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ABSTRACT

With increasing design complexity and reliability requirements, analog and mixed-

signal (AMS) verification manifests itself as a key bottleneck. While formal methods and

machine learning have been proposed for AMS verification, these two types of techniques

suffer from their own limitations, with the former being specifically limited by scalability

and the latter by inherent errors in learning-based models.

We present a new direction in AMS verification by proposing a hybrid formal/machine-

learning-based verification technique (HFMV) to combine the best of the two worlds.

HFMV builds formalism on the top of a machine learning model to verify AMS circuits

efficiently while meeting a user-specified confidence level. Guided by formal checks,

HFMV intelligently explores the high-dimensional parameter space of a given design by

iteratively improving the machine learning model. As a result, it leads to accurate failure

prediction in the case of a failing circuit or a reliable pass decision in the case of a good

circuit. Our experimental results demonstrate that the proposed HFMV approach is ca-

pable of identifying hard-to-find failures which are completely missed by a huge number

of random simulation samples while significantly cutting down training sample size and

verification cycle time.
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1. INTRODUCTION

Over the past few decades, a tremendous growth in the complexity of very-large-scale

integration (VLSI) designs has been witnessed in the semiconductor industry. Due to the

increasing complexity of circuits and systems, more and more arduous challenges have

been brought up at an unprecedented pace. Verification of analog and mixed-signal (AMS)

systems is one of these tough tasks.

1.1 AMS Verification

Nowadays, AMS systems play a key role in all sorts of applications, including comput-

ers, personal phones, wireless sensors, wearable and portable devices, robots, automotive

electronics, and some fast-developing systems, e.g. Internet of Things and Cyber Physical

Systems. The importance of AMS systems continues to increase due to their irreplace-

able responsibility as interfaces between the real world and inner systems. However, with

increasing design and integration complexity, decreasing time to market, and rising relia-

bility requirements across broad ranges of chip designs, AMS verification manifests itself

as a key bottleneck [1].

AMS verification is a methodology that checks the correctness of properties of an AMS

design and investigates whether it conforms to some design specifications. As shown in

Fig. 1.1, the AMS circuits’ design-to-production flow starts from design, followed by ver-

ification. These two phases have a close interaction with each other and are also called

pre-silicon stages. The next step comes to fabrication, which actually transforms the de-

sign into silicon and is very expensive. The stages after fabrication are called post-silicon

stages, including testing, yield analysis and finally production. Usually, bugs or failures

identified in post-silicon testing are much more expensive compared to the ones captured

in pre-silicon verification. As a result, the pre-silicon design-verification iterations are

1



expected to capture and fix as many failures as possible, and the role of verification has

become more and more important.

Figure 1.1: The AMS circuits’ design-to-production flow.

As design complexity has increased over the decades, verification in the digital world

has been greatly advanced as shown in Fig. 1.2. In old times, digital verification mainly fo-

cused on simulation-based techniques (e.g. simulations on test benches) in transistor/gate

level or Register-transfer level (RTL) using Hardware Description Language (HDL), e.g.

Verilog [2]. Nowadays, Universal Verification Methodology (UVM) [3], which empha-

sizes the automotive generation of test benches and improves the interoperability of ver-

ification components, has become a mainstream in the industry. Currently, some new tech-

niques, like reusable verification Intellectual Property (IP) and FPGA emulation/prototyping,

have also been developed for increasingly complicated digital systems.

However, AMS verification is still immature compared to the digital side mostly due

to the natural complexity of AMS systems. One key reason for this is that design param-

eters (e.g. amplitude, frequency, and phase) and operation conditions of AMS systems

are continuous variables, which makes design spaces or searching spaces of verification

2



Figure 1.2: Verification history in industry.

infinitely large and would easily lead to the curse of dimensionality. Another reason is the

intrinsic nonlinearity of AMS systems. Unfortunately, the functionality of AMS circuits

cannot be atomized to a series of basic logic operations like digital circuits. Instead, it’s

described by some continuous and usually nonlinear mathematical functions. This nature

also results in expensive simulation cost. Besides, most AMS systems still heavily depend

on customized designs, making them impractical to follow some general and standardized

rules or methodologies like digital systems.

As shown in Figure 1.2, for AMS verification, simulation-based methods, no matter in

transistor/gate level or behavior level with VerilogA/AMS [4], still prevail in the industry.

Similar to old-time digital verification methods, those AMS verification methods verify

AMS designs by running simulations across "corners" in design spaces and then checking

if the outputs of simulations pass or fail some given specifications. To be more detailed,

simulations are usually done with different permutations of parameters, such as initial con-

ditions, process variations and design parameters, varying in given ranges. The selected

permutations of parameters (usually minimal, nominal and maximal values) are so-called

3



"corners". As illustrated before, the design space or searching space of AMS verification is

infinitely large due to the inherent continuity of AMS parameters. Hence, it is impossible

to give a complete coverage only with these "corners". In addition, the selection of these

"corners" also heavily depends on engineers’ experience and knowledge, which makes it

hard to be generalized. It’s obvious that simulation-based methods can only demonstrate

the presence of failures but cannot demonstrate their absence, i.e. they cannot give an

absolute pass or fail answer to AMS designs.

1.2 Previous Research Works on AMS Verification

While traditional simulation-based verification still dominates in industrial AMS ver-

ification, many efforts have been put in this area by researchers. For example, formal

verification techniques [5, 6, 7, 8] have been attracting more and more interests from re-

searchers. On the other side, some people are also trying to make innovations by employ-

ing machine learning (ML) techniques to extract performance models based on simulations

of AMS circuits [9, 10, 11].

1.2.1 Formal Verification

Formal verification is appealing as it builds rigorous models of design under verifi-

cation (DUV) and mathematically proves or disproves the correctness of DUV, with a

coverage of 100%. Through formal techniques, we are able to give a provable or abso-

lute "pass/fail" answer with respect to some specifications. Generally, formal methods can

be divided into three groups: equivalence checking, proof-based symbolic methods, and

model checking. Here we will give some brief introductions for these three methods.

1.2.1.1 Equivalence Checking

As illustrated in Fig. 1.2, AMS systems are usually modeled on different levels of

abstraction, such as transistor/gate level (e.g. schematics and SPICE [12] netlists), behav-

4



ioral models [13], macromodels [14], etc. Thus, it’s necessary to guarantee that models

in different levels for the same AMS design are functionally equal or at least similar.

Equivalence checking is used to perform such tasks, proving or disproving the functional

equivalence or similarity between two models of DUV. This method is also widely used

in digital verification, e.g. checking the equivalence between synthesized netlists and their

corresponding HDL descriptions. The mathematical description of equivalence checking

is shown as follows:

Given an input space ΦI and parameter space ΦP and assuming that now we have

two different models M1 and M2 for DUV, the goal is to prove or disprove the following

formula with respect to any input x and parameter p in input and parameter spaces.

M1(x, p) = M2(x, p), ∀x ∈ ΦI , ∀p ∈ ΦP , (1.1)

or

M1(x, p) ≈M2(x, p), ∀x ∈ ΦI ,∀p ∈ ΦP . (1.2)

.

Several works have been done in this area. For example, for linear AMS systems

that can be described by transient functions, [15] verified the correctness of transient be-

haviors by performing equivalence checking between transfer function models and the

implementation. Other works have also been done for nonlinear AMS systems [16, 17],

which implies that ordinary differential equations (ODEs) or differential algebraic equa-

tions (DAEs) can be used to build behavior-level models for AMS systems. Besides,

aiming at verifying functional similarity instead of equivalence, authors in [13] proposed a

way to consider the equivalence checking problem as an optimization problem with a goal

to minimize the errors between a behavioral model and its corresponding implementation.

5



1.2.1.2 Proof-based Symbolic Methods

Generally, proof-based symbolic verification methods are theorem proving methods

based on formal deductions of properties of DUV. To be more specific, properties of DUV

can be imaged as a set of formulas and conditions, namely axioms, and a given speci-

fication T is the theorem that we want to prove. The mathematical description of these

methods is shown below.

Given a set of rules of inference Rinfer and a specification T , the proof can be de-

noted as Hproof = (A1, A2, ..., An, P ), in which Ai is either a direct axiom of DUV or an

inference from its predecessors (A1, A2, ..., Ai−1) following rules Rinfer.

A practical way to solve this proof is to use theorem provers. For example, [18] utilized

a high order logic proof checker PVS [19] to perform equivalence checking between an

approximated linear model of a synthesized netlist and its corresponding behavioral model,

and [20] used Mathematica [21] to prove the correctness of properties of AMS systems

with normalized recurrence equations. In addition to making use of theorem provers, other

attempts have been done to develop some binary decision diagram (BDD) [22, 23, 24]

based data frameworks to manipulate Boolean based symbolic representations.

1.2.1.3 Model Checking

Model checking is a group of methods for determining whether a system satisfies a

formal specification that is usually expressed in temporal logical formulas. Model check-

ing was first introduced to verify the correctness of properties of some discrete finite-state

systems [25]. For AMS verification, DUV is first transferred to a model, and then a model

checker is employed to determine if a given specification T is satisfied by completely

searching the entire design or state space [26].

For a specification T , we want to build a model M of DUV and check if T is satisfied

or not, by analyzing all the reachable state spaces of M . This typically reduces to "reach-
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ability problems" on M , and it is called reachability analysis [27, 8, 26]. The definition of

reachability analysis is shown as follows:

For an initial state space Φ0, we can compute a sequence of temporal reachable state

spaces (Φ1,Φ2, ...,Φn) for M until T is satisfied or violated in Φn.

The next reachable state can be calculated with a transition function Tr:

Φi+1 = Tr(x),∀x ∈ Φi. (1.3)

For linear AMS systems, Equation 1.3 can be accurately and efficiently computed

[28, 29]. However, for nonlinear AMS systems, an overapproximated state space Φ̂i is

adopted in practice, due to the arduousness in computing the exact reachable state space.

Φ̂i+1 ⊇ Tr(x),∀x ∈ Φ̂i. (1.4)

The side effect from the above equation is that the accumulation of overapproxima-

tion may harm the convergence of reachability analysis. To address this problem, many

research works have been developed to tighten the overapproximation, e.g. by using hy-

percubes [30, 31], convex polygons [32, 33], support functions [34, 35], zonotopes [36],

etc.

In recent years, satisfiability modulo theories (SMT) [37, 38, 39], especially the theory

of real numbers, have been greatly developed to prove the satisfiability of formulas. By

employing the power of SMT, [33, 40, 7, 8] proposed methods that convert reachability

analysis problems into SMT problems and check reachable state spaces using different

kinds of SMT solvers (e.g. iSAT3 [41], Z3 [42], Yices [43], etc.).
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Figure 1.3: An overview of the two categories of AMS verification techniques.

1.2.1.4 Limitation of Formal Verification

Whereas in the past decades, we have witnessed considerable development in aca-

demic research of AMS formal verification, the efficiency of AMS formal verification is

still an obstacle, and the applicability is limited to circuits with small sizes [5, 6]. Conse-

quently, although a noticeable growth of formal methods has been observed in the industry

of digital integrated circuits [44], the industrial availability of such techniques in AMS ver-

ification is still minimal. Fig. 1.3 has a good overview of formal verification, compared to

simulation-based verification.

1.2.2 Machine-learning-driven Verification

ML techniques keep being fast developed in recent years and have been widely used in

various domains, like imaging processing, computer vision, bioinformatics, information

retrieval, big data, and so on, showing their great power for performing tasks of classifica-
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tion, regression, clustering, and decision making. With the benefits of being data-driven,

incremental, and scalable, recent researchers leverage ML as powerful techniques to solve

assorted circuit problems, including AMS verification.

For a circuit verification task, naturally, there are two types of outcomes: either pass or

fail with respect to given specifications. This can be considered as a binary classification

problem. [45, 46] employed the Support Vector Machine (SVM) [47] algorithm to train

classifiers for the feasibility and performance of AMS circuits.

A different approach towards ML-driven verification is to describe or characterize

AMS circuits with regression models, which reduces the arduousness in analyzing and

extracting specific models for AMS systems. For example, authors of [48] proposed a

method that makes use of recursive vector fitting (RVF) techniques [49] to model the

time-domain response from a nonlinear circuit and hence automatically extracts the cir-

cuit’s analytical behavior-level model. By utilizing statistical ML algorithms for training

regression models of circuits’ performance, [9] developed a Co-Learning Bayesian Model

Fusion (CL-BMF) ML algorithm, which can take advantage of the performance side in-

formation collected from simulation/measurement, and [11] implemented the Gaussian

Process [50] algorithm with an artificially composed kernel.

Despite the goodness of improvements in efficiency and scalability, exploiting ML

techniques in AMS verification also introduces new challenges, not only from the nature of

ML, like over-fitting problems and inherent model uncertainty, but also from the problems

in the AMS verification perspective, such as the limited availability of training data due

to expensive simulation cost. Hence, integrating ML techniques into the AMS verification

procedure is a challenging task which requires innovative works from both domains.
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1.3 Hybrid Formal/Machine-learning-based Verification Method

Motivated by the above AMS verification challenges, this work presents a new per-

spective in AMS verification with a hybrid formal/machine-learning-based verification

technique (HFMV) framework that simultaneously exploits SMT-based formal checking

[33, 40, 7, 8] and statistical ML techniques. This framework has the best of the two

worlds: it adds a degree of formalism on top of ML models by utilizing satisfiability mod-

ulo theories (SMT) based formal techniques; and it is much more scalable than pure formal

techniques at the same time. Furthermore, to circumvent the inherent model uncertainty

of ML techniques, the proposed framework “formally" bounds learning model uncertainty

and practically verifies design properties over high-dimensional spaces of pure design un-

certainty, for which only bounds of parameter values are assumed.

The proposed HFMV makes the following key contribution to AMS verification: 1)

narrowing the gap between design complexity and the scalability of current verification

approaches by developing a novel hybrid technique, and 2) building a degree of formalism

into ML-based verification methods while boosting scalability.

Our experimental results have demonstrated that HFMV can provide reliable verifi-

cation of AMS design’s specifications in high-dimensional parameter spaces for which

time-consuming Monte Carlo simulations, however, produce misleading results. At the

same time, HFMV reduces the overall verification runtime from hundreds of CPU hours

to tens of CPU hours.

1.4 Thesis Organizations

In this thesis, Section 2 introduces a top level of proposed HFMV methodology, which

includes two core parts: a formal check block working on the design space and a ML

engine performing data acquiring and ML model training. A brief introduction about the

inputs and outputs ("Pass", "Fail", "Inconclusive") of HFMV is provided.
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Section 3 focuses on illustrating the "formal" problem we want to verify, which is

built on statistical ML models. A detailed deduction is done to bring up the formalism in

probability. In addition, the basic concept of statistical ML models is introduced.

Section 4 covers a detailed flow of HFMV, which includes an iteratively active learning

process with a sampling technique guided by formal checking. This flow is first demon-

strated in the "Fail" case and then unified to other two cases (i.e. "Pass" and "Incon-

clusive"). A summary of conditions of these three cases is also listed at the end of this

Section.

Section 5 talks about the statistical ML algorithm that employed by HFMV. A brief

introduction of Relevance Vector Machine (RVM) [51] and its successor Relevance Vector

and Feature Machine (RVFM) [52] is given.

In Section 6, an efficient SMT-based formal check technique is proposed. It covers

necessary mathematical deductions for the efficient formal check technique, based on the

framework of RVFM. In the end, extended deductions have been done to demonstrate this

technique can also be applied to a general statistical ML algorithm.

Section 7 shows the experimental results of HFMV, which prove its superiority in both

capability to identify failures and running time. Experiments are done on three circuits: a

differential amplifier, a DC-DC converter [53] and a Low-dropout regulator (LDO) [54].

This thesis is concluded in Section 8, with a brief summary of properties of HFMV.

11



2. OVERVIEW OF HFMV

HFMV “formally" checks a given circuit against a targeted specification over a space

of uncertain factors, e.g. the uncertainty of design parameters and operating conditions,

with a user-specified confidence level. The proposed hybrid verification is performed by

conducing formal checks on a statistical ML model trained using simulation/measurement

data of a circuit and predicts a targeted performance over a high-dimension design/uncertainty

space. The fundamental objective of HFMV is to determine if the circuit meets a given

specification over the entire design/uncertainty space with the user-specified probability or

confidence level.

As shown in Fig. 2.1, three types of outputs can be produced by HFMV: “Pass", “Fail"

and “Inconclusive". A “Pass" conclusion gives an evident “yes" answer to the circuit’s

validity and is only produced with the user-specified high probability/confidence. Other-

wise, any identified failure, i.e. a point in the design/uncertainty space at which the tar-

geted specification is not met, would mark the circuit as “Fail". In this case, HFMV takes

one step further to generate an accurate failure prediction model, which tells the designer

where the circuit fails in the design/uncertainty space to provide insights for debugging.

An “Inconclusive" answer is made when HFMV does not find any true failure and a high-

confidence answer on the circuit’s validity cannot be reached based on available training

data (i.e. with a probability greater than the user-specified confidence level).

For a given circuit, the user provides the following inputs to the HFMV engine in Fig.

2.1:

• The circuit’s description (e.g. SPICE-level netlists and behavior description using

VerilogA/AMS).

• Ranges of variation for design parameters or working conditions of the circuit.
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Figure 2.1: Proposed HFMV methodology.

These ranges represent the design uncertainty that is used to determine the design

space we want to work in.

• A small number of initial sample data of the circuit. To start with, the HFMV engine

must have some initial data, not necessary to be very big, to build an initial ML

model.

• A targeted specification T . Without loss of generality, this paper assumes that a

greater performance value corresponds to a worse specification. A point where the

circuit’s performance exceeds T is regarded as a failure.

• User-specified confidence P0 for "Pass". HFMV produces a “Pass" answer if and

only if the specification T is estimated to be satisfied at any point with a probability

greater than P0 in the entire design/uncertainty space.

• Maximum sample size Smax. It specifies an upper limit for the amount of training

data to be acquired in practice.
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With the above inputs, the HFMV engine builds models trained by statistical ML algo-

rithms based on the initial data and calls formal checks over the entire design space, while

interacting with the data acquisition block, e.g. a circuit simulator, which will provide

new training data. In addition, a smart resampling strategy guided by SMT-based formal

check techniques is implemented to feed new points back to the ML training process and

iteratively improve the reliability of statistical ML models.
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3. HYBRID VERIFICATION

The key novelty of proposed hybrid approach lies in the fact that it leverages statistical

ML for scalability and SMT-based formula checking for a degree of formalism on top of

ML models.

3.1 Statistical ML Methods

There exists a large body of statistical ML algorithms where each inference is proba-

bilistic, e.g. Gaussian process [50], Bayesian additive regression trees [55], and RVM [51].

Typically, an inference regression prediction is assumed to be Gaussian with a mean ŷest

and a variance σ̂est, latter of which quantifies the confidence of prediction. Fig. 3.1 gives an

example of the prediction from statistical ML algorithms, in which the red dots are training

samples, the green line stands for the predicted mean value ŷest, and the yellow lines are the

bounds of the 95% confidence interval of the prediction ([ŷest− 1.96σ̂est, ŷest + 1.96σ̂est]).

HFMV offers a generic hybrid verification framework and is agnostic about the spe-

cific choice of statistic ML models. For demonstration purpose, this work adopts RVFM

[52], which is an extension to RVM [51] and offers improved accuracy and appealing

probabilistic feature weighting capability, as the built-in statistical ML model of HFMV.

A circuit’s model trained by RVFM predicts the circuit’s performance at a given point x

by computing the mean and variance as follows:

ŷest(x) = wTφ (x) , (3.1)

σ̂2
est(x) = σ2 + φ(x)TΣφ(x), (3.2)

where σ2 is the estimated noise, w and Σ are the posterior mean and covariance matrix

of samples’ weights, respectively, and φ(x) is the kernel vector based on a chosen kernel
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Figure 3.1: An example of prediction from statistical ML models.

function. The detailed expressions for the above prediction can be found from [52].

3.2 HFMV Problem Formulation

To circumvent the inherent model uncertainty of ML methods, we add a degree of

formalism on top of models by formulating formal checks of a given specification. This

allows us to “formally" bound the uncertainty of learning models and practically verify

design properties over a high-dimensional space of design/uncertainty space. In this work,

we assume only the bounds of AMS parameters are available. Extension to a combina-

tion of the bounded uncertainty with statistically characterized parametric variations is

possible, however, is out of the scope of present thesis.

Now, on top of a statistical ML model, we pose a formal verification problem, which

basically checks if a targeted specification T can be always met with a probability greater

than P0 over a design/parameter space Ωx, as shown in Fig. 3.2. This boils down to

employing an SMT solver (e.g. [37, 42]) to check the following formula:

Prob {y (x) satisfies spec. T} > P0, ∀x ∈ Ωx, (3.3)
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Figure 3.2: The formulation of hybrid verification.

Or,

Prob {y (x) satisfies spec. T} = Prob {y (x) ≤ T} > P0,∀x ∈ Ωx. (3.4)

Assuming each prediction from the statistical ML model is Gaussian, if the following

formula

ŷest (x) + γpσ̂est (x) ≤ T,∀x ∈ Ωx (3.5)

 ˆ
esty x

 ˆ
f est  x

T

(a)

 ˆ
esty x

 ˆ
p est  x

T

(b)

Figure 3.3: Interpretations of probabilistic inferences: (a) Fail case, and (b) Pass case.
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is satisfied, with Fig. 3.3(b), we can get

Prob {y (x) ≤ T} > Prob {y (x) < ŷest (x) + γpσ̂est (x)}

= Φ (γp) ,

(3.6)

in which γp is a positive confidence-level control parameter. This results in a more specific

formal check on Equation 3.5, and the probability can be made sufficiently large, e.g.

greater than P0, by increasing γp.

This verification problem is formal in the sense that meeting the specification T is

examined across the full space of Ωx. In addition, the ML model’s uncertainty is bounded

by enforcing that T is achieved with a probability greater than P0.

Similarly, if the following formula

ŷest (x)− γf σ̂est (x) ≥ T,∃x ∈ Ωx (3.7)

is satisfied, we can also get

Prob {y (x) fails spec. T} = Prob {y (x) > T}

> Prob {y (x) > ŷest (x)− γf σ̂est (x)}

= Φ (γf ) ,

(3.8)

which implies that for an existed point x that satisfies Formula 3.7, the possibility to be a

failure is at least Φ (γf ).

Having all the knowledge above, we can combine a statistical ML model into Formula

3.5 or 3.7 and achieve a degree of confidence level (controlled by γf or γp) that can be

proved by formal techniques. However, it is nontrivial to solve a series of problems, e.g.

the efficiency and trustworthiness of the proposed hybrid verification. We address these
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challenges by proposing several techniques, including adaptive tuning of the confidence-

level control parameter γ (a unified form of γf and γp), iterative refinement of the learning

model and formal checks (discussed in Section 4), and smart sampling of training data

based on a fast SMT solution (discussed in Section 6).
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4. HFMV VERIFICATION FLOW

The trustworthiness of HFMV critically depends on the accuracy of the underlying ML

model, which can be improved at the cost of additional training samples. As such, one key

objective of HFMV is to verify a given circuit with high confidence using a minimum pos-

sible amount of simulation or measurement data for training the ML model. We achieve

this goal by starting HFMV with a small amount of initial training data and developing

an iterative hybrid verification flow which adaptively adjusts conservativeness and train-

ing sample size. Fig. 4.1 shows an overall summary of this verification flow. There’s an

iteratively active learning process between model training and formal checking in the first

phase P1, in which the new samples gained through formal checks with respect to specifi-

cations are fed back to refine the ML model. If we cannot find any failure in P1 with the

limited training samples available, we come to a "Pass" or "Inconclusive" result based on

the confidence level achieved. Otherwise, we give a "Fail" result with a failure prediction

model, which is shown in P2 of Fig. 4.1.

Model

Training

Formal check

& adjust 

Pass or Inconclusive

Failure Prediction Model & GammaInaccurate Model

P1: Model Improvement/active learning P2: Failure detection

Formal Check Failure PointsNew samples

Figure 4.1: An overall summary of the verification flow.
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This flow presents a unified solution regardless the type of decisions (i.e. "Fail", "In-

conclusive", and "Pass") made at the end of the verification process. We first describe in

detail how this verification flow works when a “Fail” decision is made, then extend it to

the other two possible decisions.

4.1 Fail Case

4.1.1 The Probability for A Point to Fail

Since the underlying ML model is probabilistic, we examine the probability for circuits

to fail at a point x in the parameter space Ωx:

Prob {y (x) fails spec. T} = Prob {y (x) > T} . (4.1)

In HFMV, the ML model estimates the true performance y (x) by ŷest (x) with a vari-

ance of σ̂est (x). Considering the common situation that each inference follows the Gaus-

sian distribution, the probability of y (x) being in [ŷest (x)− γf σ̂est (x) ,+∞) is Φ (γf ),

where Φ (·) is the cumulative distribution function of the normal distribution.

As discussed in Section 3, if a point x satisfies formula

ŷest (x)− γf σ̂est (x) > T, (4.2)

the possibility for it to be a true failure point is at least Φ (γf ). This implies that an SMT

instance defined by Formula 4.2 or its modified version below:

ŷest (x) > T + γf σ̂est (x) (4.3)

can be formally solved to identify potential failure points. The probability for a point x

satisfying (4.2) or (4.3) to be a true failure can be increased by increasing γf .
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4.1.2 HFMV Flow for Fail Case

In the continuous-valued parameter space Ωx, a failing circuit may fail at an infinite

number of points. While identifying one or a list of failures is useful, a more meaningful

objective is to provide an accurate failure prediction model to allow designers to identify

a large number of failures across the entire parameter space, which offers a good guidance

for fixing the circuit.

Spec.

 ˆ
estT  x

T
 ˆ

esty x

Spec.

 ˆ
estT  x

 ˆ
esty x

Spec.

Spec.

 ˆ
estT  x

 ˆ
esty x

Reduce

Increase

Sample Size

After few iterations

Step 1

Step 2

Step 3

Step 4

 ˆ
estT  x ˆ

esty x

Figure 4.2: The HFMV flow for a failing circuit.
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The HFMV flow for a failing circuit is illustrated in Fig. 4.2. The black curve denotes

the true distribution of the circuit’s performance with a targeted specification T . The two

parameters, γ and training sample size, are adjusted adaptively during the entire flow,

which is described as follows.

Step 1: Use a positively large γ in Formula 4.3, and solve this SMT instance to find points

that might be true failures with a high probability. Due to the small initial training

sample size and the model inaccuracy, the SMT solver is unlikely to find any

failure by returning an UNSAT answer in the beginning.

Step 2: Lower the conservativeness of finding true failure points by reducing γ value step

by step until the formal check of (4.2) or (4.3) finds some failures (marked in red),

which may not be all true failures. Measure the failure prediction accuracy by

verifying the actual performance of these red points via SPICE simulations. If

the failure prediction accuracy R is larger than a preset value R0, jump to Step 4;

otherwise, proceed to Step 3.

Step 3: Perform smart sampling to acquire more training data, by reusing the SPICE data

from Step 2 and collecting additional simulation samples at points where the

model uncertainty level is high. Retrain a more accurate ML model. Go back

to Step 1, and restart the process again with the same positively large γ.

Step 4: Exit with an accurate failure prediction model generated. Here, the failure pre-

diction model is based on checking Formula 4.3 with the gamma value reached in

Step 2 using the trained ML model.

In Step 2, the initial ML model may not be accurate enough due to the small training

sample size at the very beginning. In this case, γ may need to be adjusted to a negatively

large value to satisfy Formula 4.3, which might render a large portion of the failure points
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discovered to be false failures. Nevertheless, these points are the best estimates from the

current model. After retraining with these additional samples, the model is expected to

be more accurate, and some true failure points may be revealed with a positive γ using

this improved model. The failure prediction accuracy R, defined as the ratio between

true failures and potential failure points found by the SMT solver, is used as an internal

measure of model accuracy.

The smart sampling strategy mentioned in Step 3 involves two types of data. The

first type includes the failure points predicted by the current model, i.e. ones that satisfy

Formula 4.3 with the γ value adjusted in Step 2. These points can be efficiently identified

by a fast SMT solution process that will be mentioned in Section 6. The other type of data

contains points in the design/uncertainty space where the current ML model has a large

prediction variance σ̂est (x), indicating a low accuracy. In other words, the first data type

covers points that are most likely to be true failures while the second helps to make the

model accurate across the entire parameter space.

4.2 Pass Case

Recall that a “Pass” decision is only made when the targeted specification T is met

with a high confidence level in the entire parameter space. More specifically, the following

probability must be sufficiently large:

Prob {y (x) satisfies spec. T} = Prob {y (x) ≤ T} . (4.4)

Again, with each prediction being Gaussian, as analyzed in Section 3, if the following

formal check

ŷest (x) + γpσ̂est (x) ≤ T (4.5)

is true for all x in the parameter space Ωx, the specification T is met at all points in Ωx
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with a probability of at least Φ (γp).

This probability can be made sufficiently large, e.g. greater than the user-specified

level P0, by increasing γp.

4.3 Unifying Pass/Fail Verification Flow

Instead of directly checking the satisfaction of Formula 4.5, HFMV checks the unsat-

isfactory of Formula 4.6 for the pass case. That’s to check if no point in Ωx satisfies the

following formula:

ŷest (x) + γpσ̂est (x) > T. (4.6)

An interesting fact is that the SMT instances for the fail and pass cases presented in

Formula 4.2 and Formula 4.6 respectively, are identical except for the sign before γf or γp.

We combine these two formal checks into one with a unified parameter γ:

ŷest (x)− γσ̂est (x) > T. (4.7)

In the pass case, the probability of the circuit to be good is given by: Φ (γp) =

Φ (−γ) = 1− Φ (γ).

The HFMV flow for the fail case described in Section 4.1.2 is applicable to the pass

case by only changing Step 4. In this step, instead of exiting after finding an accurate

failure prediction model, we exit and draw a “Pass” decision when two conditions are

met: 1) The training sample size exceeds Smax; this is to maintain the highest possible

accuracy for the ML model in HFMV, and 2) the γ value that doesn’t satisfy Formula 4.7

is negatively large enough such that the probability for the circuit to be indeed good is

greater than the user-specified confidence P0.
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Figure 4.3: A detailed summary of the unified verification flow.

Table 4.1: Termination conditions for HFMV.

Case # of Samples γ R
Pass = Smax ≤ γ0 = 0%

Inconclusive = Smax > γ0 = 0%
Fail1 ≤ Smax > 0 > R0

Fail2 = Smax - > 0% and < R0

4.4 Inconclusive Case

Let γ0 be the γ value corresponding to P0. That is to say 1 − Φ (γ0) = P0. If the

HFMV flow ends up with a negative γ larger than γ0 and no true failure has been identified

in the verification process, an “Inconclusive” decision is drawn since the probability for

the circuit to actually pass is 1 − Φ (γ) < P0. A more detailed summary of the flow, that

unifies these three cases, is shown in Fig. 4.3.
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The three possible decisions and their corresponding termination conditions are sum-

marized in Table 4.1. If no true failure is found and the training sample size has reached

Smax, we draw a pass or inconclusive decision based on the confidence level 1−Φ (γ) for

passing the circuit. Table 4.1 lists two different fail cases: “Fail1” and “Fail2”. “Fail1” is

consistent with the flow illustrated in Fig. 4.2, where an accurate failure prediction model

with a positive γ is produced at the very end. In the case of “Fail2”, some true failure

points have been found by HFMV. However, no accurate failure prediction model can be

learned within the limit of Smax.
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5. THE STATISTICAL ML AlGORITHM IN HFMV

As illustrated in Section 4, formal check techniques play an important role in the flow

of HFMV, and to make HFMV practical, an efficient formal check technique is needed to

check or solve Formula 4.7 over the design space Ωx.

It should be mentioned that our HFMV implementation is built on the model of RVFM

[52] that is an extension to RVM [51], and the implementation takes advantage of unique

properties of RVFM [52] to make formal checking efficient. Hence, before diving into

mathematical details of the efficient formal check technique that is discussed later in Sec-

tion 6, the frameworks of RVM [51] and RVFM [52] are first introduced in this section.

5.1 A Basic Kernel Machine in ML

A basic kernel machine for regression, e.g. SVM [47], is shown in Equation 5.1. In

this equation, x stands for an input or a test sample, xi’s are selected training samples (e.g.

support vectors in SVM), with a size of N . wi’s are weights assigned to the selected train-

ing samples (e.g. Lagrange multipliers in SVM [47]) and K (x,xi) is a kernel function

which intuitively measures the similarity between x and xi.

To be more general, we add an additional error term into Equation 5.1, and rewrite it

into Equation 5.2, in which Φ is a N ×N kernel matrix with Φ (i, j) = K (xi,xj), t is a

symbol of target, and e is the error term.

y (x;w) =
N∑
i=1

wiK (x,xi) . (5.1)

t = Φ ·w + e. (5.2)
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5.2 RVM Overview

RVM [51] uses Bayesian inference to determine Equation 5.2. For the training samples

xi’s, assuming the error e are zero-mean Gaussian random values with a variance σ2 and

xi is independent with each other, the following probability distribution can be inferred

[51].

p
(
t|w, σ2

)
=
(
2πσ2

)−N/2
exp

(
− 1

2σ2
‖t−Φw‖2

)
. (5.3)

Different from a normal Bayesian inference process, RVM [51] makes an encoding by

making zero-mean Gaussian prior distributions over w, with hyperparameters α [51]:

p (w|α) =
N∏
i=1

N
(
0, α−1

i

)
. (5.4)

It’s obvious that only when αi < ∞, wi can have a value greater than zero, which allows

corresponding training vector xi contributes in Equation 5.1. This kind of training vector

xi with αi <∞, is considered as a relevance vector [51].

Then the probabilistic prediction formula for a new sample t∗ can be written as

p (t∗|t) =

∫
p
(
t∗|w,α, σ2

)
p
(
w,α, σ2|t

)
dwdαdσ2

=

∫
p
(
t∗|w,α, σ2

)
p
(
w|t,α, σ2

)
p
(
α, σ2|t

)
dwdαdσ2.

(5.5)

Note that we can actually calculate the middle posterior p (w|t,α, σ2) in Equation 5.5

as follows:

p
(
w|t,α, σ2

)
=

p (t|w, σ2) p (w,α)

p (t|α, σ2)
, (5.6)

p
(
t|α, σ2

)
=

∫
p
(
t|w, σ2

)
p (w|α) dw. (5.7)
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Combining Equation 5.3, 5.4, 5.6, 5.7, we can get

p
(
w|t,α, σ2

)
= (2π)−

N+1
2 |Σ|−0.5exp

(
−(w − µ)TΣ−1(w − µ)

2

)
, (5.8)

with the posterior covariance and mean of w to be [51]:

Σ = (σ−2ΦTΦ +A)−1, A = diag(α), (5.9)

µ = σ−2ΣΦT t, (5.10)

and

p
(
t|α, σ2

)
= (2π)−

N
2 |Ω|−0.5exp

(
−t

TΩ−1t

2

)
, (5.11)

Ω = σ2I + ΦA−1ΦT . (5.12)

Assuming (αMP , σ
2
MP ) = argmax

α,σ2
p (α, σ2|t), then

p (t∗|t) =

∫
p
(
t∗|w,α, σ2

)
p
(
w|t,α, σ2

)
p
(
α, σ2|t

)
dwdαdσ2

=

∫
p
(
t∗|w, σ2

)
p
(
w|t,α, σ2

)
p
(
α, σ2|t

)
dwdαdσ2

≈
∫

p
(
t∗|w, σ2

)
p
(
w|t,α, σ2

)
δ(α−αMP )δ(σ − σMP )dwdαdσ2

=

∫
p
(
t∗|w, σ2

MP

)
p
(
w|t,αMP , σ

2
MP

)
dw

= N
(
y∗, σ

2
∗
)
,

(5.13)

with

y∗ = µTφ(x∗), (5.14)

σ2
∗ = σ2

MP + φ(x∗)TΣφ(x∗). (5.15)
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Bayes’ Theorem

Figure 5.1: An overview of the Bayesian model of RVM.

, where φ(x∗) is a vector of size N with the i-th entry defined by φ(x∗)(i) = K (x∗,xi)

[51].

The problem now is how to calculate the value of αMP and σ2
MP . Since p (α, σ2|t) ∝

p (t|α, σ2) p(α)p(σ2), using Maximum a Posteriori (MAP) estimation, we can get

(αMP , σ
2
MP ) = argmax

α,σ2
p
(
t|α, σ2

)
. (5.16)

Making the differentiation of Equation 5.11 equal to zero gives [51]:

αnewi =
1− αiΣii

µ2
i

, (5.17)

(σ2)new =
‖t−Φµ‖2

N −
N∑
i=1

(1− αiΣii)

, (5.18)

in which Σii means the i-th diagonal element of Σ. These two equations can be used to

calculate numerical solutions for αMP and σ2
MP [51].

A brief overview of the Bayesian model of RVM is shown in Fig. 5.1.
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5.3 RVFM Overview

RVFM is inspired by the RVM-based feature selection technique proposed in [56],

which defines “feature vectors" fi = (x1(i),x2(i), ...,xF (i)) with i ∈ [1, F ], where F

is the number of selected features. Generally, they exchange the roles of samples and

features and want to solve the following feature weighting model, similar to Model 5.2,

with a new feature kernel K ′:

t
′

= Φ
′ · v + e, (5.19)

where Φ
′ is a new F × F design matrix with Φ

′
(i, j) = K

′
(fi,fj), and v are the weights

for feature vectors [56].

After embedding this technique into the flow of RVM, a new model is shown below

[52]:

t = Φwv ·w⊗ v + e. (5.20)

In Model 5.20, Φwv is a N × (NF ) design matrix defined by Φwv(i, (j − 1)F + k) =

Kk(xi,xj) that is the kernel function of the i-th and j-th samples on the k-th feature, e.g.

Kk(xi,xj) = exp(−γk(xik−xjk)2) if RBF kernel is adopted [52], with i, j ∈ [1, N ] and

k ∈ [1, F ]. In addition, w⊗ v is a tensor product of these two vectors and is a (NF )× 1

vector defined by (w⊗ v)((j − 1)F + k) = wjvk [52].

Actually, Model 5.20 can be transferred into Model 5.2 by moving v from w ⊗ v

into the design matrix Φwv, forming a new design matrix whose definition is Φw(i, j) =∑F
k=1 vkKk(xi,xj) [52]. Similarly, by moving w into Φwv, Model 5.19 can be derived,

with a new design matrix defined by Φv(i, k) =
∑N

j=1wjKk(xi,xj) [52].

Inspired by this property of Model 5.20, an efficient training method [52] was intro-

duced, which is shown in Fig. 5.2. In each iteration, by either fixing α and movingw into

Φwv, or fixing β and moving v into Φwv, we can reduce the model from (5.20) to either
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Figure 5.2: An efficient RFVM training method.

(5.19) or (5.2). That’s to say for each iteration we are only training for a RVM model

either on the sample space or the feature space.
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6. EFFICIENT SMT-BASED FORMAL CHECKING

We perform formal checking in HFMV by employing SMT solvers. Generally, SMT

solvers take a logic formula f (Equation 4.7 in our case) over a background theory t (the

design space Ωx) as an input and output either a SAT answer with a model (a solved point

in Ωx) if f is satisfied or an UNSAT answer if f is unsatisfied.

The general flow for finding solutions of Equation 4.7 in Ωx using a SMT solver is

shown in Figure 6.1, with a key idea that adding artificial constraints (i.e. small squares

around solved points in Figure 6.1) to mask previous solved points until the SMT solver

returns an UNSAT answer or is terminated by the user.

6.1 An Unsolvable SMT Problem

By inserting Equation 3.1 and Equation 3.2 into Equation 4.7, we can easily write the

logic formula f as

wTφ (x)− γ
√
σ2 + φ(x)TΣφ(x) > T, (6.1)

which can be solved formally by SMT solvers. However, it’s obvious that this leads to

a very complex formula in terms of x, particular when the dimension of x is relatively

high and some popular nonlinear kernels, e.g. Radial Basis Function Kernel (RBF) which

can be represented as K (x1,x2) = exp(−γk‖x1 − x2‖2), are chosen for ML methods to

guarantee regression performance.

Figure 6.1: A masking methodology for SMT solvers.
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See from feature space

Figure 6.2: The simplification of SMT solution.

My experimental studies have shown that it is infeasible to directly solve such a for-

mula using a nonlinear SMT solver, like iSAT3 [41] (e.g. running for weeks without any

result). Therefore, a key bottleneck for HFMV is the significant time taken by formal

checking, and an efficient formal check method is needed to make HFMV practical.

6.2 An Efficient SMT Method Based on the RVFM Framework

We develop an efficient SMT method by exploiting unique properties of the RVFM

model. The general idea of this solution is to transfer the highly nonlinear and unsolv-

able formula (i.e. Formula 6.1) into a linear and easy-to-solve formula through variable

mapping and approximation, which is shown in Fig. 6.2.
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6.2.1 A Solvable SMT Method

Seeing from the feature space in Fig. 5.2, by moving v into the design matrix, we can

get the following "decomposed" kernel:

Kdecomposed (x,xj) =
N∑
i=1

wi ·Kk (x,xi) , (6.2)

in which, k ∈ [1, F ], Kk (xi,xj) = K (xi (k) ,xj (k)) is a scalar kernel function involving

the k-th feature of input vectors xi and xj , and wi is the weight for Kk (x,xi).

Then the expected prediction model from RVFM is:

ŷest(x) = vTφ (x) , σ̂2
est(x) = σ2 + φ(x)TΣvφ(x),

with φ(x) (k) =
N∑
i=1

wi ·Kk (x,xi) , k ∈ [1, F ],
(6.3)

where the v and Σv are the posterior mean and covariance matrix of features’ weights,

respectively.

The key observation is that in Equation 6.3, the k-th component φ(x) (k) =
N∑
i=1

wi ·

Kk (x,xi) of φ(x) only depends on the k-th feature of input vector x and sample vectors

xi’s. Hence φ(x) (k) is only a symbolic function of x (k) and can be written in the form:

φ(x) (k) ≡ a (x (k)) ≡ ak, k ∈ [1, F ] . (6.4)

For example, a is a sum of multiple scalar exponential terms with respect to x (k) when

Kk is chosen to be RBF. Here, we can solve a trivial one-dimension optimization problem

to bound each ak with respect to the range of x (k):

ak ≤ ak ≤ ak, with ak = min a (x (k)) , ak = max a (x (k)) . (6.5)
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Since all ak’s are independent with each other, Formula 6.1 can be converted into an equiv-

alent form which is only symbolic with respect to a:

vTa− γ
√
σ2 + aTΣva ≥ T,

with a = [a1, ..., aF ]T , ak ≤ ak ≤ ak, k ∈ [1, F ] .

(6.6)

If SMT solvers with the input of Formula 6.6 returns an UNSAT answer, then Formula 3.5

is satisfied over the parameter space Ωx.

Note that Formula 6.6 is much simpler than Formula 6.1, which makes it solvable in

practice by a nonlinear SMT solver, like iSAT3 [43].

6.2.2 An Efficient SMT Method

Although the method introduced in Section 6.2.1 is solvable in practice, the nonlinear-

ity brought by the variance part
√
σ2 + aTΣva in Formula 6.6 is still unfriendly to SMT

solvers, and sometimes it’s very expensive to solve a point. Hence, another SMT approach

is introduced based on Formula 6.6, and the key idea is to make approximation for the

variance part and relax Formula 6.6 into a linear formula.

It’s not very hard to find a loose bound for
√
σ2 + aTΣva through mathematic deriva-

tions based on the ranges of a. Here we take advantage of the fact that Σv is a symmetric

matrix, by doing Singular Value Decomposition (SVD), Σv can be decomposed into the

following form:

Σv = UΣ
′
V T = UΣ

′
UT , (6.7)

in which U is a F × F matrix, and Σ
′ is a F × F diagonal matrix. With Equation 6.7, we
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can get

aTΣva = (aUT )TΣ
′
(aUT )

=
F∑
i=1

Σ
′

ii(aUi)
2

=
F∑
i=1

Σ
′

ii(
F∑
j=1

ajUij)
2,

(6.8)

where Σ
′
ii is the i-th diagonal element of Σ′ . Knowing the range of each aj , it’s trivial to

derive a low bound for aTΣva and hence for
√
σ2 + aTΣva.

Assuming that
√
σ2 + aTΣva > L, then Formula 6.6 can be transformed into the

following linear form:

vTa ∈ (T + γL, {vTa}max), (6.9)

in which {vTa}max is the max possible value that can be easily calculated by the ranges

of a.

To prevent the clustering of solved points as much as possible, we rewrite Formula 6.6

into vTa = T
′
, T

′
is a random value in (T + γL, {vTa}max) and flow the implementa-

tion shown in Fig. 6.3.

Note that solutions solved from Fig 6.3 are not necessary to be true solutions for the

original formula, Formula 6.1. Hence a further verification step is needed to be done on

Formula 6.1 to filter false solutions.

6.3 Speed Comparison Between Two SMT Methods

To give you an example of the speedup due to the linear approximation in Formula

6.9, we run a simple test based on a 51-dimension task and compare the CPU time to solve

300 true solutions for Formula 6.1 using the solvable SMT method (illustrated in Section

6.2.1) and the final efficient SMT method (illustrated in Section 6.2.2).
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Figure 6.3: An efficient SMT flow.

Table 6.1: Speed comparison between two SMT methods.

Method SMT Solver Used CPU Time
The solvable SMT method iSAT3 [43] 44h57m21s
The efficient SMT method Z3 [42] 46.91s

The test is done on a workstation with 2.2GHz AMD Opteron 6174 Processors, and

the results are shown in Table 6.1, which indicates that the efficient SMT method provides

a 3-order-of-magnitude speedup.

6.4 Deductions for General Statistical ML Models

Although the above work is done utilizing unique properties of RFVM, what should be

aware is that it’s also possible to adopt this method to a general statistic ML model once

39



the decomposed kernel shown in Equation 6.2 is introduced. For a general statistical ML

model without feature selection properties, we can design a similar "decomposed" kernel:

Kdecomposed (xi,xj) =
F∑
k=1

Kk (xi,xj) . (6.10)

In this case, the weight assigned to each feature is fixed to equal one. Let’s take the

RVM model [51] for illustration purpose, the expected prediction mean and variance can

be then expressed as the following equations.

ŷest(x) = uTφ (x) , σ̂2
est(x) = σ2 + φ(x)TΣφ(x),

with φ(x) (i) =
F∑
k=1

Kk (x,xi) , i ∈ [1, N ].
(6.11)

At the first step towards deductions, we notice that the technique illustrated in Section

6.2.1 can still be applied to the mean part:

ŷest(x) = uTφ (x)

=
N∑
i=1

uiφ(x) (i)

=
N∑
i=1

ui

F∑
k=1

Kk (x,xi)

=
F∑
k=1

N∑
i=1

uiKk (x,xi)

=
F∑
k=1

a
′

k,

(6.12)

in which a′

k is similar to the ak defined in Equation 6.4.

As to the variance part, we can still utilize the property of Σ being symmetric. Assum-
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ing that Σ = UΣ
′
UT , then

φ(x)TΣφ(x) = (φ(x)UT )TΣ
′
(φ(x)UT )

=
N∑
i=1

Σ
′

ii(φ(x)Ui)
2

=
N∑
i=1

Σ
′

ii(
N∑
j=1

Uijφ(x) (j))2

=
N∑
i=1

Σ
′

ii(
N∑
j=1

Uij

F∑
k=1

Kk (x,xj))
2

=
N∑
i=1

Σ
′

ii(
F∑
k=1

N∑
j=1

UijKk (x,xj))
2.

(6.13)

We can observe that
∑N

j=1 UijKk (x,xj) only depends on the k-th feature of input vector

x and samples xj’s. Similarly, denoting
∑N

j=1 UijKk (x,xj) ≡ bi (x (k)) ≡ bik, i, k ∈

[1, N ], we can get

φ(x)TΣφ(x) =
N∑
i=1

Σ
′

ii(
F∑
k=1

N∑
j=1

UijKk (x,xj))
2

=
N∑
i=1

Σ
′

ii(
F∑
k=1

bik)
2.

(6.14)

Following the same steps in Section 6.2.2, we can come to a linear formula similar to

Formula 6.9, which could be fast solved by some linear SMT solvers (e.g. Z3 [42]).
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7. EXPERIMENTAL RESULTS

To demonstrate the superiority of proposed HFMV approach, we test it on three analog

circuits (i.e. a differential amplifier, a DC-DC converter [53], and a LDO [54]), and com-

pare its performance with the traditional Monte Carlo method. We randomly select 200

simulation samples, following the uniform distribution on each dimension, as the initial

training data for HFMV. Much larger number of random samples based on the same sam-

pling scheme is applied to the Monte Carlo method. All simulations for three circuits are

done with a commercial 90nm CMOS technology design kit. For the circuit simulators,

HSPICE is used for the differential amplifier and the LDO [54] simulations, and Spectre

is used for the DC-DC converter [53] simulation.

Detailed HFMV flows used in our experiments are shown in Fig. 7.1. In Fig. 7.1, (a)

is a top-level flow with γ0 = −2, R0 = 75% (see Table 4.1), and the maximum sample

size Smax = 4000, and (b) is an inner flow, which performs formal checks, adjusts γ, and

runs simulations. These two flows are consistent with Fig. 4.3. Fig. 7.1 (c) is a detailed

flow about how to gather resampling points using the knowledge in Section 6. To expand

resampled points to the entire space as much as possible, we only pick the top X points,

with the greatest minimal distance to other points, from total 1000 points solved following

Fig. 6.3.

In addition, the RVFM model is trained employing the 5-folder cross-validation method

using RBF kernel, i.e. K (x1,x2) = exp(−γk‖x1 − x2‖2), and the range for parameter

γk in RBF kernel is from 0.1 to 0.9 with a step of 0.1 and from 1 to 6 with a step of 1.

Our HFMV flow is written in C++ and compiled by g++ 4.8.5, and runs on a worksta-

tion with 2.2GHz AMD Opteron 6174 Processors.
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Figure 7.1: The detailed HFMV flow in experiments: (a) Top-level outer flow (b) Inner
flow to do formal checks, adjust γ, and run simulations, and (c) Resampling flow.
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7.1 A Differential Amplifier

We first investigate the process variations of a one-stage differential amplifier circuit

as shown in Fig. 7.2. Three kinds of variations, i.e. channel length, threshold voltage,

and thickness of gate oxide, are modeled for each transistor at the SPICE level. The total

number of process parameters is 15, which is the dimensionality of the parameter space.

Three performances including gain-bandwidth product (GBW), gain, and common mode

rejection ratio (CMRR) are verified against the corresponding specifications. For all these

three parameters, the smaller the performance value is, the worse the actual performance

is.

Vout

Vin+
M1 M2

M3 M4

M5

Vin-

Vdd

CL

Figure 7.2: A differential amplifier.

Performance comparison between HFMV and the Monte Carlo method with 600,000

random samples with respect to failure identification is shown in Fig. 7.4(a). In this

figure, the worst-case performance found by each method is normalized with respect to

the corresponding specified target, and each specified target corresponds to the zero level

in the y axis. A positive value in the y axis means that the found performance value is

greater than the target, otherwise, it is less. It can be seen that HFMV can find failures that

are significantly worse than the targets, confirming the differential amplifier as “Fail". In
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comparison, even with 600,000 samples the Monte Carlo method cannot find any failure

or even any point close to each target, producing misleading verification conclusions.

7.2 A DC-DC Converter
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Figure 7.3: A DC-DC converter.

The schematic of DC-DC converter [53] is shown in Fig. 7.3. The DC-DC converter

contains 22 transistors, and for each transistor two device-level variations (channel length

and width) are considered, leading to a 44-dimensional parameter space. Output accuracy,

overshoot, ripple size, and power efficiency are the performances to be verified.

Similarly, we compare HFMV to the Monte Carlo method with 45,000 random samples

in Fig. 7.4(b). Note that for the last circuit performance, power efficiency, the smaller the

value is, the worse the actual performance is. The opposite is true for the other three per-

formances (output accuracy, overshoot, and ripple size). Again, the Monte Carlo method

produces misleading results for each verification task while HFMV is able to find perfor-

mances worse than the targeted specifications.
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Figure 7.4: Comparison of HFMV and Monte Carlo Simulation on failure identification:
(a) differential amplifier, (b) DC-DC converter, and (c) LDO. The worst-case performance
found by each method is normalized with respect to the specified target.
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Figure 7.5: LDO.
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7.3 A Low-dropout Regulator

We further investigate the low-dropout regulator (LDO) design proposed in [54]. Vari-

ations in channel length, threshold voltage, and thickness of gate oxide are considered for

all 20 transistors in this design, which results in a 60-dimensional parameter space. Three

circuit performances, quiescent current, undershoot, and load regulation, are the specifica-

tions of verification. For these three performances, the greater the value is, the worse the

actual performance is. About 649,000 random simulation samples are used in the Monte

Carlo method, which is compared to HMFV in Fig. 7.4(c). In all cases, HFMV finds per-

formance values worse than the specified targets. The Monte Carlo method, however, is

significantly optimistic, again producing misleading answers for verification.

Detail results of HFMV for all three circuits are shown in Table 7.1.

Table 7.1: HFMV effectiveness.

Circuit Specifications T N R

differential amplifier (15 dim.)
GBW 22MHz 1775 100%
Gain 2.5dB 3595 100%

CMRR 10dB 1600 100%

DC-DC converter (44 dim.)

Output Accuracy 5.5% 1400 95.0%
Overshoot 0.94% 1300 99.3%
Ripple Size 0.598mV 1400 100%

Power Efficiency 83.2% 1400 100%

LDO (60 dim.)
Quiescent Current 16mA 2496 88.0%

Undershoot 60% 2200 92.3%
Load Regulation 55% 2299 82.7%

Notes: The “T ” column shows the targets we set for different circuit specifications. The
“N” column describes the total number of simulation samples used in the HFMV flow. For
each specification in the table, all three circuits are regarded as “Fail1” and HFMV produces
a failure prediction model in each case. The “R” column stands for failure prediction
accuracy, the ratio between true failures and potential failure points found by the SMT
solver based on 300 predictions.
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7.4 Comparison on Runtime

Comparison of CPU time between the two methods is shown in Fig. 7.6. The CPU

time of HFMV, the total verification time for all specifications in one circuit, is up to about

11-time smaller than that of the Monte Carlo method for all test cases.
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Figure 7.6: Comparison of CPU time between HFMV and Monte Carlo simulations.

It shall be noted that the significantly better efficiency of HFMV is achieved with the

fact that the Monte Carlo methods cannot find any failure even by spending hundreds of

hours of simulation time. HFMV not only finds true failures but also produces failure mod-

els that can efficiently predict lots of failures with a good accuracy as shown in Table 7.1.

Collectively, Table 7.1, Fig. 7.4 and Fig. 7.6 demonstrate the superior efficiency and power

of HMFV, which utilizes a limited amount of simulation data to achieve highly-accurate
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failure prediction in high-dimensional parameter spaces.

7.5 Verification with Varying Specified Targets
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Figure 7.7: HFMV verification of the quiescent current of the LDO.

To provide more insights on how HFMV works, we relax the target for the quiescent

current of the LDO by increasing it from 12mA to 22mA, making meeting the specified

requirement increasingly easier. The results of HFMV verification are shown in Fig. 7.7,

where the values of the internal confidence control parameter γ are also shown. In this

series of verification tasks, Smax is set to 2,800, and γ0 is set to -2.3264 (a confidence

level of at least 99%). The HFMV flow is terminated when hitting Smax if the verification

process is not ended earlier with an accurate failure prediction model when the LDO is

deemed as “Fail”.
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Figure 7.8: HFMV verification with varying kernel parameter γk.

In Fig. 7.7, as γ gradually drops from positive to negative, the verification decision

changes from “Fail1” to “Inconclusive”, and then to “Pass”, a well expected outcome since

the specified target becomes more relaxed. When γ drops below γ0 = −2.3264, since no

true failure is identified, we have a high confidence, i.e. a probability of at least 99%,

that the LDO is a good passing circuit. In comparison, the Monte Carlo method not only

misses true failures but also lacks a built-in mechanism to provide an affirmative “yes/no”

answer for the correctness of circuits.

7.6 Verification with Varying Kernel Parameters in ML Model

Generally, ML models are sensitive to inner parameters (e.g. parameters in kernel

functions and penalty coefficients in cost functions) and regression performance may vary

a lot with different parameters. That’s why we implement the cross-validation method for

RVFM training in our HFMV flow. However, to measure the sensitivity of our HFMV
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flow to the inner parameter of the built-in RVFM model, i.e. γk in RBF kernel, we run

additional experiments for the quiescent current of the LDO (the target is set to 16mA)

by fixing γk to a series of values and comparing corresponding performances with the

one using the cross-validation method. For all experiments, Smax is set to 2800, and the

HFMV flow exits only when the number of training samples exceeds Smax.

Detailed results are shown in Fig. 7.8, and we use the value of the worst point found

by HFMV as the metric for performance. In Fig. 7.8, the red line represents the worst

failure found using the cross-validation method, and the green line stands for the specified

target that is 16mA. For most cases (all except the case that γk = 2), performance descents

can be observed when compared to the case employing the cross-validation method, which

indicates that our HFMV flow is sensitive to the kernel parameter γk to some degree, and

model evaluation methods, e.g. the cross-validation method, are suggested to guarantee

better capability to identify hard-to-detect failures.
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8. SUMMARY AND CONCLUSION

A novel hybrid approach, namely HFMV, has been presented to address the challenges

associated with AMS verification. HFMV combines the key benefits of formal verification

and ML-based approaches while circumventing their key limitations in terms of scalability

and model inaccuracy. It has been demonstrated that HFMV can provide reliable verifi-

cation of AMS performance in high-dimensional parameter spaces for which much more

time-consuming Monte Carlo simulations lead to misleading results.
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