23,985 research outputs found

    An optimal feedback model to prevent manipulation behaviours in consensus under social network group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A novel framework to prevent manipulation behaviour in consensus reaching process under social network group decision making is proposed, which is based on a theoretically sound optimal feedback model. The manipulation behaviour classification is twofold: (1) ‘individual manipulation’ where each expert manipulates his/her own behaviour to achieve higher importance degree (weight); and (2) ‘group manipulation’ where a group of experts force inconsistent experts to adopt specific recommendation advices obtained via the use of fixed feedback parameter. To counteract ‘individual manipulation’, a behavioural weights assignment method modelling sequential attitude ranging from ‘dictatorship’ to ‘democracy’ is developed, and then a reasonable policy for group minimum adjustment cost is established to assign appropriate weights to experts. To prevent ‘group manipulation’, an optimal feedback model with objective function the individual adjustments cost and constraints related to the threshold of group consensus is investigated. This approach allows the inconsistent experts to balance group consensus and adjustment cost, which enhances their willingness to adopt the recommendation advices and consequently the group reaching consensus on the decision making problem at hand. A numerical example is presented to illustrate and verify the proposed optimal feedback model

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Trust Management Model for Cloud Computing Environment

    Get PDF
    Software as a service or (SaaS) is a new software development and deployment paradigm over the cloud and offers Information Technology services dynamically as "on-demand" basis over the internet. Trust is one of the fundamental security concepts on storing and delivering such services. In general, trust factors are integrated into such existent security frameworks in order to add a security level to entities collaborations through the trust relationship. However, deploying trust factor in the secured cloud environment are more complex engineering task due to the existence of heterogeneous types of service providers and consumers. In this paper, a formal trust management model has been introduced to manage the trust and its properties for SaaS in cloud computing environment. The model is capable to represent the direct trust, recommended trust, reputation etc. formally. For the analysis of the trust properties in the cloud environment, the proposed approach estimates the trust value and uncertainty of each peer by computing decay function, number of positive interactions, reputation factor and satisfaction level for the collected information.Comment: 5 Pages, 2 Figures, Conferenc

    Quantify resilience enhancement of UTS through exploiting connect community and internet of everything emerging technologies

    Get PDF
    This work aims at investigating and quantifying the Urban Transport System (UTS) resilience enhancement enabled by the adoption of emerging technology such as Internet of Everything (IoE) and the new trend of the Connected Community (CC). A conceptual extension of Functional Resonance Analysis Method (FRAM) and its formalization have been proposed and used to model UTS complexity. The scope is to identify the system functions and their interdependencies with a particular focus on those that have a relation and impact on people and communities. Network analysis techniques have been applied to the FRAM model to identify and estimate the most critical community-related functions. The notion of Variability Rate (VR) has been defined as the amount of output variability generated by an upstream function that can be tolerated/absorbed by a downstream function, without significantly increasing of its subsequent output variability. A fuzzy based quantification of the VR on expert judgment has been developed when quantitative data are not available. Our approach has been applied to a critical scenario (water bomb/flash flooding) considering two cases: when UTS has CC and IoE implemented or not. The results show a remarkable VR enhancement if CC and IoE are deploye

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy
    corecore