13,753 research outputs found

    Cutting a pie is not a piece of cake

    Get PDF
    Is there a division among n players of a cake using n-1 parallel vertical cuts, or of a pie using n radial cuts, that is envy-free (each player thinks he or she receives a largest piece and so does not envy another player) and undominated (there is no other allocation as good for all players and better for at least one)? David Gale first asked this question for pies. We provide complete answers for both cakes and pies. The answers depend on the number of players (two versus three or more players) and whether the players' preferences satisfy certain continuity assumptions. We also give some simple algorithms for cutting a pie when there are two or more players, but these algorithms do not guarantee all the properties one might desire in a division, which makes pie-cutting harder than cake-cutting. We suggest possible applications and conclude with two open questions.Fair division; cake-cutting; pie-cutting; divisible good; envy-freeness; allocative efficiency

    Cutting A Pie Is Not A Piece Of Cake

    Get PDF
    Is there a division among n players of a cake using n-1 parallel vertical cuts, or of a pie using n radial cuts, that is envy-free (each player thinks he or she receives a largest piece and so does not envy another player) and undominated (there is no other allocation as good for all players and better for at least one)? David Gale first asked this question for pies. We provide complete answers for both cakes and pies. The answers depend on the number of players (two versus three or more players) and whether the players' preferences satisfy certain continuity assumptions. We also give some simple algorithms for cutting a pie when there are two or more players, but these algorithms do not guarantee all the properties one might desire in a division, which makes pie-cutting harder than cake-cutting. We suggest possible applications and conclude with two open questions

    Monotonicity and Competitive Equilibrium in Cake-cutting

    Full text link
    We study the monotonicity properties of solutions in the classic problem of fair cake-cutting --- dividing a heterogeneous resource among agents with different preferences. Resource- and population-monotonicity relate to scenarios where the cake, or the number of participants who divide the cake, changes. It is required that the utility of all participants change in the same direction: either all of them are better-off (if there is more to share or fewer to share among) or all are worse-off (if there is less to share or more to share among). We formally introduce these concepts to the cake-cutting problem and examine whether they are satisfied by various common division rules. We prove that the Nash-optimal rule, which maximizes the product of utilities, is resource-monotonic and population-monotonic, in addition to being Pareto-optimal, envy-free and satisfying a strong competitive-equilibrium condition. Moreover, we prove that it is the only rule among a natural family of welfare-maximizing rules that is both proportional and resource-monotonic.Comment: Revised versio

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations

    N-Person cake-cutting: there may be no perfect division

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good, such as land. A perfect division of cake is efficient (also called Pareto-optimal), envy-free, and equitable. We give an example of a cake in which it is impossible to divide it among three players such that these three properties are satisfied, however many cuts are made. It turns out that two of the three properties can be satisfied by a 3-cut and a 4-cut division, which raises the question of whether the 3-cut division, which is not efficient, or the 4-cut division, which is not envy-free, is more desirable (a 2-cut division can at best satisfy either envy-freeness or equitability but not both). We prove that no perfect division exists for an extension of the example for three or more players.Cake-cutting; fair division; efficiency; envy-freeness; equitability; heterogeneous good

    How to cut a pizza fairly: fair division with descreasing marginal evaluations.

    Get PDF
    Existential and constructive solutions to the classic problems of fair division are known for individuals with constant marginal evaluations. By considering nonatomic concave capacities instead of nonatomic probability measures, we extend some of these results to the case of individuals with decreasing marginal evaluations.

    Optimal partitioning of an interval and applications to Sturm-Liouville eigenvalues

    Full text link
    We study the optimal partitioning of a (possibly unbounded) interval of the real line into nn subintervals in order to minimize the maximum of certain set-functions, under rather general assumptions such as continuity, monotonicity, and a Radon-Nikodym property. We prove existence and uniqueness of a solution to this minimax partition problem, showing that the values of the set-functions on the intervals of any optimal partition must coincide. We also investigate the asymptotic distribution of the optimal partitions as nn tends to infinity. Several examples of set-functions fit in this framework, including measures, weighted distances and eigenvalues. We recover, in particular, some classical results of Sturm-Liouville theory: the asymptotic distribution of the zeros of the eigenfunctions, the asymptotics of the eigenvalues, and the celebrated Weyl law on the asymptotics of the counting function

    Two-person cake-cutting: the optimal number of cuts

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods.Cake-cutting; fair division; envy-freeness; adjusted winner; heterogeneous good
    corecore