4,128 research outputs found

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Intrusion Alert Quality Framework For Security False Alert Reduction

    Get PDF
    Tesis ini mengkaji rekabentuk dan perlaksanaan rangka-kerja yang mempersiapkan amaran-amaran keselamatan dengan metrik-metrik yang disahkan This thesis investigates the design and implementation of a framework to prepare security alerts with verified data quality metric

    Intrusion Alert Quality Framework For Security False Alert Reduction [TH9737. N162 2007 f rb].

    Get PDF
    Tesis ini mengkaji rekabentuk dan perlaksanaan rangka-kerja yang mempersiapkan amaran-amaran keselamatan dengan metrik-metrik yang disahkan, memperkayakan amaran-amaran keselamatan dengan metrik-metrik tersebut dan akhirnya, menyeragamkan amaran-amaran tersebut dengan satu format yang dipersetujui agar sesuai digunakan oleh prosedur-prosedur penganalisaan amaran di peringkat tinggi. This thesis investigates the design and implementation of a framework to prepare security alerts with verified data quality metrics, enrich alerts with these metrics and finally, format the alerts in a standard format, suitable for consumption by highlevel alert analysis procedures

    A Privacy-Aware Access Control Model for Distributed Network Monitoring

    No full text
    International audienceIn this paper, we introduce a new access control model that aims at addressing the privacy implications surrounding network monitoring. In fact, despite its importance, network monitoring is natively leakage-prone and, moreover, this is exacerbated due to the complexity of the highly dynamic monitoring procedures and infrastructures, that may include multiple traffic observation points, distributed mitigation mechanisms and even inter-operator cooperation. Conceived on the basis of data protection legislation, the proposed approach is grounded on a rich in expressiveness information model, that captures all the underlying monitoring concepts along with their associations. The model enables the specification of contextual authorisation policies and expressive separation and binding of duty constraints. Finally, two key innovations of our work consist in the ability to define access control rules at any level of abstraction and in enabling a verification procedure, which results in inherently privacy-aware workflows, thus fostering the realisation of the Privacy by Design vision

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page
    corecore