47,862 research outputs found

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Formal Concept Analysis and Resolution in Algebraic Domains

    Full text link
    We relate two formerly independent areas: Formal concept analysis and logic of domains. We will establish a correspondene between contextual attribute logic on formal contexts resp. concept lattices and a clausal logic on coherent algebraic cpos. We show how to identify the notion of formal concept in the domain theoretic setting. In particular, we show that a special instance of the resolution rule from the domain logic coincides with the concept closure operator from formal concept analysis. The results shed light on the use of contexts and domains for knowledge representation and reasoning purposes.Comment: 14 pages. We have rewritten the old version according to the suggestions of some referees. The results are the same. The presentation is completely differen

    Influence of Context on Decision Making during Requirements Elicitation

    Get PDF
    Requirements engineers should strive to get a better insight into decision making processes. During elicitation of requirements, decision making influences how stakeholders communicate with engineers, thereby affecting the engineers' understanding of requirements for the future information system. Empirical studies issued from Artificial Intelligence offer an adequate groundwork to understand how decision making is influenced by some particular contextual factors. However, no research has gone into the validation of such empirical studies in the process of collecting needs of the future system's users. As an answer, the paper empirically studies factors, initially identified by AI literature, that influence decision making and communication during requirements elicitation. We argue that the context's structure of the decision should be considered as a cornerstone to adequately study how stakeholders decide to communicate or not a requirement. The paper proposes a context framework to categorize former factors into specific families, and support the engineers during the elicitation process.Comment: appears in Proceedings of the 4th International Workshop on Acquisition, Representation and Reasoning with Contextualized Knowledge (ARCOE), 2012, Montpellier, France, held at the European Conference on Artificial Intelligence (ECAI-12

    Hilbert Space Quantum Mechanics is Contextual (Reply to R. B. Griffiths)

    Get PDF
    In a recent paper Griffiths [38] has argued, based on the consistent histories interpretation, that Hilbert space quantum mechanics (QM) is noncontextual. According to Griffiths the problem of contextuality disappears if the apparatus is "designed and operated by a competent experimentalist" and we accept the Single Framework Rule (SFR). We will argue from a representational realist stance that the conclusion is incorrect due to the misleading understanding provided by Griffiths to the meaning of quantum contextuality and its relation to physical reality and measurements. We will discuss how the quite general incomprehension of contextuality has its origin in the "objective-subjective omelette" created by Heisenberg and Bohr. We will argue that in order to unscramble the omelette we need to disentangle, firstly, representational realism from naive realism, secondly, ontology from epistemology, and thirdly, the different interpretational problems of QM. In this respect, we will analyze what should be considered as Meaningful Physical Statements (MPS) within a theory and will argue that Counterfactual Reasoning (CR) -considered by Griffiths as "tricky"- must be accepted as a necessary condition for any representational realist interpretation of QM. Finally we discuss what should be considered as a problem (and what not) in QM from a representational realist perspective.Comment: arXiv admin note: substantial text overlap with arXiv:1502.0531

    Violation of Bell's inequalities in a quantum realistic framework

    Full text link
    We discuss the recently observed "loophole free" violation of Bell's inequalities in the framework of a physically realist view of quantum mechanics, which requires that physical properties are attributed jointly to a system, and to the context in which it is embedded. This approach is clearly different from classical realism, but it does define a meaningful "quantum realism" from a general philosophical point of view. Consistently with Bell test experiments, this quantum realism embeds some form of non-locality, but does not contain any action at a distance, in agreement with quantum mechanics.Comment: This article is closely related to arxiv:1409.2120, with some parts condensed and others expanded, in order to spell out how the present approach explains quantum non-locality. In v2 some clarifications and improvements following referees remark

    A constructive modal semantics for contextual verification

    Get PDF
    This paper introduces a non-standard semantics for a modal version of constructive KT for contextual (assumptions-based) verification. The modal fragment expresses verifiability under extensions of contexts, enjoying adapted validity and (weak) monotonicity properties depending on satisfaction of the contextual data

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system
    • …
    corecore