18 research outputs found

    Learning-based Ensemble Average Propagator Estimation

    Full text link
    By capturing the anisotropic water diffusion in tissue, diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the tissue microstructure and orientation in the human brain. The diffusion profile can be described by the ensemble average propagator (EAP), which is inferred from observed diffusion signals. However, accurate EAP estimation using the number of diffusion gradients that is clinically practical can be challenging. In this work, we propose a deep learning algorithm for EAP estimation, which is named learning-based ensemble average propagator estimation (LEAPE). The EAP is commonly represented by a basis and its associated coefficients, and here we choose the SHORE basis and design a deep network to estimate the coefficients. The network comprises two cascaded components. The first component is a multiple layer perceptron (MLP) that simultaneously predicts the unknown coefficients. However, typical training loss functions, such as mean squared errors, may not properly represent the geometry of the possibly non-Euclidean space of the coefficients, which in particular causes problems for the extraction of directional information from the EAP. Therefore, to regularize the training, in the second component we compute an auxiliary output of approximated fiber orientation (FO) errors with the aid of a second MLP that is trained separately. We performed experiments using dMRI data that resemble clinically achievable qq-space sampling, and observed promising results compared with the conventional EAP estimation method.Comment: Accepted by MICCAI 201

    Fiber Orientation Estimation Guided by a Deep Network

    Full text link
    Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brain's white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for fiber tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs with a relatively small number of diffusion gradients. However, accurate FO estimation in regions with complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent the diffusion signals. To estimate the mixture fractions of the dictionary atoms (and thus coarse FOs), a deep network is designed specifically for solving the sparse reconstruction problem. Here, the smaller dictionary is used to reduce the computational cost of training. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding dense basis FOs is used and a weighted l1-norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and real dMRI data, and the results demonstrate the benefit of using a deep network for FO estimation.Comment: A shorter version is accepted by MICCAI 201

    Compressive sensing based Q-space resampling for handling fast bulk motion in hardi acquisitions

    Get PDF
    Diffusion-weighted (DW) MRI has become a widely adopted imaging modality to reveal the underlying brain connectivity. Long acquisition times and/or non-cooperative patients increase the chances of motion-related artifacts. Whereas slow bulk motion results in inter-gradient misalignment which can be handled via retrospective motion correction algorithms, fast bulk motion usually affects data during the application of a single diffusion gradient causing signal dropout artifacts. Common practices opt to discard gradients bearing signal attenuation due to the difficulty of their retrospective correction, with the disadvantage to lose full gradients for further processing. Nonetheless, such attenuation might only affect limited number of slices within a gradient volume. Q-space resampling has recently been proposed to recover corrupted slices while saving gradients for subsequent reconstruction. However, few corrupted gradients are implicitly assumed which might not hold in case of scanning unsedated infants or patients in pain. In this paper, we propose to adopt recent advances in compressive sensing based reconstruction of the diffusion orientation distribution functions (ODF) with under sampled measurements to resample corrupted slices. We make use of Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis functions which can analytically model ODF from arbitrary sampled signals. We demonstrate the impact of the proposed resampling strategy compared to state-of-art resampling and gradient exclusion on simulated intra-gradient motion as well as samples from real DWI data

    Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net

    Get PDF
    International audienceDiffusion Magnetic Resonance Imaging (dMRI) is an imaging technique which enables analysis of the brain tissue at a microscopic scale, particularly the analysis of white matter. Given a high enough angular resolution, a common way to explain the measured signal is via fiber orientation distribution function (fODF). This function describes the orientation and volume fraction of axon bundles within each voxel and is an essential ingredient of tractography. In this work, we have investigated a deep learning approach for the fODF estimation. U-nets enable fast and high resolution inference by combining multi-scale features from contracting and expanding parts of the network. As dMRI signals are most commonly acquired on spheres, we propose a spherical U-net which is adjusted to the properties of the dMRI data, namely its real nature, antipodal symmetry, uniform sampling and axial symmetry of the signals corresponding to individual fibers. We compared our model with another deep learning approach based on a 3D convolutional neural network and a state-of-the-art approach-multi-shell multi-tissue constrained spherical deconvolution, on real data from Human Connectome Project and synthetic data generated using ball and stick model. The methods are compared in terms of mean square error and mean angular error for dMRI signals of different angular resolutions. Provided quantitative analyses show improved performance with our approach even with significantly reduced number of parameters and results obtained on synthetic data indicate its robustness with respect to noise. Qualitative results illustrating the performance of the methods are also presented

    Computational Brain Connectivity Mapping: A Core Health and Scientific Challenge

    Get PDF
    International audienceOne third of the burden of all the diseases in Europe is due to problems caused by diseases affecting brain. Although exceptional progress have been obtained for exploring the brain during the past decades, it is still terra-incognita and calls for specific efforts in research to better understand its architecture and functioning. To take up this great challenge of modern science and to solve the limited view of the brain provided just by one imaging modality, this article advocates the idea developed in my research group of a global approach involving new generation of models for brain connectivity mapping and strong interactions between structural and functional connectivities. Capitalizing on the strengths of integrated and complementary non invasive imaging modalities such as diffusion Magnetic Resonance Imaging (dMRI) and Electro & Magneto-Encephalography (EEG & MEG) will contribute to achieve new frontiers for identifying and characterizing structural and functional brain connectivities and to provide a detailed mapping of the brain connectivity, both in space and time. Thus leading to an added clinical value for high impact diseases with new perspectives in computational neuro-imaging and cognitive neuroscience

    Quantification of changes in white matter tract fibers in idiopathic normal pressure hydrocephalus based on diffusion spectrum imaging

    Get PDF
    Purpose: Patients with idiopathic normal pressure hydrocephalus (iNPH) present white-matter abnormalities. The analytical methods described to date only measure mean diffusion parameter alterations of iNPH-specific brain regions or in a certain fasciculus. This study quantitatively analyzed whether iNPH-tract abnormalities are confined to specific sections or involve entire fibers based on diffusion spectrum imaging (DSI). Method: Twenty-two patients with iNPH and 20 normally aging subjects were included. The 18 main tracts in the brain of each subject were extracted, and the diffusion parameters of 100 equidistant nodes on each fiber were calculated to quantitatively evaluate integrity changes in different regions along these tracts. Two diffusion metrics were measured, i.e., general fractional anisotropy (GFA) and fractional anisotropy (FA). Results: Compared to normally aging (P 90%). Most other fasciculi detected presented GFA or FA alterations limited to specific regions. Increased and decreased GFA or FA co-occurred in different sections of the same fibers, including the corticospinal tract and left thalamic radiation posterior in iNPH. Conclusions: Few iNPH fibers presented diffusion abnormalities involving nearly all tracts. Most fiber abnormalities in iNPH were confined to specific areas, and different parts of the same fasciculus showed diverse diffusion alterations in few cases. This DSI-based tract analysis provided detailed information on iNPH white-matter changes

    Microstructural MRI Correlates of Cognitive Impairment in Multiple Sclerosis: The Role of Deep Gray Matter

    Get PDF
    Although cognitive impairment (CI) is frequently observed in people with multiple sclerosis (pwMS), its pathogenesis is still controversial. Conflicting results emerged concerning the role of microstructural gray matter (GM) damage especially when involving the deep GM structures. In this study, we aimed at evaluating whether differences in cortical and deep GM structures between apparently cognitively normal (ACN) and CI pwMS (36 subjects in total) are present, using an extensive set of diffusion MRI (dMRI) indices and conventional morphometry measures. The results revealed increased anisotropy and restriction over several deep GM structures in CI compared with ACN pwMS, while no changes in volume were present in the same areas. Conversely, reduced anisotropy/restriction values were detected in cortical regions, mostly the pericalcarine cortex and precuneus, combined with reduced thickness of the superior frontal gyrus and insula. Most of the dMRI metrics but none of the morphometric indices correlated with the Symbol Digit Modality Test. These results suggest that deep GM microstructural damage can be a strong anatomical substrate of CI in pwMS and might allow identifying pwMS at higher risk of developing CI

    Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and result

    Get PDF
    Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies

    A data-driven approach to optimising the encoding for multi-shell diffusion MRI with application to neonatal imaging

    Get PDF
    Diffusion MRI has the potential to provide important information about the connectivity and microstructure of the human brain during normal and abnormal development, non-invasively and in vivo. Recent developments in MRI hardware and reconstruction methods now permit the acquisition of large amounts of data within relatively short scan times. This makes it possible to acquire more informative multi-shell data, with diffusion-sensitisation applied along many directions over multiple b-value shells. Such schemes are characterised by the number of shells acquired, and the specific b-value and number of directions sampled for each shell. However, there is currently no clear consensus as to how to optimise these parameters. In this work, we propose a means of optimising multi-shell acquisition schemes by estimating the information content of the diffusion MRI signal, and optimising the acquisition parameters for sensitivity to the observed effects, in a manner agnostic to any particular diffusion analysis method that might subsequently be applied to the data. This method was used to design the acquisition scheme for the neonatal diffusion MRI sequence used in the developing Human Connectome Project, which aims to acquire high quality data and make it freely available to the research community. The final protocol selected by the algorithm, and currently in use within the dHCP, consists of 20 b = 0 images and DW images at b = 400, 1000, 2600 s/mm2 with 64, 88, and 128 directions per shell respectively
    corecore