid the influence on the EMG pattern caused by
the inherent spatial filter. However, the coverage area on the
skin is limited due to the small interval-distance. Besides, the
application field of HD-sEMG is mostly in single motor units
activities analysis [15], [16], [17], which is far from the topic
of prosthetic hand control.

Low-Density surface electrode layout would be the trade-
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off to capture sEMG signal for myoelectric control, which
eliminates the process of muscle identification and owns
less electrodes and cover more area than HD-EMG. Atzori
, etc.,[18] show that, to extract discriminable patterns from
EMG signal, precise placement of electrodes on specific mus-
cles (traditional electrodes layout) is not required. Castellini
, etc., [19] demonstrated that the same uniform electrode
positioning strategy (Low-density electrodes layout) works fine
for all tested subjects, notwithstanding their diversity. Several
papers [13], [20], [21], [22], [23] make the same conclusion
that the classification accuracies improve with an increased
number of electrodes to a certain point at which increases in
classification accuracy start to diminish with more electrodes.
But the specific turn point of the electrodes number varies
with different electrode layout. In healthy subjects, reducing
the number of electrodes to eight did not affect accuracy
significantly when those electrodes were optimally placed,
but did reduce accuracy significantly when those electrodes
were distributed evenly[9], [22]. In the amputee subjects,
reducing the number of electrodes up to a certain point did not
affect classification accuracy or the number of tasks with high
accuracy, independent of whether those remaining electrodes
were evenly distributed or optimally placed[22].

Recent years have witnessed the fast development of dexter-
ous multiple degrees-of-freedom (DoF) and sensory equipped
prosthetic hands by researchers and manufacturers [24], [25],
[26]. As efforts in the development of prosthetic hands with
high dexterity come to fruition, it will be necessary for the
appropriate control systems to follow suit [27]. Although
modern prosthetic hands such as I-Limb(Touchbionics, USA)
have the provision of controlling individual fingers, the user
interface is still hardly to control individual fingers[28]. To
ensure a massive clinical evaluation and their commercial
exploitation, the prosthetic hands should be capable of a robust,
reliable, and intuitive control interface, allowing dexterous
control [29], [30]. However, the communication interface be-
tween the user and the machine is the technological bottle-neck
which explains why current hand prostheses are very simple
from a biomechanics point of view, even if more sophisticated
solutions would be possible[31]. For most commercial myo-
prosthetic hands, two pairs of EMG electrodes are usually
adopted due to the practical factors, like lower cost and weight
and space limitations[32], lower power consumption[20].

It is a trend to control prosthesis using pattern recognition
technology, which has the potential to provide better, more
reliable control signals. However, proper training is essential.
Simon, etc., [33] classify the procedure of training into four
stages: conceptual training stage, control training stage, func-
tional use training stage and prosthesis recalibration training
stage, of which prosthesis recalibration training involves teach-
ing the individual how to retain functional use of their pattern
recognitioncontrolled prosthesis if control degrades during
daily use. Differences in prosthesis donning, environmental
changes, muscle fatigue, and electrode problems can all occur
during day-to-day use. Prompting the individual to move the
prosthesis throughout its full range of motion after donning

Fig. 1. This figure shows the expanded view of electrodes configuration that
proposed in this paper, named zig Configuration. Blue solid circules labelled
from 1 to 16 stand for sEMG electrodes. The red triangle indicates a bipolar
sEMG channel connecting two neighbour electrodes connected by dot lines.
Electrode Ref1 and Ref2 are the reference electrodes. The dark background
indicate the elastic fabric where all the electrodes are fixed on it in advance.

will allow him or her to test their control and determine if re-
calibration is necessary[33]. The long-time training procedure
has become one of the main reasons leading to high rejection
rate of wearing prosthetic hand[34].

To reduce the training time, several approaches can be
attempted: 1) developing robust sEMG features that can satisfy
long-term use [10], 2) implement on-line training and recog-
nition methods[35], [36] and 3) development of robust sEMG
acquisition system that is able to compensate the fault caused
by different prosthesis donning. It is the third way that this
paper considers. In the premise of using the same number of
electrodes, this paper proposes a new electrodes configuration
than can enhance the robustness of system, especially when
existing electrode shift.

II. MATERIAL AND METHODS

A. Apparatus

To measure the surface EMG signal on the forearm, a 16
channel sEMG acquisition system is employed[37]. Based on
the acquisition system, two types of electrodes configuration
are designed in this paper, as seen in Fig.1 and Fig.2. Zig
configuration is the new one proposed in this paper, and
parallel configurations are widely applied in LD electrodes
configuration.

Comparing with traditional surface EMG technology that
needs to stick pairs of electrodes on interested muscles, both
configuration of electrodes used in this paper ignore the muscle
positions. In healthy people, 11 muscles control motionos
of each finger and the wrist in anatomy. They are Extensor
Carpi Uinaris (ECU), Extensor Digitorum (ED), Extensor
Carpi Radiails Brevis(ECRB), Extensor Digiti Minimi (EDM),
Flexor Carpi Ulnaris (FCU), Flexor Digitorum Profundus



Fig. 2. This figure shows the expanded view of electrodes configuration
in traditional sEMG configuration, named parallel configuration. Blue solid
circles labelled from 1 to 16 stand for sEMG electrodes. The red triangle
indicates a bipolar sEMG channel connecting two neighbour electrodes
connected by dot lines. Electrode Ref1 and Ref2 are the reference electrodes.
The dark background indicate the elastic fabric where all the electrodes are
fixed on it in advance.

(FDP), Abductor Pollicis Longus (APL), Extensor Pollicis
Brevis (EPB), Extensor Pollicis Longus (EPL) and Extensor
Indicis (EE). The distribution of these muscles are complex.
Some muscles are near to the skin, thus the surface EMG
signals from them are stronger than those the signals stemming
from the muscles inside of the forearm. Therefore, it is not
possible to pinpoint all the muscle and put corresponding EMG
electrodes on them. Furthermore, crosstalk is a considerable
issue in traditional sEMG technology as reported in [38]. To
resolve these problems, a more general strategy is proposed
by using a specific electrodes configuration, which takes all
muscles as the sources for each EMG channel, seen in Equation
1.

Ej =
11∑

i=1

aijSi j = 1 · · · 16, (1)

where Ej is the EMG signal measured from channel j, Si

indicates the clean EMG signal of the ith muscle and aij are
the coefficients that demonstrate its weight to Ej from muscle
i. Fig. 3 shows that the multi-channel EMG signal stems from
multi-muscle sources.

In this paper, the EMG signal amplifier factor is 5000 and
the signal is filtered by a band pass filter from 20 Hz to 500
Hz, and meanwhile 50 Hz power-line noise is suppressed by a
notch filter in hardware. The sampling frequency is 1 kHz and
the ADC resolution is 12 bits. The EMG device is connected
to a PC that installed Windows XP operating system via USB
port, and a custom designed software is used to save the
sEMG data. To remove the power-line noise and its harmonic
component further, a comb filter is enabled in the software.

Fig. 3. This figure demonstrates that the muscle sources of EMG signals
measured by 16 channels.

B. Subjects

Two right-handed university staff served as subjects. [sub-
ject 1, age: 41, mass: 72 kg, height: 174 cm][subject 2, age: 28,
mass: 62 kg, height: 170 cm]. The subjects had no previous
history of neuropathies or traumas to the upper limbs. This
project is approved by the ethic institution of University of
Portsmouth.

C. Data Collection

Ten hand motions are designed for sEMG data collection,
as seen in Fig.4. Six groups of motions were collected for
each subject. Three groups (Group 1, Group 3, Group 5) were
collected by the Zig configuration, seen in 1, and the other
three groups (Group 2, Group 4, Group 6) were collected by
parallel configuration, seen in Fig.2. For each group, ten hand
motions (motion 1 to motion 10) were performed and each
motion repeat 10 times according to the given cue signal. A
repeat also calls a trial. Cue signals for motion starting is at
5 s, 15 s, 25 s, ... 95 s, and Cue sign for motion stopping is
at 10 s, 20 s, 30 s, ... , 100 s. Fig.5 shows one EMG signal
channel in channel one, motion one, group three, subject two.

No pretreatment of the forearm skin is required before the
subjects wear the electrodes sleeve, and no labels is required
on the skin to avoid electrodes shift as did in [9]. Subjects are
required to make sure that the reference electrodes stays on the
upside of the forearm when keeping arm and palm upwards.
After wearing the sleeve with electrodes, another empty sleeve
with no electrodes is used to cover the previous sleeve for the
sake of generating a squeeze to every electrodes towards the
skin. It is suggested to wait for about 10 minutes in order
to reduce the skin to electrodes resistance naturally. During
data collection, the subjects were seated in a chair beside the
experiment desk facing the computer monitor with the elbow
on the armband, seen in Fig. 6.



Fig. 4. This figure shows ten hand motions that are used in this paper for hand motion recognition. 1 Hand-Close, 2 Hand-Open, 3 Wrist-Flexion, 4 Wrist-
Extension, 5 Supination, 6 Pronation, and 7-10 using thumb to touch index finger, middle finger, ring finger and little finger.

Fig. 5. This picture shows the EMG signal in channel one, motion one, group three captured from subject 2. The Start cue and End cue can be found in this
figure and the steady-state, transitory and rest state EMG signal are identified as well.

Fig. 6. It shows the scene of data collection from one subject.

D. Signal processing

The sEMG signals were segmented with a 300 ms window
and 100 ms window shift for feature extraction. A 100 ms
window shift is sufficient for real-time requirement. In this
paper, LgSVM[37] and WL[9] were selected as sEMG feature.
For each motion with 10 trials, only the steady-state signals
were selected for classification. The transitory signals are not
considered in this paper, because a prosthesis would not be able

to respond to transitory signal due to mechanical inertia[39].
The start and end point of steady-state signals are 1 second
after the cue signal of starting a hand motion and 1 second
before the cue signal of the end signal of a hand motion. Some
examples of these regions are [6s, 9s], [16s, 19s], etc. The
sEMG signals of rest was also extracted in the regions of [11s,
14s], [21s,24s] and so forth. Therefore, the sample size of hand
motions in one group is 30 × 10 × 10 (30 sample in one
trial, 10 trials for one motion, 10 motions in total) = 3000.
For Group 1, Group 3 and Group 5, the dimension of one
sample is 16 (16 channels) and for Group 2, Group 4 and
Group 6, the dimension of one sample is 8. Because the dataset
of rest signals are larger than other hand motions, this paper
compresses the sample size of rest equaling to that of one
hand motion through randomly selecting 300 samples. Thus,
there are total 3300 samples with 11 groups (rest included) for
classification for each group. The samples were fed to kNN and
LDA for classification. Using one or two groups for training,
and the rest groups for testing, termed as Cross-Group testing.
The training sample and testing training are from the same
electrodes configuration.

III. RESULTS AND DISCUSSION

The average Inner-group testing results for each group of
both subjects are higher than 99%, seen in table I. The av-
erage classification accuracy of using the proposed electrodes
configuration is 99.65%, and it is 99.49% for the traditional
electrodes configuration. Thus, the recognition accuracies are
very similar for both the electrodes configuration. However,



Fig. 7. Cross-group testing results

the kNN classifier outperforms LDA classifier in the average
accuracies on discriminating hand motions in both subjects.
It may conclude that classifiers play a more important role in
hand motion recognition than electrodes configuration.

The Cross-Group testing results for subject 1 using the pro-
posed electrodes configuration and the traditional configuration
are 0.91/0.94 (kNN/LDA) and 0.87/0.84 (kNN/LDA), respec-
tively. The same results for subject 2 are 0.93/0.92 (kNN/LDA)
and 0.89/0.89 (kNN/LDA), seen in Table II. There exists 4%
(kNN) and 8% (LDA) improvements when using the proposed
electrodes configuration comparing with the traditional one in
subject one. The same figures in subject 2 are 4% and 3%. The
results clearly show that the proposed electrodes configuration
achieves better classification performance than the traditional
one in Cross-Group testing. There are no much difference
in the use of different classifiers. In addition, the variance
of the classification accuracy using the proposed electrodes
configuration is lower than that of using traditional electrodes
configuration,as seen in the bar chart Fig. 7, which also shows
that the proposed configuration is more robust.

IV. CONCLUSION

In the application of sEMG based dexterous prosthesis
manipulation using pattern recognition approaches, electrodes
shift deteriorate the recognition accuracy. To obtain robust
sEMG signal for prosthesis control, this paper pays attention to
electrodes configuration and proposed a novel way to organise
18 electrodes to form 16 sEMG channel, Zig electrodes
configuration. It was compared with the parallel electrodes
configuration using the same numbers of electrodes. The exper-
iment results show that the proposed electrodes configuration
improved the hand motion recognition accuracy by 4% when
using kNN and by 8% when using LDA. Therefore, it suggests
that optimising electrodes configuration is able to improve
the EMG pattern discrimination, and the proposed electrodes
configuration has reference value.
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