3,331 research outputs found

    Unlocking the deployment of spectrum sharing with a policy enforcement framework

    Get PDF
    Spectrum sharing has been proposed as a promising way to increase the efficiency of spectrum usage by allowing incumbent operators (IOs) to share their allocated radio resources with licensee operators (LOs), under a set of agreed rules. The goal is to maximize a common utility, such as the sum rate throughput, while maintaining the level of service required by the IOs. However, this is only guaranteed under the assumption that all “players”respect the agreed sharing rules. In this paper, we propose a comprehensive framework for licensed shared access (LSA) networks that discourages LO misbehavior. Our framework is built around three core functions: misbehavior detection via the employment of a dedicated sensing network; a penalization function; and, a behavior-driven resource allocation. To the best of our knowledge, this is the first time that these components are combined for the monitoring/policing of the spectrum under the LSA framework. Moreover, a novel simulator for LSA is provided as an open access tool, serving the purpose of testing and validating our proposed techniques via a set of extensive system-level simulations in the context of mobile network operators, where IOs and several competing LOs are considered. The results demonstrate that violation of the agreed sharing rules can lead to a great loss of resources for the misbehaving LOs, the amount of which is controlled by the system. Finally, we promote that including a policy enforcement function as part of the spectrum sharing system can be beneficial for the LSA system, since it can guarantee compliance with the spectrum sharing rules and limit the short-term benefits arising from misbehavior

    Multiobjective auction-based switching-off scheme in heterogeneous networks: to bid or not to bid?

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The emerging data traffic demand has caused a massive deployment of network infrastructure, including Base Stations (BSs) and Small Cells (SCs), leading to increased energy consumption and expenditures. However, the network underutilization during low traffic periods enables the Mobile Network Operators (MNOs) to save energy by having their traffic served by third party SCs, thus being able to switch off their BSs. In this paper, we propose a novel market approach to foster the opportunistic utilization of the unexploited SCs capacity, where the MNOs, instead of requesting the maximum capacity to meet their highest traffic expectations, offer a set of bids requesting different resources from the third party SCs at lower costs. Motivated by the conflicting financial interests of the MNOs and the third party, the restricted capacity of the SCs that is not adequate to carry the whole traffic in multi-operator scenarios, and the necessity for energy efficient solutions, we introduce a combinatorial auction framework, which includes i) a bidding strategy, ii) a resource allocation scheme, and iii) a pricing rule. We propose a multiobjective framework as an energy and cost efficient solution for the resource allocation problem, and we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved. In addition, we investigate the conditions under which the MNOs and the third party companies should take part in the proposed auction.Peer ReviewedPostprint (author's final draft

    Social and AR Applications Using the User’s Context and User Generated Content

    Get PDF
    The core business of Mobile Network Operators (MNO) has moved from network management and phone services to service providing. In contrast to Information Communication Technology (ICT) service providers, MNOs handle large amounts of their customers’ context data and generated content, which can be used to bring value-added services to customers and therefore, generate solid revenues. Given this scenario, this paper describes how Telecom Italia (a major Italian MNO) has prototyped such type of services after a deep research performed in the context-awareness and context management field and using its user-generated content management facilities in federation with other platforms and systems

    Dynamic network slice resources reconfiguration in heterogeneous mobility environments

    Get PDF
    This paper proposes a framework that optimizes network slicing provisioning in over‐the‐top (OTT) scenarios, by reducing occupied resources of slices from where the User Equipment (UE) handovers from. To achieve this, the framework leverages an existing Software Defined Networking (SDN)‐based UE virtualization scheme, which allows to instantiate in the cloud a representation of the physical device and its current connectivity context. This scheme was extended with the ability to anchor the UE's datapath and mask the underlying slices in a single end‐to‐end slice, allowing handover mechanisms between slices to become transparent to involved endpoints. This framework was implemented and evaluated in an experimental testbed where the UE moves between Wi‐Fi and long‐term evolution (LTE) slices, with results showing that upstream and downstream throughput is dynamically adapted to the UE requirements prior to the handover.publishe

    Next Generation intelligent transport systems: a multidimensional framework for eCall implementation

    Get PDF
    The present use of Intelligent Transport Systems (ITS) can be defined as a hybrid between information and communication technologies to improve different aspects of mobility and transport. The potential value of the next generation ITS can be assessed as an integrated array of services satisfying customer preferences, optimising policy objectives and generating business revenues. Based on industry interviews, the analysis of a traffic information service and an 'emergency call' service permitted the multidimensional appreciation of deployment scenarios of these next generation Intelligent Transport Systems. The implementation of an on-board emergency call (eCall) is an ITS service which has already been deployed in different countries. Several private and public initiatives have already resulted into preliminary and purely private eCall services, mainly proprietary to the car industry, each with different underlying revenue and cost models. On the European level, a Memorandum of Understanding (MoU) instigated on the national enactment to implement a standardised eCall system. The research question involved in this paper is whether the specified ecosystem for the Belgian case confirms that all stakeholders have a particular interest in the effectuation of eCall. The findings are the result of a case study performed within the Flemish IBBT research project NextGenITS. --
    • 

    corecore