53 research outputs found

    Using a cognitive prosthesis to assist foodservice managerial decision-making

    Get PDF
    The artificial intelligence community has been notably unsuccessful in producing intelligent agents that think for themselves. However, there is an obvious need for increased information processing power in real life situations. An example of this can be witnessed in the training of a foodservice manager, who is expected to solve a wide variety of complex problems on a daily basis. This article explores the possibility of creating an intelligence aid, rather than an intelligence agent, to assist novice foodservice managers in making decisions that are congruent with a subject matter expert\u27s decision schema

    Mixed reality entertainment with wearable computers

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Adaptive Text Entry for Mobile Devices

    Get PDF

    Wearable computing and contextual awareness

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.Includes bibliographical references (leaves 231-248).Computer hardware continues to shrink in size and increase in capability. This trend has allowed the prevailing concept of a computer to evolve from the mainframe to the minicomputer to the desktop. Just as the physical hardware changes, so does the use of the technology, tending towards more interactive and personal systems. Currently, another physical change is underway, placing computational power on the user's body. These wearable machines encourage new applications that were formerly infeasible and, correspondingly, will result in new usage patterns. This thesis suggests that the fundamental improvement offered by wearable computing is an increased sense of user context. I hypothesize that on-body systems can sense the user's context with little or no assistance from environmental infrastructure. These body-centered systems that "see" as the user sees and "hear" as the user hears, provide a unique "first-person" viewpoint of the user's environment. By exploiting models recovered by these systems, interfaces are created which require minimal directed action or attention by the user. In addition, more traditional applications are augmented by the contextual information recovered by these systems. To investigate these issues, I provide perceptually sensible tools for recovering and modeling user context in a mobile, everyday environment. These tools include a downward-facing, camera-based system for establishing the location of the user; a tag-based object recognition system for augmented reality; and several on-body gesture recognition systems to identify various user tasks in constrained environments. To address the practicality of contextually-aware wearable computers, issues of power recovery, heat dissipation, and weight distribution are examined. In addition, I have encouraged a community of wearable computer users at the Media Lab through design, management, and support of hardware and software infrastructure. This unique community provides a heightened awareness of the use and social issues of wearable computing. As much as possible, the lessons from this experience will be conveyed in the thesis.by Thad Eugene Starner.Ph.D

    The memory glasses : wearable computing for just-in-time memory support

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (p. 173-181).This thesis documents a body of wearable computing research surrounding the development of the Memory Glasses, a new type of proactive memory support technology. The Memory Glasses combines features of existing memory support technologies (such as PDAs) with a context aware delivery system and a low-attention cuing interface. The goal of the Memory Glasses is to provide effective just-in-time memory support while mitigating some of the distraction and over-reliance problems that can result from the use of more conventional memory support technology. The Memory Glasses research is a synthesis of the author's six years of work on wearable computing. This thesis documents the author's intellectual contributions in the areas of wearable computing hardware architectures, software architectures, and human-computer interaction. Specific topics include the MIThril wearable computing research platform, the Enchantment middlewear, the MIThril Real-Time Context Engine, the author's modified Seven Stages of Action model and five principles of low-attention wearable human computer interaction, as well as the author's research in the use of subliminal cuing for just-in-time memory support. Although memory support is the unifying theme of this dissertation, the author's research has seen application in a number of other areas, including the mapping of social networks, research in human physiology and biomedical applications, and group situation awareness and command, control, and communications. A selection of these applications is briefly presented as support for the importance of the author's intellectual contributions.by Richard W. DeVaul.Ph.D

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    Wearable and automotive systems for affect recognition from physiology

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 152-158).Novel systems and algorithms have been designed and built to recognize affective patterns in physiological signals. Experiments were conducted for evaluation of the new systems and algorithms in three types of settings: a highly constrained laboratory setting, a largely unconstrained ambulatory environment, and a less unconstrained automotive environment. The laboratory experiment was designed to test for the presence of unique physiological patterns in each of eight different emotions given a relatively motionless seated subject, intentionally feeling and expressing these states. This experiment generated a large dataset of physiological signals containing many day-to-day variations, and the proposed features contributed to a success rate of 81% for discriminating all eight emotions and rates of up to 100% for subsets of emotion based on similar emotion qualities. New wearable computer systems and sensors were developed and tested on subjects who walked, jogged, talked, and otherwise went about daily activities. Although in the unconstrained ambulatory setting, physical motion often overwhelmed affective signals, the systems developed in this thesis are currently useful as activity monitors, providing an image diary correlated with physiological signals. Automotive systems were used to detect physiological stress during the natural but physically driving task. This generated a large database of physiological signals covering over 36 hours of driving. Algorithms for detecting driver stress achieved a recognition rates of 96% using stress ratings based on task conditions for validation and 89% accuracy using questionnaires analysis for validation. Further results in which metrics of stress from video tape annotations of the drive were correlated with physiological features showed highly significant correlations (up to r = .77 for over 4000 samples). Together, these three experiments show a range of success in recognizing affect from physiology, showing high recognition rates in somewhat constrained conditions and highlighting the need for more automatic context sensing in unconmore automatic context sensing in unconstrained conditions. The recognition rates obtained thus far lend support to the hypothesis that many emotional differences can be automatically discriminated in patterns of physiological changes.by Jennifer A. Healey.Ph.D

    Portable product miniaturization and the ergonomic threshold

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1997.Includes bibliographical references (p. 124-125).by David H. Levy.Ph.D
    corecore