865 research outputs found

    Sum-of-squares Flight Control Synthesis for Deep-stall Recovery

    Get PDF
    Under review for publication in the Journal of Guidance, Control, and Dynamics.In lieu of extensive Monte-Carlo simulations for flight control verification, sum-of-squares programming techniques provide an algebraic approach to the problem of nonlinear control synthesis and analysis. However, their reliance on polynomial models has hitherto limited the applicability to aeronautical control problems. Taking advantage of recently proposed piecewise polynomial models, this paper revisits sum-of-squares techniques for recovery of an aircraft from deep-stall conditions using a realistic yet tractable aerodynamic model. Local stability analysis of classical controllers is presented as well as synthesis of polynomial feedback laws with the objective of enlarging their nonlinear region of attraction. A newly developed synthesis algorithm for backwards-reachability facilitates the design of recovery control laws, ensuring stable recovery by design. The paper's results motivate future research in aeronautical sum-of-squares applications

    Hybrid Verification for Analog and Mixed-signal Circuits

    Get PDF
    With increasing design complexity and reliability requirements, analog and mixedsignal (AMS) verification manifests itself as a key bottleneck. While formal methods and machine learning have been proposed for AMS verification, these two types of techniques suffer from their own limitations, with the former being specifically limited by scalability and the latter by inherent errors in learning-based models. We present a new direction in AMS verification by proposing a hybrid formal/machinelearning- based verification technique (HFMV) to combine the best of the two worlds. HFMV builds formalism on the top of a machine learning model to verify AMS circuits efficiently while meeting a user-specified confidence level. Guided by formal checks, HFMV intelligently explores the high-dimensional parameter space of a given design by iteratively improving the machine learning model. As a result, it leads to accurate failure prediction in the case of a failing circuit or a reliable pass decision in the case of a good circuit. Our experimental results demonstrate that the proposed HFMV approach is capable of identifying hard-to-find failures which are completely missed by a huge number of random simulation samples while significantly cutting down training sample size and verification cycle time

    Deep Learning for Abstraction, Control and Monitoring of Complex Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) consist of digital devices that interact with some physical components. Their popularity and complexity are growing exponentially, giving birth to new, previously unexplored, safety-critical application domains. As CPS permeate our daily lives, it becomes imperative to reason about their reliability. Formal methods provide rigorous techniques for verification, control and synthesis of safe and reliable CPS. However, these methods do not scale with the complexity of the system, thus their applicability to real-world problems is limited. A promising strategy is to leverage deep learning techniques to tackle the scalability issue of formal methods, transforming unfeasible problems into approximately solvable ones. The approximate models are trained over observations which are solutions of the formal problem. In this thesis, we focus on the following tasks, which are computationally challenging: the modeling and the simulation of a complex stochastic model, the design of a safe and robust control policy for a system acting in a highly uncertain environment and the runtime verification problem under full or partial observability. Our approaches, based on deep learning, are indeed applicable to real-world complex and safety-critical systems acting under strict real-time constraints and in presence of a significant amount of uncertainty.Cyber-Physical Systems (CPS) consist of digital devices that interact with some physical components. Their popularity and complexity are growing exponentially, giving birth to new, previously unexplored, safety-critical application domains. As CPS permeate our daily lives, it becomes imperative to reason about their reliability. Formal methods provide rigorous techniques for verification, control and synthesis of safe and reliable CPS. However, these methods do not scale with the complexity of the system, thus their applicability to real-world problems is limited. A promising strategy is to leverage deep learning techniques to tackle the scalability issue of formal methods, transforming unfeasible problems into approximately solvable ones. The approximate models are trained over observations which are solutions of the formal problem. In this thesis, we focus on the following tasks, which are computationally challenging: the modeling and the simulation of a complex stochastic model, the design of a safe and robust control policy for a system acting in a highly uncertain environment and the runtime verification problem under full or partial observability. Our approaches, based on deep learning, are indeed applicable to real-world complex and safety-critical systems acting under strict real-time constraints and in presence of a significant amount of uncertainty

    Reachability computation for polynomial dynamical systems

    Get PDF
    This paper is concerned with the problem of computing the bounded time reachable set of a polynomial discrete-time dynamical system. The problem is well-known for being difficult when nonlinear systems are considered. In this regard, we propose three reachability methods that differ in the set representation. The proposed algorithms adopt boxes, parallelotopes, and parallelotope bundles to construct flowpipes that contain the actual reachable sets. The latter is a new data structure for the symbolic representation of polytopes. Our methods exploit the Bernstein expansion of polynomials to bound the images of sets. The scalability and precision of the presented methods are analyzed on a number of dynamical systems, in comparison with other existing approaches

    Output feedback sliding mode control for time delay systems

    Get PDF
    This Thesis considers Sliding Mode Control (SMC) for linear systems subjected to uncertainties and delays using output feedback. Delay is a natural phenomenon in many practical systems, the effect of delay can be the potential cause -of performance deterioration or even instability. To achieve better control performance, SMC with output feedback is considered for its inherent robustness feature and practicality for implementation. In highlighting the main results, firstly a novel output feedback SMC design is presented which formulates the problem into Linear Matrix Inequalities (LMIs). The efficiency of the design is compared with the the existing literature in pole assignment. eigenstructure assignment and other LMI methods, which either require more constraints on system structures or are computationally less tractable. For systems with timevarying Slate delay, the method is extended to incorporate the delay effect in the controUer synthesis. Both sliding surface and controller design are formulated as LMI problems. For systems with input/output delays and disturbances. the robustness of SMC is degraded with arbitrarily small delay appearing in the high frequency switching component of the controller. To solve the problem singular perturbation method is used to achieve bounded performance which is proportional to the magnitudes of delay, disturbance and switching gain. The applied research has produced two practical implementation studies. Firstly it relates to the pointing control of an autonomous vehicle subjected to external disturbances and friction resulting from the motion of the vehicle crossing rough terrain. The second implementation concerns the attitude control of a flexible spacecraft with respect to roil, pitch and yaw attitude angles

    Can't Touch This: Real-Time, Safe Motion Planning and Control for Manipulators Under Uncertainty

    Full text link
    Ensuring safe, real-time motion planning in arbitrary environments requires a robotic manipulator to avoid collisions, obey joint limits, and account for uncertainties in the mass and inertia of objects and the robot itself. This paper proposes Autonomous Robust Manipulation via Optimization with Uncertainty-aware Reachability (ARMOUR), a provably-safe, receding-horizon trajectory planner and tracking controller framework for robotic manipulators to address these challenges. ARMOUR first constructs a robust controller that tracks desired trajectories with bounded error despite uncertain dynamics. ARMOUR then uses a novel recursive Newton-Euler method to compute all inputs required to track any trajectory within a continuum of desired trajectories. Finally, ARMOUR over-approximates the swept volume of the manipulator; this enables one to formulate an optimization problem that can be solved in real-time to synthesize provably-safe motions. This paper compares ARMOUR to state of the art methods on a set of challenging manipulation examples in simulation and demonstrates its ability to ensure safety on real hardware in the presence of model uncertainty without sacrificing performance. Project page: https://roahmlab.github.io/armour/.Comment: 20 pages, 6 figure

    Acta Cybernetica : Volume 25. Number 1.

    Get PDF

    Affine Arithmetic Based Methods for Power Systems Analysis Considering Intermittent Sources of Power

    Get PDF
    Intermittent power sources such as wind and solar are increasingly penetrating electrical grids, mainly motivated by global warming concerns and government policies. These intermittent and non-dispatchable sources of power affect the operation and control of the power system because of the uncertainties associated with their output power. Depending on the penetration level of intermittent sources of power, the electric grid may experience considerable changes in power flows and synchronizing torques associated with system stability, because of the variability of the power injections, among several other factors. Thus, adequate and efficient techniques are required to properly analyze the system stability under such uncertainties. A variety of methods are available in the literature to perform power flow, transient, and voltage stability analyses considering uncertainties associated with electrical parameters. Some of these methods are computationally inefficient and require assumptions regarding the probability density functions (pdfs) of the uncertain variables that may be unrealistic in some cases. Thus, this thesis proposes computationally efficient Affine Arithmetic (AA)-based approaches for voltage and transient stability assessment of power systems, considering uncertainties associated with power injections due to intermittent sources of power. In the proposed AA-based methods, the estimation of the output power of the intermittent sources and their associated uncertainty are modeled as intervals, without any need for assumptions regarding pdfs. This is a more desirable characteristic when dealing with intermittent sources of power, since the pdfs of the output power depends on the planning horizon and prediction method, among several other factors. The proposed AA-based approaches take into account the correlations among variables, thus avoiding error explosions attributed to other self-validated techniques such as Interval Arithmetic (IA).4 month
    • …
    corecore