Unmanned aerial vehicles (UAVs) can support surveillance even in areas without network infrastructure. However, UAV networks raise security challenges because of its dynamic topology. This paper proposes a technique for maintaining security in UAV networks in the context of surveillance, by corroborating information about events from different sources. In this way, UAV networks can conform peer-to-peer information inspired by the principles of blockchain, and detect compromised UAVs based on trust policies. The proposed technique uses a secure asymmetric encryption with a pre-shared list of official UAVs. Using this technique, the wrong information can be detected when an official UAV is physically hijacked. The novel agent based simulator ABS-SecurityUAV is used to validate the proposed approach. In our experiments, around 90% of UAVs were able to corroborate information about a person walking in a controlled area, while none of the UAVs corroborated fake information coming from a hijacked UAV