1,170 research outputs found

    COMPENDIUM: a text summarisation tool for generating summaries of multiple purposes, domains, and genres

    Get PDF
    In this paper, we present a Text Summarisation tool, compendium, capable of generating the most common types of summaries. Regarding the input, single- and multi-document summaries can be produced; as the output, the summaries can be extractive or abstractive-oriented; and finally, concerning their purpose, the summaries can be generic, query-focused, or sentiment-based. The proposed architecture for compendium is divided in various stages, making a distinction between core and additional stages. The former constitute the backbone of the tool and are common for the generation of any type of summary, whereas the latter are used for enhancing the capabilities of the tool. The main contributions of compendium with respect to the state-of-the-art summarisation systems are that (i) it specifically deals with the problem of redundancy, by means of textual entailment; (ii) it combines statistical and cognitive-based techniques for determining relevant content; and (iii) it proposes an abstractive-oriented approach for facing the challenge of abstractive summarisation. The evaluation performed in different domains and textual genres, comprising traditional texts, as well as texts extracted from the Web 2.0, shows that compendium is very competitive and appropriate to be used as a tool for generating summaries.This research has been supported by the project “Desarrollo de Técnicas Inteligentes e Interactivas de Minería de Textos” (PROMETEO/2009/119) and the project reference ACOMP/2011/001 from the Valencian Government, as well as by the Spanish Government (grant no. TIN2009-13391-C04-01)

    Summarization from Medical Documents: A Survey

    Full text link
    Objective: The aim of this paper is to survey the recent work in medical documents summarization. Background: During the last decade, documents summarization got increasing attention by the AI research community. More recently it also attracted the interest of the medical research community as well, due to the enormous growth of information that is available to the physicians and researchers in medicine, through the large and growing number of published journals, conference proceedings, medical sites and portals on the World Wide Web, electronic medical records, etc. Methodology: This survey gives first a general background on documents summarization, presenting the factors that summarization depends upon, discussing evaluation issues and describing briefly the various types of summarization techniques. It then examines the characteristics of the medical domain through the different types of medical documents. Finally, it presents and discusses the summarization techniques used so far in the medical domain, referring to the corresponding systems and their characteristics. Discussion and conclusions: The paper discusses thoroughly the promising paths for future research in medical documents summarization. It mainly focuses on the issue of scaling to large collections of documents in various languages and from different media, on personalization issues, on portability to new sub-domains, and on the integration of summarization technology in practical applicationsComment: 21 pages, 4 table

    Distributional Semantic Models for Clinical Text Applied to Health Record Summarization

    Get PDF
    As information systems in the health sector are becoming increasingly computerized, large amounts of care-related information are being stored electronically. In hospitals clinicians continuously document treatment and care given to patients in electronic health record (EHR) systems. Much of the information being documented is in the form of clinical notes, or narratives, containing primarily unstructured free-text information. For each care episode, clinical notes are written on a regular basis, ending with a discharge summary that basically summarizes the care episode. Although EHR systems are helpful for storing and managing such information, there is an unrealized potential in utilizing this information for smarter care assistance, as well as for secondary purposes such as research and education. Advances in clinical language processing are enabling computers to assist clinicians in their interaction with the free-text information documented in EHR systems. This includes assisting in tasks like query-based search, terminology development, knowledge extraction, translation, and summarization. This thesis explores various computerized approaches and methods aimed at enabling automated semantic textual similarity assessment and information extraction based on the free-text information in EHR systems. The focus is placed on the task of (semi-)automated summarization of the clinical notes written during individual care episodes. The overall theme of the presented work is to utilize resource-light approaches and methods, circumventing the need to manually develop knowledge resources or training data. Thus, to enable computational semantic textual similarity assessment, word distribution statistics are derived from large training corpora of clinical free text and stored as vector-based representations referred to as distributional semantic models. Also resource-light methods are explored in the task of performing automatic summarization of clinical freetext information, relying on semantic textual similarity assessment. Novel and experimental methods are presented and evaluated that focus on: a) distributional semantic models trained in an unsupervised manner from statistical information derived from large unannotated clinical free-text corpora; b) representing and computing semantic similarities between linguistic items of different granularity, primarily words, sentences and clinical notes; and c) summarizing clinical free-text information from individual care episodes. Results are evaluated against gold standards that reflect human judgements. The results indicate that the use of distributional semantics is promising as a resource-light approach to automated capturing of semantic textual similarity relations from unannotated clinical text corpora. Here it is important that the semantics correlate with the clinical terminology, and with various semantic similarity assessment tasks. Improvements over classical approaches are achieved when the underlying vector-based representations allow for a broader range of semantic features to be captured and represented. These are either distributed over multiple semantic models trained with different features and training corpora, or use models that store multiple sense-vectors per word. Further, the use of structured meta-level information accompanying care episodes is explored as training features for distributional semantic models, with the aim of capturing semantic relations suitable for care episode-level information retrieval. Results indicate that such models performs well in clinical information retrieval. It is shown that a method called Random Indexing can be modified to construct distributional semantic models that capture multiple sense-vectors for each word in the training corpus. This is done in a way that retains the original training properties of the Random Indexing method, by being incremental, scalable and distributional. Distributional semantic models trained with a framework called Word2vec, which relies on the use of neural networks, outperform those trained using the classic Random Indexing method in several semantic similarity assessment tasks, when training is done using comparable parameters and the same training corpora. Finally, several statistical features in clinical text are explored in terms of their ability to indicate sentence significance in a text summary generated from the clinical notes. This includes the use of distributional semantics to enable case-based similarity assessment, where cases are other care episodes and their “solutions”, i.e., discharge summaries. A type of manual evaluation is performed, where human experts rates the different aspects of the summaries using a evaluation scheme/tool. In addition, the original clinician-written discharge summaries are explored as gold standard for the purpose of automated evaluation. Evaluation shows a high correlation between manual and automated evaluation, suggesting that such a gold standard can function as a proxy for human evaluations. --- This thesis has been published jointly with Norwegian University of Science and Technology, Norway and University of Turku, Finland.This thesis has beenpublished jointly with Norwegian University of Science and Technology, Norway.Siirretty Doriast
    corecore