1,075 research outputs found

    A look inside the Pl@ntNet experience

    Get PDF
    International audiencePl@ntNet is an innovative participatory sensing platform relying on image-based plants identification as a mean to enlist non-expert contributors and facilitate the production of botanical observation data. One year after the public launch of the mobile application, we carry out a self-critical evaluation of the experience with regard to the requirements of a sustainable and effective ecological surveillance tool. We first demonstrate the attractiveness of the developed multimedia system (with more than 90K end-users) and the nice self-improving capacities of the whole collaborative workflow. We then point out the current limitations of the approach towards producing timely and accurate distribution maps of plants at a very large scale. We discuss in particular two main issues: the bias and the incompleteness of the produced data. We finally open new perspectives and describe upcoming realizations towards bridging these gaps

    On construction, performance, and diversification for structured queries on the semantic desktop

    Get PDF
    [no abstract

    Automatic detection of geospatial objects using multiple hierarchical segmentations

    Get PDF
    Cataloged from PDF version of article.The object-based analysis of remotely sensed imagery provides valuable spatial and structural information that is complementary to pixel-based spectral information in classi- fication. In this paper, we present novel methods for automatic object detection in high-resolution images by combining spectral information with structural information exploited by using image segmentation. The proposed segmentation algorithm uses morphological operations applied to individual spectral bands using structuring elements in increasing sizes. These operations produce a set of connected components forming a hierarchy of segments for each band. A generic algorithm is designed to select meaningful segments that maximize a measure consisting of spectral homogeneity and neighborhood connectivity. Given the observation that different structures appear more clearly at different scales in different spectral bands, we describe a new algorithm for unsupervised grouping of candidate segments belonging to multiple hierarchical segmentations to find coherent sets of segments that correspond to actual objects. The segments are modeled by using their spectral and textural content, and the grouping problem is solved by using the probabilistic latent semantic analysis algorithm that builds object models by learning the object-conditional probability distributions. The automatic labeling of a segment is done by computing the similarity of its feature distribution to the distribution of the learned object models using the Kullback–Leibler divergence. The performances of the unsupervised segmentation and object detection algorithms are evaluated qualitatively and quantitatively using three different data sets with comparative experiments, and the results show that the proposed methods are able to automatically detect, group, and label segments belonging to the same object classes
    • …
    corecore