607 research outputs found

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017

    A Context-Aware System to Secure Enterprise Content: Incorporating Reliability Specifiers

    Get PDF
    The sensors of a context-aware system extract contextual information from the environment and relay that information to higher-level processes of the system so to influence the system\u2019s control decisions. However, an adversary can maliciously influence such controls indirectly by manipulating the environment in which the sensors are monitoring, thereby granting privileges the adversary would otherwise not normally have. To address such context monitoring issues, we extend CASSEC by incorporating sentience-like constructs, which enable the emulation of \u201dconfidence\u201d, into our proximity-based access control model to grant the system the ability to make more inferable decisions based on the degree of reliability of extracted contextual information. In CASSEC 2.0, we evaluate our confidence constructs by implementing two new authentication mechanisms. Co-proximity authentication employs our time-based challenge-response protocol, which leverages Bluetooth Low Energy beacons as its underlying occupancy detection technology. Biometric authentication relies on the accelerometer and fingerprint sensors to measure behavioral and physiological user features to prevent unauthorized users from using an authorized user\u2019s device. We provide a feasibility study demonstrating how confidence constructs can improve the decision engine of context-aware access control systems

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Applications of Context-Aware Systems in Enterprise Environments

    Get PDF
    In bring-your-own-device (BYOD) and corporate-owned, personally enabled (COPE) scenarios, employees’ devices store both enterprise and personal data, and have the ability to remotely access a secure enterprise network. While mobile devices enable users to access such resources in a pervasive manner, it also increases the risk of breaches for sensitive enterprise data as users may access the resources under insecure circumstances. That is, access authorizations may depend on the context in which the resources are accessed. In both scenarios, it is vital that the security of accessible enterprise content is preserved. In this work, we explore the use of contextual information to influence access control decisions within context-aware systems to ensure the security of sensitive enterprise data. We propose several context-aware systems that rely on a system of sensors in order to automatically adapt access to resources based on the security of users’ contexts. We investigate various types of mobile devices with varying embedded sensors, and leverage these technologies to extract contextual information from the environment. As a direct consequence, the technologies utilized determine the types of contextual access control policies that the context-aware systems are able to support and enforce. Specifically, the work proposes the use of devices pervaded in enterprise environments such as smartphones or WiFi access points to authenticate user positional information within indoor environments as well as user identities

    Leveraging user-related internet of things for continuous authentication: a survey

    Get PDF
    Among all Internet of Things (IoT) devices, a subset of them are related to users. Leveraging these user-related IoT elements, itis possible to ensure the identity of the user for a period of time, thus avoiding impersonation. This need is known as ContinuousAuthentication (CA). Since 2009, a plethora of IoT-based CA academic research and industrial contributions have been proposed. Weoffer a comprehensive overview of 58 research papers regarding the main components of such a CA system. The status of the industryis studied as well, covering 32 market contributions, research projects and related standards. Lessons learned, challenges and openissues to foster further research in this area are finally presented.This work was supported by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV) and by the CAM grants S2013/ICE-3095 (CIBERDINE) and P2018/TCS4566 (CYNAMON-CM) both co-funded with European FEDER funds

    BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation

    Full text link
    Mobile behavioral biometrics have become a popular topic of research, reaching promising results in terms of authentication, exploiting a multimodal combination of touchscreen and background sensor data. However, there is no way of knowing whether state-of-the-art classifiers in the literature can distinguish between the notion of user and device. In this article, we present a new database, BehavePassDB, structured into separate acquisition sessions and tasks to mimic the most common aspects of mobile Human-Computer Interaction (HCI). BehavePassDB is acquired through a dedicated mobile app installed on the subjects devices, also including the case of different users on the same device for evaluation. We propose a standard experimental protocol and benchmark for the research community to perform a fair comparison of novel approaches with the state of the art1. We propose and evaluate a system based on Long-Short Term Memory (LSTM) architecture with triplet loss and modality fusion at score levelThis project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement no. 860315, and from Orange Labs. R. Tolosana and R. Vera-Rodriguez are also supported by INTER-ACTION (PID2021-126521OB-I00 MICINN/FEDER
    • …
    corecore