230 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Technical advances in the design and deployment of future heterogeneous networks

    Get PDF
    The trend in wireless communications systems is the enhancement of the network infrastructure with the introduction of small cells, where a specific geographical area is served by low-range, low-power access points. The result is the creation of a heterogeneous topology where macrocells coexist with a variety of small-cell types. In this editorial article we briefly summarize the recent technical advances in the design and deployment of future heterogeneous networks addressed in the papers that compose this special issue. In particular the following aspects are considered: the design of interference and radio resource management algorithms, the analysis of the energy efficiency and power control issues in heterogeneous networks, the concept of coordination in small cell networks, key backhaul aspects of HetNets, deployment issues and overall management strategies.Peer ReviewedPostprint (published version

    Wireless networks and EMF-paving the way for low-EMF networks of the future: the LEXNET project

    Get PDF
    While, according to the World Health Organization, no adverse health effects of radio-frequency (RF) electromagnetic fields (EMFs) have been established to date, EMF exposure from wireless communication networks is nonetheless often cited as a major cause of public concern and is frequently given considerable media coverage. This article presents the results of a new survey on RF-EMF exposure risk perception together with a comprehensive overview of the EMF footprint of existing and emerging networks. On the basis of these findings, we then put forward the rationale for EMF-aware networking. Subsequently, we highlight the gaps in existing systems, which impede EMF-aware networking, and outline the key concepts of the recently launched European Union (EU) Seventh Framework Programme (FP7) Integrated Project Low-EMF Exposure Future Networks (LEXNET): a new, all-encompassing, population-based metric of exposure and ways it can be used for low-EMF, quality of service (QoS)-aware network optimization.This paper reports work undertaken in the context of the project LEXNET. LEXNET is a project supported by the European Commission in the 7th Framework Programme (GA n°318273). For further information, please visit www.lexnet-project.e
    • …
    corecore