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A cyclic scheduling approach to
maintaining production flow
robustness

Grzegorz Bocewicz1, Izabela Nielsen2, Zbigniew Banaszak1 and
Pawel Majdzik3

Abstract
The organization of flow production, which is typical found in assembly processes, involves a repetitive, fixed-takt time
flow of same-size production batches. The cyclic nature of the production flow, which ensures a steady production
rhythm, enables just-in-time planning and organization of the associated supply chains. Disruptions in the operation of
machinery and equipment, which occur in practice, lead to deviations from nominal operation times. These types of local
disturbances lead to changes in production takt time, making it necessary to adjust previously created schedules for
delivery/reception of materials and products. Assuming that a control action can be taken to adjust transport operation
times within a specified time range, the problem of cyclic scheduling of production flows boils down to seeking condi-
tions the satisfaction of which will guarantee robustness to this kind of disruptions. Satisfaction of robustness conditions
allows a return to the nominal production takt time and appropriate adjustment of the production flow trajectory
(which makes it possible for the system to return to the previously scheduled delivery times). Numerous examples are
included to illustrate the principles of the proposed research methodology aimed at finding solutions for robust schedul-
ing of fixed-takt time production flow.
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Introduction

Cyclic scheduling is known to be one of the most effec-
tive methods of operational planning in transport and
production systems.1 In transport systems, this
approach is predominantly used in areas related to the
transportation of people, including rail transport,
urban transport, intercity bus transport and so on.
Rhythmic delivery, repeated at regular intervals, is also
a feature of systems of cyclic delivery of goods, such as
food products or consumables, to distribution centres.
In production systems, in turn, cyclic schedules play
the role of specific production flow patterns (scenarios)
in steady-state situations (i.e. excluding states associ-
ated with production start-up and shutdown). In this

context, it is also worth highlighting the relationships
that exist between a clock-face schedule or a cyclic
schedule and a timetable, which is a list or a table of
events arranged according to the time when they take
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Corresponding author:

Grzegorz Bocewicz, Faculty of Electronics and Computer Science,

Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin, Poland.

Email: bocewicz@ie.tu.koszalin.pl

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.dox.org/10.1177/1687814017746245
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814017746245&domain=pdf&date_stamp=2018-01-06


place, for example, train departures/arrivals or takt-
based product mix flows.

Cyclic processes are also connected with the concept
of multimodal processes, with the latter being defined
in terms of the former.2–6 Multimodal processes, that
is, processes that use other processes to accomplish
their goals, are commonly found in day-to-day prac-
tice, among others in shop floor transport systems in
discrete production systems, computer networks for
data transmission, power transmission networks, urban
transport systems, digital communication systems and
so on. The best way to get an intuitive understanding
of what a multimodal process is, is to refer to the exam-
ple of passenger transport in a rapid transit (metro)
network. Metro lines (local cyclic processes) connect at
transfer stations to form a transport network that
allows passengers to follow their own itineraries
(routes). A passenger travelling by metro usually uses
several different local lines, and his or her movement
can be interpreted as a multimodal process, that is, a
process that is executed using parts of various different
local processes. The execution of the processes that rep-
resent the behaviour of the individual metro lines, asso-
ciated with concurrently executed local processes,
depends solely on the adopted synchronization
mechanisms that determine access to shared worksta-
tions, such as interchanges. This means that cyclic
behaviour of multimodal processes depends on the cyc-
lic behaviour of the environment in which they are exe-
cuted, that is, the so-called system of local concurrent
cyclic processes (SCCPs).4,6,7

The problems of reachability of cyclic steady states
considered in an SCCP environment fall into the cate-
gory of cyclic scheduling problems, and in particular
the problems associated with planning of concurrent
multimodal processes (of different nature and charac-
ter). As such, they are of vital importance to the perfor-
mance of systems for production, urban transport,
digital communications and so on. Literature provides
a wealth of algorithms for determining optimum opera-
tion schedules dedicated to different work assumptions
and work environments (e.g. timetabling tasks,8 tele-
communications transmissions,9 or production plan-
ning5,6,10–13). Some of the most important cyclic
scheduling problems are optimization problems, such
as the basic cyclic scheduling problem (BCSP)1,14 and
its extensions associated with scheduling in production
job-shops (so-called job-shop problems): the general
cyclic job-shop problem,9 the cyclic flow-shop prob-
lem1,8 and the cyclic open-shop problem.15 With the
exception of BCSP, all the problems listed above
belong to the class of NP-hard problems, which means
their solution requires the use of artificial intelligence
methods for any real-sized problems.1,16

As mentioned above, the cyclic environment of an
SCCP implies that the multimodal processes executed

in it exhibit a cyclic behaviour. By limiting the discus-
sion to discrete manufacturing systems, it is easy to
note that production flows in such systems are a model
example of a multimodal process. Analogies can be
found when one looks at the flow of individual prod-
ucts and/or product batches that are carried by differ-
ent devices across different workstations (machining,
washing, inspection, assembly, etc.). To say that a mul-
timodal process (i.e. a production flow modelled by it)
is a cyclic process is to say that it is a steady-state pro-
cess or more precisely a cyclic steady-state process. It is
worth recalling here that a production system or a pro-
duction flow is in a steady state if the variables which
define the behaviour of the system or the process, that
is, its production takt time and/or cycle period, are
unchanging in time.

The basic organizational tenet of this type of rhyth-
mic production is the concept of cyclic schedules, which
is an indefinitely repeated sequence of operations
(tasks) executed on a set of workstations. In most real
production settings, however, cyclic schedules are dis-
rupted by a variety of different unexpected events. The
occurrence of a disturbance may interrupt system oper-
ation and/or upset the previously established schedule.
Such disruptions are generally difficult to take into
account/anticipate while generating a schedule. Thus, it
is necessary to develop predictive/reactive schedules
which can accommodate disruptions while maintaining
high shop performance.17,18

The disruptions in the operation of machinery and
equipment occurring in practice lead to deviations from
nominal operation times. These local disturbances
change production takt time, making it necessary to
adjust the previously created cyclic schedules.
Assuming that a control action can be taken to adjust
transport operation times within a specified time range,
the problem reduces to seeking conditions which, when
satisfied, will guarantee robustness to disruptions
understood as the ability of the system to return to the
nominal cyclic state. Such conditions guarantee a
return to the nominal cyclic steady state (with a speci-
fied production takt time and cycle period) and appro-
priate adjustment of the production flow trajectory
(allowing a return to scheduled delivery times).

Given the definition of robust predictive/reactive
scheduling as being focused on generating predictive/
reactive schedules oriented towards minimizing the
effects of disruption on schedule performance, our goal
in this study was to investigate robust predictive/reac-
tive scheduling with regard to job-shop scheduling
problems connected with random changes in opera-
tions executed on automated guided vehicles (AGVs)
and/or workstations. Accordingly, in this article, a
robust reactive scheduling method was developed for
solving job-shop cyclic scheduling problems in a
dynamic environment. This method uses an algorithm
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for re-scheduling the affected operations and uses a proce-
dure owing to which the additional idle time is incorpo-
rated into the schedule to accommodate the impact of
unexpected disruptions. The performance of the proposed
scheduling method is then compared with a method based
on the approach presented by Seybold et al.19

The remainder of this article is organized as follows:
section ‘Related work’ provides a brief overview of
related works. Section ‘Cyclic steady states’ reachabil-
ity’ presents the fundamentals of cyclic steady states’
reachability modelling. Section ‘Problem statement’
gives the problem statement and presents a dedicated
declarative model. Section ‘Robust production flow
schedule planning’ addresses the main concept of a cyc-
lic scheduling approach to maintaining production flow
robustness and provides examples illustrating the pro-
posed scheduling method. Finally, section ‘Concluding
remarks’ offers some concluding remarks.

Related work

Numerous papers address the problems of cyclic
(periodic) scheduling in flexible manufacturing. This
approach is recognized as an effective way to process
various manufacturing, computing and transportation
processes, including those where set-up and transporta-
tion times are relevant7,12,15,20,21). The well-recognized
advantages of cyclic scheduling over static (non-cyclic)
scheduling include, in particular, more efficient mate-
rial handling, better station utilization and simpler
shop floor control. Some other examples of multi-AGV
cyclic scheduling have been studied as part of model-
ling frameworks regarding the periodic vehicle routing
problem (VRP), in which delivery routes are con-
structed over a period of time,22,23 including instances
of VRP taking into account constraints imposed by
time windows24 and models of multimodal processes
flow25 as well as multi-cyclic flow shop scheduling,
which is basically an extension of this last type of mod-
els. Multi-cyclic scheduling is a generalization of com-
mon cycle scheduling in which the cycle time for each
product is required to be an integer multiple of the
baseline cycle time.20 It should be noted that a majority
of research in the field focuses either on scheduling
available transport modes so that they can service cus-
tomers in specific time windows or on designing supply
networks while taking into account the size and capac-
ity of the planned fleet as well as the topology and traf-
fic capacity of routes. Relatively few studies are
devoted to frameworks that combine path routing and
AGV fleet scheduling while providing an integrated
and unified approach to the modelling and design of
cyclic production flow schedules that would guarantee
efficient material handling, better workstation utiliza-
tion and simpler shop floor control.12 By reason of the

NP-hard character of considered problems, well-known
approaches following the source range from dynamic
optimization methods26 through declarative models
(based on constraint satisfaction problems – (CSPs))27,28

to heuristic-driven genetic algorithms.23,29

A separate class of cyclic scheduling problems
encompasses instances of production systems in which
data (and, in general, decision variables) are only
known approximately with low accuracy (i.e. their
value is uncertain or fuzzy). The topic of processes flow
planning subject to fuzzy windows time constraints
modelled as a fuzzy CSP is discussed by Bocewicz
et al.5,6), where the approach of the step-by-step com-
position/construction of a multimodal transportation
network built from so-called elementary sub-structures
is proposed. The sub-structures are material handling
systems composed of vehicles which move materials
between machines placed along different modes of cyc-
lic guided routes in a model of system composed of
trains/risers/elevators. The approaches to this class of
problems proposed in literature include the previously
mentioned meta-heuristic-driven evolutionary and con-
straint programming methods. It is worth noting that a
holistic approach allowing interactive prototyping of
alternative solutions30 involves the implementation of a
declarative-modelling-driven method. This approach
that can be seen as continuation of our former works6,31

allows one to treat the above-mentioned scheduling
problem in terms of frequently asked questions: What
schedule of an AGV fleet following a given set of opera-
tion times maximizes operation availability and produc-
tivity? or a reverse way – What set of operation times
can guarantee that the resultant schedule of a given
AGV fleet maximizes both operation availability and
productivity?

Since ‘optimal’ schedules, once deployed, are
affected by irregularities and are far from optimal in
practice, one has to build robustness into the schedule
during the schedule design process.18,32 In this context,
a relatively new aspect of cyclic scheduling research are
robust scheduling problems.18,33,34 The aim of this new
approach is to develop robust solutions capable of
accommodating disruptions during schedule execution.
In this study, robustness is understood as the ability of
a system to resist change without the need to adjust its
initial stable configuration. In this context, a proactive
(robust) schedule is designed to protect a baseline
schedule developed prior to the start of production
flow from disruptions. Reactive scheduling, on the
other hand, refers to procedures that may be used to
revise or re-optimize the baseline schedule when unex-
pected events occur. The focus of this article is a
deadlock-free proactive/reactive cyclic scheduling
approach, which can be used to react to the occurrence
of a variety of disruptions in flexible job-shops in real
time. In general, internal and external disruptions such
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as machine breakdown, process time variation, an
urgent job, arrival of a new job order, or order cancel-
lation are of main interest.

To study robust predictive/reactive scheduling in a
job-shop with random disruptions in AGV and/or
workstation operation time, one first has to choose a
modelling framework for developing robust scheduling
methods. As it is easily seen, the class of discrete pro-
duction systems considered in this article includes struc-
tures comprising transportation robots, workstations
and input and output buffers. Such components are
typical of manufacturing processes belonging to the
class of discrete-event systems (DESs).7 Of course, since
DESs are discrete-state, event-driven systems, their
state evolution depends entirely on the occurrence of
discrete events over time. There are many different
modelling techniques for DESs, such as Petri nets,
extended state machines, event-graphs, formal lan-
guages, generalized semi-Markov processes, non-linear
programming, automata and computer simulation
models (see, for example, studies35–37 and the references
therein). An emerging approach in this area is offered
by the max-plus algebra framework. Max-plus algebra
can be used to model and analyse a production system
within the linear framework,38 allowing, for example,
the use of Petri nets to simulate system behaviour. The
major advantage of this framework is that it eliminates
the need to formulate scheduling problems as non-
linear optimization problems, which is the main draw-
back of the classical algebra framework applied to such
tasks.19

Cyclic steady states’ reachability

Figure 1(a) shows an example of a battery assembly
system19 consisting of five workstations and two indus-
trial trucks (W1 and W2) which travel cyclically along
closed-loop transport routes. Production flow routes
and shop floor transport routes (between workstations)
are marked with red and blue lines, respectively.

From the system in Figure 1(a), it is easy to see that
the material flow in this system can be modelled by the
solution in Figure 1(b), with the long routes travelled
by industrial trucks (across several workstations) in
Figure 1(a) (W1, W2) being replaced by local route
sequences of Figure 1(b) (where the directions of local
routes of the industrial trucks: W1, W2, W3, W4, W5 W6

are the same as the directions of the routes shown in
Figure 1(a)). It is assumed that the corresponding times
of transport between workstations in both versions of
the system are the same and that the reversing times of
the industrial trucks are negligibly short. An approach
like this emphasizes the possibility of using various
local means of transport (e.g. AGVs, robots, con-
veyors) and also takes into account different times of
transport between workstations.

The flow production system considered here, in
which shop floor transport is based on local transport
lines (allowing for the transportation of products along
cyclic routes), can be modelled as a system of concur-
rent cyclic processes (see Figure 2). In this system, work
units move along fixed routes of so-called multimodal
processes (red line –mP01 and mP001), that is, processes
responsible for production flow, whose routes are a
combination of segments of local transport process
routes. In the case considered here (Figure 1(b)), work
units are transported along fixed routes by six self-
propelled industrial trucks, whose operations are mod-
elled as local processes (P1, P2, P3, P4, P5 and P6).

In general, it is assumed that the class of SCCP
includes two types of processes:

� Local processes (representing modes of transport
–P1, P2, P3, P4, P5, P6), whose operations are
cyclically repeated along fixed routes (sequen-
tially used workstations). For the system of
Figure 2, the route of process P1 (process repre-
senting operations of truck W1) has the following
form: p1 =(R6,R8,R1,R9). Local-process routes
are defined in the following way

p2 =(R1,R12,R2,R13),

p3 =(R2,R17,R4,R16), p4 =(R7,R10,R3,R11)

p5 =(R3,R14,R4,R15), p6 =(R4,R18,R19,R4)

where the ith operation (executed on workstation Rk)
of process Pj is designated as oi, j, and ti, j stands for the
time over which this operation is executed.

� Multimodal processes (representing production
flow mP1), whose operations are cyclically car-
ried out along routes that are combinations of
segments of local-process routes. For the system
in Figure 2, the route of multimodal process mP1

consists of two segments

mp1 =(mp01,mp001)

mp01 = (R6,R8,R1), (R1,R12,R2), (R2,R17,R4)ð Þ

mp001 = (R7,R10,R3), (R3,R14,R4), (R4,R18,R5)ð Þ

where the ith operation (executed on workstation Rk) of
multimodal process mPj is designated as moi, j, and mti, j
and mdi, j stand for the times over which it is executed
(where a distinction is made between mti, j, which refers
to transport operations, and mdi, j, which refers to sta-
tion operations).

Operations in processes of this sort are executed on
two types of workstations: process-specific workstations
(each of which is used by only one process of a given
sort –R5 � R19) and shared workstations (each of
which is used by more than one process of a given
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sort –R1 � R4). Workstations represent the individual
elements of the structure of a production system. In the
case considered in this study, R1 � R5 represent work-
stations, R6 � R7 represent input buffers and R8 � R19

correspond to transport sections/paths travelled by
self-propelled trucks.

Local processes use shared workstations in a mutual
exclusion mode, that is, only one process can be per-
formed on a workstation at a given time. Shared local-
process workstations are accessed in the order specified
by priority dispatching rules H. It is assumed that
H= fs1, . . . ,sk , . . . ,slkg, where sk is a sequence
whose elements specify the order in which local pro-
cesses receive access to workstation Rk . For example,
s4 =(P3,P5,P6) means that the order of access to

workstation R4 is process P3 followed by P5 followed
by P6, and over again.

The next operation of a process starts immediately
after the current operation has been completed pro-
vided the workstation required to execute it is available
(it is not occupied and the appropriate priority dis-
patching rules allow access to the workstation). While
waiting for an occupied workstation, the process does
not release the workstation assigned to the previous
operation.4 Moreover, processes are assumed to be
non-preemptive, and the order in which operations are
performed does not depend on external disruptions.
External disruptions may, however, affect workstation
operation times (operations of multimodal processes
on workstations R1 � R5) marked in Figure 2 as mdi, j.

Figure 1. Example of an assembly process19 with (a) a transport subsystem consisting of two industrial trucks and (b) a transport
subsystem consisting of six industrial trucks.

Bocewicz et al. 5



In this approach disruption Z of a system is understood
as a change in the value of one or more workstation
operation times which affects the course of other opera-
tions executed in that system.

The above parameters describing the type and num-
ber of system workstations R (assembly stations, path
sectors) used the local P/multimodal mP processes exe-
cuted in the system (along the given routes p/mp) and
the operations oi,j/moi,j occurring in those processes, as
well as a set of priority dispatching rules H and the val-
ues of operation times make up the structure of an
SCCP. In other words, whenever the expression ‘struc-
ture of an SCCP’ is used in the text, depending on the
context, it will either emphasize the topological features
of the structure of an SCCP (e.g. transport and/or pro-
duction routes) or a combination of values of the para-
meters describing the elements of this structure.
Similarly, the behaviour of an SCCP system will be
understood as a set of its possible responses (sequences
of states and events) activated by potential initial-state
values (initial allocations of processes on workstations).
The various behaviours of an SCCP, corresponding to
the respective sequences of states and events (related to

the execution of system operations), are represented by
cyclic schedules defining the successive.

The different operation times and dispatching rules
for synchronization of access of local transport pro-
cesses to shared production workstations generate dif-
ferent cyclic states of local and multimodal processes,
that is, different cyclic behaviour of an SCCP. Figure 3
shows examples of cyclic schedules for the execution of
local processes in a material handling network
(Figure 3(a)) and multimodal processes in a production
flow network (Figure 3(b)) for the SCCP in Figure 2.
The nominal operation times are shown in Table 1.

The columns of the cyclic schedules shown in
Figure 3 correspond to the states occurring in the
closed-loop trajectories of cyclic steady states. In the
case illustrated in Figure 3, it is assumed that events
(characterizing states) corresponding to the individual
columns of the schedule occur in cycle time; in other
words, it is assumed that all events take place in cycle
time expressed as symbolic units of time (t.u.). In gen-
eral, the number of occurrence of events differs depend-
ing on the operations associated with those events and
are multiples of symbolic time units. This means, in

Figure 2. An SCCP for the system of Figure 1(b).
Source: Adapted from Seybold et al.19
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Figure 3. Operation execution schedules for SCCP from Figure 2 for (a) local processes, (b) multimodal processes and (c) the
space of cyclic steady states reachable in the SCCP.

Bocewicz et al. 7



particular, that a scheduling period calculated in sym-
bolic units of time does not determine the number of
states occurring in the cyclic steady state that models it
(cf. Figure 3(a) and (c)).

It should be noted that the typical parameters char-
acterizing the behaviour of an SCCP, that is, the sys-
tem’s period a and production takt time T, are
governed by the bottlenecks that may occur on over-
loaded workstations or local processes (when transport
time is longer than workstations’ operation time). In
the considered case, the bottleneck is workstation R4.
This workstation, which is dedicated to the ‘mount bat-
tery’ operation, is only made available in periods when
work units are moved between operations (loading
and/or unloading).

The operation execution times for processes of the
SCCP in Figure 2 can change due to a variety of dis-
ruptions Z that can occur in flexible job-shops in real
time. In the general case, internal and external disrup-
tions such as workstation and/or AGV failures, process
time variation, an urgent job, arrival of a new produc-
tion order and order cancellation are considered.

In the case analysed here, however, only internal
disruptions regarding workstation operation times
md1 � md5 and/or external disruptions related to adjust-
ment of transport operation times mt1 � mt6 are taken
into account. Consequently, it is assumed that process
disruptions are reflected in the elements of a cyclic
steady states’ space (and consequently in the corre-
sponding cyclic schedules of admissible production
flows). An example of a space of admissible cyclic
steady states is shown in Figure 4. In general, in a given
SCCP, multiple cycles comprising its steady-state space
(i.e. a space of admissible steady-state behaviours) can
be reachable. Families of admissible cyclic steady-state
spaces (the individual layers shown in Figure 4) are gen-
erated for given instances of SCCP structures –SCi (for
i=b, . . . ,v) – which differ from each other in the val-
ues of the variables mdi, j and mti, j (specified in Table 1–
it is assumed that the priority dispatching rules are
identical).

The successive layers thus correspond to the succes-
sive changes in the structure of the SCCP. In summary,
for each set of potential disruptions, that is, a set of

possible changes in the structure of an SCCP, and, con-
sequently, for each SCCP model associated with it,
there exists an achievable behaviour that is part of a
family of cyclic steady states. The individual cyclic
states comprising a given family correspond to
instances of ordered triples: a set of priority dispatching
rules, initial state and operation execution times. The
initial state is characterized by a vector of pairs govern-
ing the process currently allocated to a workstation and
the next process allocated to the same workstation.

In the adopted model, each disruption Z in produc-
tion flow knocks the system out of the currently exe-
cuted steady state, leading to a transition to a cyclic
steady state which is a component of a different layer.
Transition between the successive steady states is made
possible by a transient state executed in a direct or an
indirect mode.

A direct transient state between two steady states of
the same layer of a cyclic steady-state space exists for
states in which the same processes are currently allo-
cated to the same workstations, and the subsequent
processes waiting for allocation to these workstations
are different. A transition between two consecutive
steady states is an effect of a changeover to a different
process allocated to the same workstation (in confor-
mity with a given dispatching rule). In turn, an indirect
transient state comprises a chain of states in which the
first one belongs to the given steady state, whereas all
the subsequent states, reached as a result of a change-
over to a different process, do not. The last state of the
chain belongs to a cyclic steady state reachable from
the initial state (beginning the changeover).

Direct/indirect transient states which form bridges
between cyclic steady states belonging to different
layers are executed in an analogous way, but they arise
as a consequence of changing the times of local/multi-
modal process operations. A direct transient state
between two cyclic steady states belonging to different
layers of a cyclic steady states’ space exists for states in
which the same processes are currently allocated to the
same workstations and the subsequent processes wait-
ing for allocation to these workstations are also identi-
cal. The transition between two consecutive steady
states is a consequence of changing the operation times

Table 1. Admissible changes in operation times of processes executed in the SCCP of Figure 2.

Nominal time Time interval Nominal time Time interval

md1,1 6 [4,7] mt1,1 4 [3,5]
md2,1 3 [3,4] mt2,1 4 [3,5]
md3,1 5 [4,6] mt3,1 2 [2,3]
md4,1 8 [6,10] mt4,1 4 [3,5]
md5,1 3 [3,4] mt5,1 4 [3,5]

mt6,1 4 [3,5]
mt7,1 5 [5,5]
mt8,1 5 [5,5]
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of the relevant processes. On the other hand, an indi-
rect transient steady state is composed of a chain of
states in which the first one belongs to the given steady
state, whereas all the subsequent states, reached as a
result of changing the operation times, do not. The last
state of the chain belongs to a steady state reachable
from the initial state.

A vital question that arises in this context is the
decidability of the reachability problem, that is,
whether, for a given cyclic steady state, there exists a
transient state leading to another, arbitrarily selected
cyclic steady state of the same space. To answer this
question, it is necessary to search for conditions that
when satisfied guarantees the existence of a transient
state connecting the selected cyclic steady states (gener-
ally belonging to different layers). In other words, the
conditions sought are the conditions for the reachabil-
ity of a specific cyclic steady state from an arbitrarily
selected previously given state.

Problem statement

The problems regarding SCCP discussed in the litera-
ture of the subject usually fall into two groups: prob-
lems of analysis of behaviour attainable in a given

system and problems of synthesis of a system structure
guaranteeing the occurrence of a given behavior.4 The
former group of problems involves answering the fol-
lowing question:

� Whether it is possible in a given structure of an
SCCP to reach cyclic steady states that would
meet the expectations regarding timely execution
of processes (order completion date, production
takt time, production period, etc.)?

An instance of the latter class of problems is the fol-
lowing question:

� Does there exist a system structure (defined by
the values of parameters such as the times of
workstation and transport operations) that
would guarantee the reachability of given cyclic
states (characterized by timely execution of pro-
cesses, a specific production takt time and
period, etc.)?

The case considered in the previous section can be
formulated as the following problem:

Figure 4. Space of admissible cyclic states of the SCCP of Figure 3.
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Given is an SCCP with a structure as shown in
Figure 2, with workstation operation times (mdi) and
transport operation times (mti) as shown in Table 1.
Moreover, known are nominal cyclic states (reachable
for the nominal times given in Table 1, i.e. in a situa-
tion when there are no disruptions) and the corre-
sponding execution schedules (Figure 3). Given are
also the quantitative characteristics of these states
described by production takt time T and production
period a. Assuming that a cyclic steady state reached
as a result of permanent disruption Z causing a change
in the execution time of one or more workstation oper-
ations (md1, 1 � md5, 1, where admissible changes fall
within the ranges given in Table 1) is known, the goal
is to find an answer to the following question:

� Can transport operation times mt1, 1 � mt8, 1 be
changed so that the system can again reach
(return to) the previous cyclic steady state

characterized by a given production takt time T�

and production period a�?

The problem formulated in this way is a specific case
of the synthesis problem, the goal of which is to seek an
SCCP structure that can ensure the reachability of a
given cyclic steady state. It should be stressed that the
existence of a structure and the associated cyclic state
that can accommodate the effects of the disruption is a
necessary condition for the system under consideration
to be able to return to the nominal production takt time
T and period a. An example of a disruption that knocks
a system out of its nominal cyclic steady state is shown
in Figure 5 (Figure 5(a)– SCCP model, Figure 5(b)–
schedules before and after disruption, Figure 5(c)– cyc-
lic steady states).

This is a case of a direct transition between cyclic
states of one family (layer) of an admissible-states’
space. This transition is made possible by states S5

b and

Figure 5. (a) Example of a flexible production job-shop and its SCCP model SCb, (b) Gantt charts of cyclic schedules before and
after disruption and (c) cyclic steady states corresponding to the Gantt charts.
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S0b0, in which the same processes are currently allocated
to the same workstations. The transition occurs as a
result of changing the order of processes queuing for
access to workstation R1 (from process P2 to process
P1). In the example shown, the transition between states
is direct, that is, there is no transient state.

The question that arises here concerns the possibility
of returning from the newly reached cyclic steady state
(which has arisen as a result of the disruption) to the
previous one (directly preceding it). Unfortunately, in
general, transitions of this sort are not always possible.4

In the absence of a transient state, the effects of a dis-
ruption cannot be eliminated, which means the system
has no robustness to the occurrence of the disruption.
To proceed, it is assumed that an SCCP is robust to
given disruption Z if there is a state in the cyclic steady

states’ space which, when the workstation operation
times have been disrupted, makes it possible to restore
the nominal production flow parameters (given by pro-
duction period a and production takt time T). In other
words, the ability of a system to accommodate a spe-
cific disruption Z is conditioned by the existence of a
non-empty set of desired cyclic steady states. To assess
the reachability of the desired cyclic state, one has to
solve the following problem:

Sets:
R: set of workstations, indexed by k
P: set of local processes (e.g. transportation

means, AGVs), indexed by l
mP: set of multimodal processes (e.g. products)

indexed by j
H: set of dispatching rules, indexed by k
Constants:

r: number of workstations
n: number of local processes
nol number of operations of process Pl

m: number of multimodal processes
nmj number of operations of multimodal pro-

cess mPj

Dt: travel time between two successive
workstations

a�: expected value of period of system
T�: expected value of production takt time
mdi, j: execution time of ith workstation operation

of process mPj, determined by disruption Z

Decision variable:

a: period of system
T: production takt time
xi, l: starting time of ith operation of process Pl

ti, l: execution time of ith operation of process Pl

mxi, j: starting time of ith operation of process mPj

mti, j: execution time of ith transport operation of
process mPj

Constraints:

execution of operations oi, l of local processes Pl on
non-shared workstation Rk

4,5

xi, l =
xnol , l + tnol , l � a for i= 1

x(i�1), l + t(i�1), l for i 2 f2 . . . nolg

�
ð1Þ

execution of operations oi, l of local processes Pl on
shared workstation Rk

4,5

xi, l =

max (x(a+ 1), b +Dt), (xnol , l + tnol , l � a)
� �

for i= 1 and a 2 f1 . . . nob � 1g
max (x(a+ 1), b +Dt), (x(i�1), l + t(i�1), l)

� �
for i= 2 . . . nol and a 2 f1 . . . nob � 1g

max (x1, b +Dt+a), (xnol , l + tnol , l � a)f g for i= 1 and a= nob

max (x1, b +Dt+a), (x(i�1), l + t(i�1), l)
� �

for i= 2 . . . nol and a= nob

max (x1, b +Dt � a), (xnol , l + tnol , l � a)f g for i= 1 & if oa, bis executed in previous cycle

max (x1, b +Dt � a), (x(i�1), l + t(i�1), l)
� �

for i= 2 . . . nol for i= 1 & if oa, bis executed in previous cycle

8>>>>>>>><
>>>>>>>>:

ð2Þ

where xa, b is the starting time of operation oa, b of pro-
cess Pb, executed on workstation Rk prior to operation
oi, l; Pb � Pljsk

2 process Pb is executed (in conformity
with priority dispatching rule sk) on workstation Rk

before Pl.
execution of operations moi, j of multimodal processes
mPj on workstation Rk

mxi, j = xa, b for each transportation sector ð3Þ

mxi, j = xc, d + tc, d � mti, j for input buffer ð4Þ

mdi, j =
xc, d + tc, d � xa, b for xa, b� xc, d

xc, d + tc, d +a� xa, b for xa, b.xc, d

�
ð5Þ

mti, j = ta, b for each transportation sector ð6Þ

where xa, b is the starting time of operation of local
process Pb which transfers process mPj onto worksta-
tion Rk ; xc, d is the starting time of operation of local
process Pd which transfers process mPj from worksta-
tion Rk .

expected value of cyclic steady-state parameters

a=a� ð7Þ
T =T � ð8Þ

The goal of this problem is to find an answer to the
following question:

Bocewicz et al. 11



� Do there exist values of the decision variables
ti, l, mti, j,xi, l, mxi, j, a, T, which, given the work-
station operation times mdi, j (determined by dis-
ruption Z), can guarantee the existence and
reachability of a cyclic state (given by a cyclic
schedule with given times xi, l, mxi, j) charac-
terised by the expected production takt time T�

and period a�?

In other words, the solution is a system structure
(specified by the values of transport operations ti, l, mti, j)
in which a cyclic state can be reached that makes it pos-
sible to correct the disruption that has occurred (i.e. a
cyclic steady state that guarantees the achievement of
the desired production takt time T � and period a�).

To find such a solution under the assumption that
the transport operations of the processes are executed
in a collision-free manner without deadlocks or starva-
tion, that is, such that constraints (1)–(5) hold,4,5 is to
find a solution to a relevant CSP.

Robust production flow schedule
planning

The CSP

To solve the problem formulated in section ‘Cyclic
steady states’ reachability’, it is enough to determine
the values of the decision variables ti, l, mti, j, xi, l, mxi, j,

a and T that satisfy constraints (1)–(8). In terms of
constraint programming methods, such a problem is a
CSP4 given by

CS = (V ,D),Cð Þ ð9Þ

where V is a set of decision variables ti, l, mti, j, xi, l, mxi, j,
a and T; D is a family of domains of decision variables,
where the values of the variables are integers, that is,
ti, l 2 N

+, mti, j 2 N
+, xi, l 2 N, mxi, j 2 N, a 2 N

+ and
T 2 N

+; C is a set of constraints (1)–(8).
For instance, in the SCCP shown in Figure 2, the

representation of the CS problem contains 72 decision
variables (characterizing six local processes P1 � P6 and
one multimodal process mP1) and 48 constraints. The
decision variables for this system are shown in Figure 6,
and the set of constraints relating these variables are
given in Table 2.

A solution to CS problem (9) obtained for the new
(changed) workstation operation times resulting from
disruption Z allows one to determine whether there
exists a cyclic steady state that can accommodate the
disruption (allow for its correction).

Computational experiments

In order to evaluate the decidability of the problem of
existence and reachability of cyclic steady states that
allow for the correction of a disruption, we

Figure 6. An SCCP featuring decision variables of problem (9).
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implemented CSP (9) in the Oz Mozart constraint pro-
gramming environment (Windows 10, Intel Core Duo2
3.00GHz, 4GB RAM). Three types of disruptions are
considered. They concern changes in workstation oper-
ation times in the SCCP of Figure 6, for which there
occurs the following:

A change in the location of the system’s bottleneck
(a change in production flow) resulting in reduced
production takt time T (disruption Z1);

No change in the system’s bottleneck and no change
in production takt time T (disruption Z2);

A change in the system’s bottleneck resulting in
increased production takt time T (disruption Z3).

The experiments were carried out under the assump-
tion that both workstation operation times (determined
by the type of disruption) and transport operation times
(which were adjusted to correct the disruption) fell
within the intervals specified in Table 1. In addition,
shop floor transport cycle times Dt= 1 and ti, l = 1 were
assumed for workstation (R1 � R6) and ‘return trans-
port’ (R9, R11, R13, R15, R16, R19).

Disruption type Z1 . In the system of Figure 6, operating
in the nominal cyclic steady state of production flow
(with nominal workstation operation times as given in

Table 1) – see Figure 3– operations on workstations R1,
R3 and R4 get disrupted.

Figure 7 shows a schedule generated as a result of
the disruption of the nominal state. Cycles 1 and 2 rep-
resent the nominal state schedule for which the produc-
tion takt time is T = 11. In cycles 3 and 4, a disruption,
marked as , occurs at workstations R1, R3 and R4. As
a result of the disruption, the operation times change
from the nominal values 6, 5 and 8 to 7, 4 and 6, respec-
tively. The reduction in operation time on workstation
R4 (from 8 to 6) causes a change in the bottleneck load,
which in turn results in a new cyclic steady state of the
SCCP (cycles 3–5 of the schedule in Figure 7) with pro-
duction takt time T = 9.

In order to assess the possibility of correcting this
type of disruption, CS problem (9) was solved. The first
acceptable solution was obtained in less than 1 s. The
solution provided transport operation times mti, j (see
Table 3) and a cyclic steady state with production takt
time T = 11. The schedule for this cyclic steady state is
illustrated in cycles 10 and 11, and so on, of Figure 8.

A transition to the newly obtained cyclic steady state
is possible through a transient state (Figures 7 and 8).
The transition occurs in two steps. The first one
involves reaching a cyclic steady state with the desired
production takt time. To allow the system to reach this
state, the times of transport operations at workstations
R8, R10, R17 and R18 were corrected to match the values
shown in Table 3 (times mt1, 1, mt2, 1, mt4, 1, mt6, 1) – the

Table 2. Constraints (1)–(8) for the system shown in Figure 6(Dt= 1).

Constraints on execution of local processes
C1 x1, 1 = x4, 1 + t4, 1 � a C25 x1, 4 = x4, 4 + t4, 4 � a
C2 x2, 1 = x1, 1 + t1, 1 C26 x2, 4 = x1, 4 + t1, 4
C3 x3, 1 =maxf(x2, 2 + 1), (x2, 1 + t2, 1)g C27 x3, 4 =maxf(x2, 5 + 1), (x2, 4 + t2, 4)g
C4 x4, 1 = x3, 1 + t3, 1 C28 x4, 4 = x3, 4 + t3, 4
C5 x1, 2 =maxf(x4, 1 + 1� a), (x4, 2 + t4, 2 � a)g C29 x1, 5 =maxf(x4, 4 + 1� a), (x4, 5 + t4, 5 � a)g
C6 x2, 2 = x1, 2 + t1, 2 C30 x2, 5 = x1, 5 + t1, 5
C7 x3, 2 =max (x2, 3 + 1), (x2, 2 + t2, 2)f g C31 x3, 5 =maxf(x2, 6 + 1� a), (x2, 5 + t2, 5)g
C8 x4, 2 = x3, 2 + t3, 2 C32 x4, 5 = x3, 5 + t3, 5
C9 x1, 3 =maxf(x4, 2 + 1� a), (x4, 3 + t4, 3 � a)g C33 x1, 6 =maxf(x4, 3 + 1), (x4, 6 + t4, 6 � a)g
C10 x2, 3 = x1, 3 + t1, 3 C34 x2, 6 = x1, 6 + t1, 6
C11 x3, 3 =maxf(x4, 5 + 1), (x2, 3 + t2, 3)g C35 x3, 6 = x2, 6 + t2, 6
C12 x4, 3 = x3, 3 + t3, 3 C36 x4, 6 = x3, 6 + t3, 6

Constraints on execution of multimodal processes
C13 md1, 1 = x1, 2 + t1, 2 +a� x3, 1 C37 md2, 1 = x1, 3 + t1, 3 +a� x3, 2

C14 md3, 1 = x1, 5 + t1, 5 +a� x3, 4 C38 md4, 1 = x1, 6 + t1, 6 +a� x3, 3

C15 mt1, 1 = t2, 1 C39 mt2, 1 = t2, 4
C16 mt3, 1 = t2, 2 C40 mt4, 1 = t2, 3
C17 mt5, 1 = t2, 5 C41 mt6, 1 = t2, 6
C18 mx1, 1 = x1, 1 + t1, 1 � mt7, 1 C42 mx2, 1 = x2, 1

C19 mx3, 1 = x3, 1 C43 mx4, 1 = x2, 2

C20 mx5, 1 = x3, 2 C44 mx6, 1 = x2, 3

C21 mx7, 1 = x1, 4 + t1, 4 � mt8, 1 C45 mx8, 1 = x2, 4

C22 mx9, 1 = x3, 4 C46 mx10, 1 = x2, 5

C23 mx11, 1 = x3, 5 C47 mx12, 1 = x2, 6

C24 mx13, 1 = x3, 1 C48 T = c � a, c 2 N
+
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operations with changed transportation times are
marked in Figures 7 and 8 with green arrows . The
changes introduced resulted in a transition to a new
cyclic steady state with production takt time T = 11

(cycles 7 and 8). Note that the schedule corresponding
to the newly obtained cyclic steady state is shifted in
time relative to the nominal schedule by 7 time units
(see Figure 8).

This means that the cyclic steady state obtained is
characterized by the same production rate as before the
disruption, but it does not allow to meet the same
(pre-scheduled) production completion dates. Newly
manufactured products are ready to be picked up 7
units earlier than the pre-scheduled production comple-
tion date. The second step of the transition focuses on
correcting the time shift. To accommodate the time
shift, execution of operations on workstations R1, R7,
R13, R14, R16 and R19 was suspended for one cycle (cycle

9; Figure 7). The new schedule thus obtained guaran-
tees the same production parameters (production takt
time T and timely delivery) as before the disruption.

The process of correcting the disruption described by
the line graph in Figure 9(a) is a function which assigns
production completion times to the successive produc-
tion cycles. According to this graph, in the nominal
state (blue line), finished products leave the production
line at t.u. 11, 22, 33, 44, . The red line represents the
disrupted-and-corrected production flow (and the asso-
ciated production completion times). The correction
time spans six production cycles (cycles 3–9). The tran-
sitions between reachable cyclic steady states corre-
sponding to the successive correction steps are shown in
Figure 9(b).

Disruption type Z2 . In the next experiment, it is assumed
that the change in the operation times takes place on

Figure 7. Gantt’s chart of cyclic schedule for the SCCP of Figure 6 affected by disruption type Z1.

Table 3. Transport times allowing for correction of disruption Z1.

Nominal-state times Disruption Z1 Nominal-state times Correction

md1,1 6 7 mt1,1 4 5

md2,1 3 3 mt2,1 4 5

md3,1 5 4 mt3,1 2 2

md4,1 8 6 mt4,1 4 5

md5,1 3 3 mt5,1 4 4

mt6,1 4 5

mt7,1 5 5
mt8,1 5 5
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workstations R1, R2 and R3. It is also assumed that these
operation times are increased from the nominal values
6, 3 and 5 to 7, 4 and 6, respectively. The schedule

corresponding to the newly reached cyclic steady state
is shown in Figure 10 (the disturbance occurs in cycle
3). It should be noted that the changes in the times of

Figure 8. A Gantt’s chart showing the correction made to the schedule of Figure 7, restoring the previously specified production
completion dates.

Figure 9. (a) Production completion charts for nominal cyclic steady state (blue line) and disrupted state (red line) and (b) the
corresponding changes in cyclic steady states.

Bocewicz et al. 15



execution of operations do not affect the production
takt time. In the newly reached cyclic steady state, the
production takt time is still T = 11. The fact that there
is no change in the production flow is a consequence of
there being no change in the location of the system’s
bottleneck. The bottleneck is still workstation R4 and
its process time has not changed.

This means that adjustment in the situation under
consideration is not necessary – the production comple-
tion graphs for the nominal and the disrupted states
overlap (Figure 11). This case shows that not every
change in operation times requires a correction. Such
situations occur when the disruption does not affect the
bottleneck of the system (i.e. it does not change the
location of the bottleneck or the pre-scheduled produc-
tion takt time).

Disruption type Z3 . In another experiment, a disruption
is considered which involves an increase in operation
time on only one workstation R4– the operation time
increases from the nominal value of 8 to 9. Since work-
station R4 is still the system’s bottleneck, the increase in
operation time on this workstation leads to an increase
in its load and, consequently, to lengthening of the pro-
duction takt time. The cyclic steady state obtained is
executed with production takt time T = 12. The sched-
ule for this state is shown in Figure 12 (the disruption
occurs in cycle 3).

Just as in the case of disruption type Z1, an attempt
was made to determine the structure parameters (times
of transport operations mt1, 1 � mt8, 1) which would
allow the system to reach a new cyclic steady state that

would accommodate (correct) the disruption in ques-
tion. For this purpose, CS problem (9) was solved (in
15 s), for which, however, no acceptable solution was
found. The lack of a solution means that in the space
of admissible steady states (determined by the adopted
time intervals –Table 1), there is no cyclic steady state
that makes it possible to correct the disruption.

The reason for this is that changes in transport oper-
ation times in this case do not lead to changes in the
times of operations executed at the bottleneck. The
workstation whose operation has been disrupted
remains the bottleneck of the system which determines
the production takt time. This means that if a

Figure 10. Gantt’s chart of cyclic schedule for the SCCP of Figure 6 affected by disruption type Z2.

Figure 11. Production completion charts for nominal cyclic
steady state (blue line) and the disrupted state – disruption Z3

(red line).
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disturbance occurs solely in the system’s bottleneck, a
return to the nominal state is only possible when this
disruption is removed. Figure 12 shows Gantt’s charts
that illustrate differences in production takt time
between the disrupted state and the nominal state.
Figure 13(a) shows production completion charts for
nominal cyclic steady state and disrupted state, and
Figure 13(b) presents the corresponding change in cyc-
lic steady states.

The condition for correcting disruption Z

The experiments show that disruption Z is not correct-
able for all systems in all situations. To assess whether a
correction is feasible, it is necessary to determine trans-
port operation times which make it possible for a given
disruption to be corrected (i.e. allow a system to reach a
cyclic steady-state characterized by the same production
takt time T and period a as the nominal state). Any such
assessment requires finding a solution to a relevant CSP
CS (9). As the third experiment shows, such a solution
does not always exist – in such cases the space of admissi-
ble solutions to the problem is empty. In general, to
determine that a specific problem CS does not have a
solution, one has to invest considerable computational
effort in searching the whole space of potential solutions
– in other words, a problem like this is NP-hard. In prac-
tice, the scale of real-life problems limited by implemen-
ted constraint programming methods does not exceed an
amount of 30 simultaneously executed processes.31

However, in case of SCCP systems possessing a regular
topology where a method based on the principle of com-
position of multiple elementary transport networks can
be used,6 the size of scheduling problems can be dramati-
cally extended even to around 200 processes. In general,
however for the large-scale systems normally encoun-
tered in everyday practice, this type of assessment may
simply be unworkable. Therefore, it seems necessary to
find conditions enabling a preliminary assessment of the
existence of an admissible solution (decidability of the
problem of correcting a given disruption).

The experiments performed in this study indicate
that correction of a disturbance is possible only in cases
where the disturbance does not interfere with the loca-
tion and load of the bottleneck (does not lead to a load
reduction). This observation allows a formulation of
the following condition:

If a disruption in workstation operation time occur-
ring on the workstation of a SCCP that is the bottle-
neck of this SCCP results in an increase in
production takt time T, then a cyclic steady state
that allows for appropriate correction of the disrup-
tion is not reachable in this system.

The condition presented here is one of the possible
sufficient conditions, that is, a condition which, when
satisfied, implies that there is no solution to the CS
problem and consequently that the effects of the dis-
ruption are impossible to correct. Hence, verification of

Figure 12. Gantt’s chart of a cyclic schedule for the SCCP of Figure 6 affected by disruption type Z3.
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this condition allows one to determine (avoiding unne-
cessary calculations) the robustness of the cyclic sched-
ule under consideration. The place and importance of
this condition in the research methodology adopted in
this study are illustrated in Figure 14. Depending on
whether the condition is satisfied or not, one of two
alternative procedures is selected. A first procedure (the

one presented in this article) consists in removing the
effects of disruptions by making appropriate correc-
tions to operation times, that is, by introducing changes
resulting in the transition between selected cyclic steady
states within the subspace of admissible solutions para-
meterized by the same set of priority dispatching rules.
A second procedure essentially involves searching

Figure 14. A schematic diagram of the research methodology used.
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subspaces parameterized by different sets of priority
dispatching rules for such cyclic steady states reachable
in those subspaces which give rise to specific changes in
the values of production flow parameters, for example,
minimum changes relative to the nominal values.

In summary, unlike the solutions proposed in the
literature, in which each failure automatically initi-
ates a correcting procedure (e.g. approaches based
on max-plus algebra19), the solution advanced in this
article is that corrective action is only taken when
the disruption occurs in locations other than the sys-
tem’s bottleneck. Our solution is limited to cases of
individually occurring disruptions of a production
system, in particular cases of permanent disruptions.
This means that this avenue of research should be
extended to also cover cases of individual but short-
lasting disruptions. Investigations of such cases
emerging in a given cyclic steady states’ space should
focus on formulation of appropriate sufficient condi-
tions. Fulfilment of such conditions should guaran-
tee both a transition to an alternative steady state
which removes the effects of a given disruption and
a return to the steady state that preceded the occur-
rence of the disruption. A separate study should be
conducted to examine cases of simultaneous occur-
rence of several types of disruptions. A particularly
important issue that remains open in this respect is
the question of decidability of existence and reach-
ability of alternative cyclic steady states that guaran-
tee the functioning of a system under component
failure conditions.

Concluding remarks

The proposed approach was compared in terms of
scheduling efficiency with a method based on unified
max-plus algebra and a model predictive control frame-
work.19 The results show that, for most disruptions
causing variation in operation times of workstations
which are not system bottlenecks, the two approaches
have similar levels of re-scheduling capacity. However,
in the case of disruptions to bottleneck workstations,
the new approach based on the state space reachability
framework is superior as it eliminates unnecessary
searching for schedules that do not exist.

The proposed declarative modelling-based metho-
dology, which seems to be an attractive alternative to
other methodologies driven by mathematical program-
ming, computer simulation and/or OR-based meta-
heuristics, allows us to formulate the problems of cyclic
scheduling in flexible manufacturing stated either in
direct (aimed at analysis) or reverse (aimed at synthesis)
ways. So the main advantage of the proposed approach
follows from the fact that any of the considered deci-
sion variables can be seen as indicators of the system’s

performance, and none of them requires that relevant
goal functions are set up.

The declarative character of the model developed in
this study makes it well suited for various types of man-
ufacturing situations encountered in practice: the words
machine, job and machine shop are only used in a sym-
bolic sense. Examples of systems to which the model
can be applied include urban transport systems and
data-, energy- and goods-transmission networks. In all
these applications, a dominant role is played by the
problems of crisis management and the related issues
of reliability of the proposed structural and organiza-
tional solutions.

It is also worth noting that in addition to the proto-
typing of production flow organization and planning
(scheduling) methods, one can also take an alternative
approach in which manufacturing technologies are
changed/selected to organize production flow in a way
that will allow it to meet ad hoc the customers’/recipi-
ents’ changing requirements. New research in that direc-
tion would involve determining the conditions allowing
a company to re-schedule cyclic production in confor-
mity with the changes (disruptions) imposed by the cus-
tomers’ new requirements. These changes may concern
both the diversity of the product range and production
volume. They may also include changes in delivery dates
and changes in the size of the batches to be picked up by
the customer. The possibility of customers having these
types of requirements and expectations makes it neces-
sary to reconsider the familiar questions of whether the
available structural and organizational potential of the
company guarantees its proper functioning (profitabil-
ity) given the changes in customer expectations, and
what structural and organizational changes will the
company have to make to ensure its competitiveness
considering that it has access to new technologies and/
or that there are changes in sales principles? The appli-
cation of the proposed state reachability space approach
in the context of the questions raised above will also be
a focus of our future research.
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