5,326 research outputs found

    A Literature Survey of Cooperative Caching in Content Distribution Networks

    Full text link
    Content distribution networks (CDNs) which serve to deliver web objects (e.g., documents, applications, music and video, etc.) have seen tremendous growth since its emergence. To minimize the retrieving delay experienced by a user with a request for a web object, caching strategies are often applied - contents are replicated at edges of the network which is closer to the user such that the network distance between the user and the object is reduced. In this literature survey, evolution of caching is studied. A recent research paper [15] in the field of large-scale caching for CDN was chosen to be the anchor paper which serves as a guide to the topic. Research studies after and relevant to the anchor paper are also analyzed to better evaluate the statements and results of the anchor paper and more importantly, to obtain an unbiased view of the large scale collaborate caching systems as a whole.Comment: 5 pages, 5 figure

    On Optimal and Fair Service Allocation in Mobile Cloud Computing

    Get PDF
    This paper studies the optimal and fair service allocation for a variety of mobile applications (single or group and collaborative mobile applications) in mobile cloud computing. We exploit the observation that using tiered clouds, i.e. clouds at multiple levels (local and public) can increase the performance and scalability of mobile applications. We proposed a novel framework to model mobile applications as a location-time workflows (LTW) of tasks; here users mobility patterns are translated to mobile service usage patterns. We show that an optimal mapping of LTWs to tiered cloud resources considering multiple QoS goals such application delay, device power consumption and user cost/price is an NP-hard problem for both single and group-based applications. We propose an efficient heuristic algorithm called MuSIC that is able to perform well (73% of optimal, 30% better than simple strategies), and scale well to a large number of users while ensuring high mobile application QoS. We evaluate MuSIC and the 2-tier mobile cloud approach via implementation (on real world clouds) and extensive simulations using rich mobile applications like intensive signal processing, video streaming and multimedia file sharing applications. Our experimental and simulation results indicate that MuSIC supports scalable operation (100+ concurrent users executing complex workflows) while improving QoS. We observe about 25% lower delays and power (under fixed price constraints) and about 35% decrease in price (considering fixed delay) in comparison to only using the public cloud. Our studies also show that MuSIC performs quite well under different mobility patterns, e.g. random waypoint and Manhattan models

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN
    • …
    corecore