456 research outputs found

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen für mobile Roboter und Multikopter Zuverlässige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein für den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlässlich, Änderungen in der Umgebung und die Unsicherheit bei der Aktionsausführung zu berücksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung für eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen Ansätzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen Fällen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein häufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgeführten Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experimente sowohl in der Simulation als auch mit Robotern durchgeführt. Der erste Teil dieser Dissertation behandelt Planungsmethoden für mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung für die lokale Multiresolutionsplanung ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleistung verfügen. Durch die Reduktion der Planungskomplexität mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die Planungskomplexität zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgeführt. Die Granularität der resultierenden Pläne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie für Multikopter entwickelt, von Missionsplanern für verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Beschleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfreiheit und Länge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berücksichtigung von Sensorcharakteristika. Ergänzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der künstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nähernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von Gebäuden und Schornsteinen sowie die automatisierte Inventur von Lägern

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 6, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory, edited by Gregory Long and Alok Gupta

    A review on robot motion planning approaches

    Get PDF
    The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning has become part and parcel of modern intelligent robotics. In this paper, about 100 research are reviewed and briefly described to identify and classify the amount of the existing work for each motion planning approach. Meanwhile, around 200 research were used to determine the percentage of the application of each approach. The paper includes comparative tables and charts showing the application frequency of each approach in the last 30 years. Finally, some open areas and challenging topics are presented based on the reviewed papers

    Planning Hybrid Driving-Stepping Locomotion for Ground Robots in Challenging Environments

    Get PDF
    Ground robots capable of navigating a wide range of terrains are needed in several domains such as disaster response or planetary exploration. Hybrid driving-stepping locomotion is promising since it combines the complementary strengths of the two locomotion modes. However, suitable platforms require complex kinematic capabilities which need to be considered in corresponding locomotion planning methods. High terrain complexities induce further challenges for the planning problem. We present a search-based hybrid driving-stepping locomotion planning approach for robots which possess a quadrupedal base with legs ending in steerable wheels allowing for omnidirectional driving and stepping. Driving is preferred on sufficiently flat terrain while stepping is considered in the vicinity of obstacles. Steps are handled in a hierarchical manner: while only the connection between suitable footholds is considered during planning, those steps in the resulting path are expanded to detailed motion sequences considering the robot stability. To enable precise locomotion in challenging terrain, the planner takes the individual robot footprint into account. The method is evaluated in simulation and in real-world applications with the robots Momaro and Centauro. The results indicate that the planner provides bounded sub-optimal paths in feasible time. However, the required fine resolution and high-dimensional robot representation result in too large state spaces for more complex scenarios exceeding computation time and memory constraints. To enable the planner to be applicable in those scenarios, the method is extended to incorporate three levels of representation. In the vicinity of the robot, the detailed representation is used to obtain reliable paths for the near future. With increasing distance from the robot, the resolution gets coarser and the degrees of freedom of the robot representation decrease. To compensate this loss of information, those representations are enriched with additional semantics increasing the scene understanding. We further present how the most abstract representation can be used to generate an informed heuristic. Evaluation shows that planning is accelerated by multiple orders of magnitude with comparable result quality. However, manually designing the additional representations and tuning the corresponding cost functions requires a high effort. Therefore, we present a method to support the generation of an abstract representation through a convolutional neural network (CNN). While a low-dimensional, coarse robot representation and corresponding action set can be easily defined, a CNN is trained on artificially generated data to represent the abstract cost function. Subsequently, the abstract representation can be used to generate a similar informed heuristic, as described above. The CNN evaluation on multiple data sets indicates that the learned cost function generalizes well to realworld scenes and that the abstraction quality outperforms the manually tuned approach. Applied to hybrid driving-stepping locomotion planning, the heuristic achieves similar performance while design and tuning efforts are minimized. Since a learning-based method turned out to be beneficial to support the search-based planner, we finally investigate if the whole planning problem can be solved by a learning-based approach. Value Iteration Networks (VINs) are known to show good generalizability and goal-directed behavior, while being limited to small state spaces. Inspired by the above-described results, we extend VINs to incorporate multiple levels of abstraction to represent larger planning problems with suitable state space sizes. Experiments in 2D grid worlds show that this extension enables VINs to solve significantly larger planning tasks. We further apply the method to omnidirectional driving of the Centauro robot in cluttered environments which indicates limitations but also emphasizes the future potential of learning-based planning methods.Planung von Hybrider Fahr-Lauf-Lokomotion für Bodenroboter in Anspruchsvollen Umgebungen Bodenroboter, welche eine Vielzahl von Untergründen überwinden können, werden in vielen Anwendungsgebieten benötigt. Beispielszenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fortbewegung vielversprechend, da sie die sich ergänzenden Stärken der beiden Fortbewegungsarten miteinander vereint. Um dies zu realisieren benötigen entsprechende Roboter allerdings komplexe kinematische Fähigkeiten, welche auch in adäquaten Ansätzen für die Planung dieser Fortbewegung berücksichtigt werden müssen. Anspruchsvolle Umgebungen mit komplexen Untergründen erhöhen dabei zusätzlich die Anforderungen an die Bewegungsplanung. In dieser Arbeit wird ein suchbasierter Ansatz für kombinierte Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Zielplattformen sind vierbeinige Roboter, deren Beine in lenkbaren Rädern enden, so dass sie omnidirektional fahren und laufen können. Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt, während der Planer Laufmanöver in der Nähe von Hindernissen in Erwägung zieht. Schritte werden dabei in einer hierarchischen Art undWeise realisiert: Während des Planens werden nur Verbindungen zwischen geeigneten Auftrittsflächen gesucht. Nur solche Schritte, die im Ergebnispfad enthalten sind, werden anschließend zu detaillierten Bewegungsabläufen verfeinert, welche die Balance des Roboters sicherstellen. Um präzise Fortbewegung in anspruchsvollen Umgebungen zu ermöglichen, betrachtet der Planer die spezifischen Aufstandsflächen der vier Füße. Der Ansatz wurde sowohl in simulierten als auch in realen Tests mit den Robotern Momaro und Centauro evaluiert, wobei der Planer in der Lage war, Lösungspfade von ausreichender Qualität in zulässiger Zeit zu generieren. Allerdings ergeben die benötigte feine Planungsauflösung und die hochdimensionale Roboterrepräsentation große Zustandsräumen. Diese würden für komplexere oder größere Planungsprobleme die zulässige Rechenzeit und den verfügbaren Speicher überschreiten. Damit der Planer auch eben diese komplexeren oder größeren Planungsprobleme handhaben kann, wird eine Erweiterung des Ansatzes beschrieben, welche mehrere Repräsentationslevel mit einbezieht. In unmittelbarer Umgebung des Roboters wird die zuvor beschriebene detaillierte Repräsentation genutzt, um hochwertige Pfade für die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Roboter wird die Auflösung gröber und die Anzahl der Freiheitsgrade in der Roboterrepräsentation sinkt. Um den mit dieser Vergröberung einhergehenden Informationsverlust zu kompensieren, werden diese Repräsentationen mit zusätzlicher Semantik ausgestattet, welche das Szenenverständnis erhöht. Darüber hinaus wird beschrieben, wie die Repräsentation mit dem höchsten Abstraktionsgrad zur Berechnung einer effektiven Heuristik genutzt werden kann. Die Evaluation in Simulationsumgebungen zeigt, dass der Planungsprozess um mehrere Größenordnungen beschleunigt werden kann, während die Ergebnisqualität vergleichbar bleibt. Allerdings sind das manuelle Gestalten der zusätzlichen Repräsentationen und das dazugehörige Parametrisieren der Kostenfunktionen sehr arbeitsintensiv. Um diesen Aufwand zu reduzieren, wird daher eine Methode beschrieben, welche die Gestaltung einer abstrakten Repräsentation durch ein Convolutional Neural Network (CNN) unterstützt. Während eine grobe, niedrigdimensionale Roboterrepräsentation und ein dazugehöriges Aktionsset einfach definiert werden können, wird ein CNN auf künstlich erzeugten Daten trainiert, um die abstrakte Kostenfunktion zu lernen. Anschließend kann die so erzeugte abstrakte Repräsentation genutzt werden, um die bereits zuvor erwähnte effektive Heuristik zu berechnen. In der Evaluation des CNNs auf verschiedenen Datensätzen zeigt sich, dass die gelernte Kostenfunktion auch mit Daten aus realen Umgebungen funktioniert und dass die generelle Ergebnisqualität oberhalb der Ergebnisse mit manuell erzeugten Repräsentationen liegt. Die Anwendnung der Methode zur Planung hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heuristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell erzeugter Repräsentation liefert, während der Aufwand zur Gestaltung und Parametrisierung deutlich verringert wurde. Da sich gezeigt hat, dass eine lernbasierte Methode den klassischen suchbasierten Ansatz effektiv unterstützen kann, wird in dieser Arbeit abschließend untersucht, ob das gesamte Planungsproblem durch eine lernbasierte Methode gelöst werden kann. Value Iteration Networks (VINs) sind in diesem Zusammenhang ein vielversprechender Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsverhalten lernen und das Gelernte auf unbekannte Situationen verallgemeinern können. Allerdings ist ihre bisherige Anwendung auf kleine Zustandsräume begrenzt. Durch die zuvor beschriebenen Ergebnisse motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese auf verschiedenen Abstraktionsleveln planen, um größere Planungsprobleme in Zustandsräumen entsprechender Größe darzustellen. Experimente in 2D-Rasterumgebungen zeigen, dass die beschriebene Methode VINs in die Lage versetzt, deutlich größere Planungsprobleme zu lösen. Darüber hinaus wird die beschriebene Methode benutzt, um omnidirektionale Fahrmanöver für den Centauro-Roboter in anspruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber auch die momentanen, hardware-bedingten Grenzen rein lernbasierter Ansätze sowie ihr zukünftiges Potential aufgezeigt

    Machining-based coverage path planning for automated structural inspection

    Get PDF
    The automation of robotically delivered nondestructive evaluation inspection shares many aims with traditional manufacture machining. This paper presents a new hardware and software system for automated thickness mapping of large-scale areas, with multiple obstacles, by employing computer-aided drawing (CAD)/computer-aided manufacturing (CAM)-inspired path planning to implement control of a novel mobile robotic thickness mapping inspection vehicle. A custom postprocessor provides the necessary translation from CAM numeric code through robotic kinematic control to combine and automate the overall process. The generalized steps to implement this approach for any mobile robotic platform are presented herein and applied, in this instance, to a novel thickness mapping crawler. The inspection capabilities of the system were evaluated on an indoor mock-inspection scenario, within a motion tracking cell, to provide quantitative performance figures for positional accuracy. Multiple thickness defects simulating corrosion features on a steel sample plate were combined with obstacles to be avoided during the inspection. A minimum thickness mapping error of 0.21 mm and a mean path error of 4.41 mm were observed for a 2 m² carbon steel sample of 10-mm nominal thickness. The potential of this automated approach has benefits in terms of repeatability of area coverage, obstacle avoidance, and reduced path overlap, all of which directly lead to increased task efficiency and reduced inspection time of large structural assets

    An informative path planning framework for UAV-based terrain monitoring

    Get PDF
    © 2020, The Author(s). Unmanned aerial vehicles represent a new frontier in a wide range of monitoring and research applications. To fully leverage their potential, a key challenge is planning missions for efficient data acquisition in complex environments. To address this issue, this article introduces a general informative path planning framework for monitoring scenarios using an aerial robot, focusing on problems in which the value of sensor information is unevenly distributed in a target area and unknown a priori. The approach is capable of learning and focusing on regions of interest via adaptation to map either discrete or continuous variables on the terrain using variable-resolution data received from probabilistic sensors. During a mission, the terrain maps built online are used to plan information-rich trajectories in continuous 3-D space by optimizing initial solutions obtained by a coarse grid search. Extensive simulations show that our approach is more efficient than existing methods. We also demonstrate its real-time application on a photorealistic mapping scenario using a publicly available dataset and a proof of concept for an agricultural monitoring task
    corecore