
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Fall November 2014

SEARCHING BASED ON QUERY DOCUMENTS SEARCHING BASED ON QUERY DOCUMENTS

Youngho Kim
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kim, Youngho, "SEARCHING BASED ON QUERY DOCUMENTS" (2014). Doctoral Dissertations. 218.
https://doi.org/10.7275/z1t4-z083 https://scholarworks.umass.edu/dissertations_2/218

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32437878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/z1t4-z083
https://scholarworks.umass.edu/dissertations_2/218?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

SEARCHING BASED ON QUERY DOCUMENTS

A Dissertation Presented

by

YOUNGHO KIM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2014

School of Computer Science

c⃝ Copyright by Youngho Kim 2014

All Rights Reserved

SEARCHING BASED ON QUERY DOCUMENTS

A Dissertation Presented

by

YOUNGHO KIM

Approved as to style and content by:

W. Bruce Croft, Chair

James Allan, Member

Benjamin Marlin, Member

Daeyoung Kim, Member

Lori A. Clarke, Chair
School of Computer Science

To those whom I love and those who love me.

ACKNOWLEDGMENTS

Completing this thesis, I appreciate the contributions from various people such as

professors, colleagues, researchers, and friends. Among them, I especially thank my

advisor, Professor W. Bruce Croft. Without his effort, I would not have been suc-

cessful in my doctoral study. As many his former students said, Bruce is the greatest

advisor and the most innovative researcher, who provided insightful suggestions for

my research and inspired me to devise creative solutions. Moreover, I have learned

the methods for thinking deeply, approaching to core problems, and elaborating ideas.

The lessons from him would be the basis to improve my future researches. Again, I

appreciate his guidance and contribution for my Ph.D.

In addition, I really like to thank the committee members, Professor James Allan,

Ben Marlin, and Daeyoung Kim. Their comments on my thesis are precious and have

really enhanced my work. I also thank Professor R. Manmatha who has helped to

initiate this work and served for the proposal.

I also thank the fellows in CIIR; Jangwon Seo, Jin-young Kim, Jae-hyun Park,

Myung-ha Jang, Xiabing Xue, Michael Bendersky, Henry Feild, Sam Huston, Mostafa

Keikha, Jeff Dalton, Van Dang, Elif Aktolga, Xing Yi, Shiri Dori-Hacohen, Jiepu

Jiang, I. Zeki Yalniz, Chia-Jung Lee, Weize Kong, and others.

And thanks to all the friends in UMass, e.g., Yeon-sup Lim and Junghee Jo.

This work was supported in part by the Center for Intelligent Information Re-

trieval, in part by ARRA NSF IIS-9014442, in part by NSF CLUE IIS-0844226, and

in part by NSF grant ♯IIS-0534383. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the authors and do not necessarily

reflect those of the sponsor.

v

ABSTRACT

SEARCHING BASED ON QUERY DOCUMENTS

SEPTEMBER 2014

YOUNGHO KIM

B.Sc., INHA UNIVERSITY, INCHEON, SOUTH KOREA

M.Sc., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY,

DAEJEON, SOUTH KOREA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Advised by: Professor W. Bruce Croft

Searches can start with query documents where search queries are formulated

based on document-level descriptions. This type of searches is more common in

domain-specific search environments. For example, in patent retrieval, one major

search task is finding relevant information for new (query) patents, and search queries

are generated from the query patents One unique characteristic of this search is that

the search process can take longer and be more comprehensive, compared to general

web search. As an example, to complete a single patent retrieval task, a typical user

may generate 15 queries and examine more than 100 retrieved documents. In these

search environments, searchers need to formulate multiple queries based on query

documents that are typically complex and difficult to understand.

In this work, we describe methods for automatically generating queries and di-

versifying search results based on query documents, which can be used for query

vi

suggestion and for improving the quality of retrieval results. In particular, we focus

on resolving three main issues related to query document-based searches: (1) query

generation, (2) query suggestion and formulation, and (3) search result diversifica-

tion. Automatic query generation helps users by reducing the burden of formulating

queries from query documents. Using generated queries as suggestions is investigated

as a method of presenting alternative queries. Search result diversification is impor-

tant in domain-specific search because of the nature of the query documents. Since

query documents generally contain long complex descriptions, diverse query topics

can be identified, and a range of relevant documents can be found that are related to

these diverse topics.

The proposed methods we study in this thesis explicitly address these three issues.

To solve the query generation issue, we use binary decision trees to generate effective

Boolean queries and labeling propagation to formulate more effective phrasal-concept

queries. In order to diversify search results, we propose two different approaches:

query-side and result-level diversification. To generate diverse queries, we identify

important topics from query documents and generate queries based on the identified

topics. For result-level diversification, we extract query topics from query documents,

and apply state-of-the-art diversification algorithms based on the extracted topics. In

addition, we devise query suggestion techniques for each query generation method.

To demonstrate the effectiveness of our approach, we conduct experiments for

various domain-specific search tasks, and devise appropriate evaluation measures for

domain-specific search environments.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiv

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Issues . 2
1.3 Query Generation Frameworks . 5
1.4 Query Suggestion Applications . 7
1.5 Search Result Diversification Methods . 8
1.6 Summary . 9
1.7 Contributions . 9
1.8 Organization . 10

2. RELATED WORK . 11

2.1 Overview . 11
2.2 Query Generation . 11
2.3 Query Expansion . 13
2.4 Query Suggestion . 15
2.5 Search Result Diversification . 17
2.6 Summary . 20

3. EVALUATION FRAMEWORKS . 23

3.1 Overview . 23
3.2 Domain-specific Search Tasks . 23
3.3 Test Collection . 24

viii

3.4 Assumptions for Experiments . 26
3.5 Baselines . 26

3.5.1 Query Generation . 27
3.5.2 Query Suggestion . 31
3.5.3 Search Result Diversification: . 32

3.6 Retrieval Models . 32
3.7 Evaluation Metrics . 36

3.7.1 Conventional Evaluation Metrics . 36
3.7.2 Diversity Metrics . 40

4. BOOLEAN QUERY GENERATION . 42

4.1 Overview . 42
4.2 Problem Formulation . 43
4.3 Decision Tree-based Boolean Query Generation . 44
4.4 Boolean Query Ranking . 48

4.4.1 Learning-to-Rank Boolean Queries . 48
4.4.2 Features . 49

4.5 Evaluation . 51

4.5.1 Experimental Setup . 51
4.5.2 Results . 53

4.5.2.1 Generation Performance . 53
4.5.2.2 Retrieval Performance . 55
4.5.2.3 Qualitative Analysis . 57

4.6 Summary . 58

5. PHRASAL-CONCEPT QUERY GENERATION 60

5.1 Overview . 60
5.2 Problem Formulation . 62
5.3 Phrasal-Concept Query Generation . 63

5.3.1 Extracting Candidate Phrasal-Concepts . 65
5.3.2 Identifying Key Phrasal-Concepts . 66
5.3.3 Constructing Phrasal-Concept Queries . 70

5.4 Retrieval Experiments . 70

5.4.1 Experimental Setup . 70

ix

5.4.2 Baseline Query Investigation . 71
5.4.3 Optimizing Parameters . 73
5.4.4 Retrieval Results . 74
5.4.5 Further Analysis . 77

5.5 User Experiments . 78

5.5.1 Survey Settings . 78
5.5.2 Survey Results . 79

5.6 Summary . 82

6. DIVERSE QUERY GENERATION . 83

6.1 Overview . 83
6.2 Problem Formulation . 83
6.3 Diverse Query Generation Framework . 84

6.3.1 Query Aspect Identification . 85
6.3.2 Diverse Query Generation . 88

6.4 Diverse Query Suggestion . 88
6.5 Evaluation . 91

6.5.1 Experimental Setup . 91
6.5.2 Retrieval Results . 92
6.5.3 Further Analysis . 94

6.6 Summary . 95

7. SEARCH RESULT DIVERSIFICATION . 97

7.1 Overview . 97
7.2 Problem Formulation . 98
7.3 Diversification Framework . 99
7.4 Automatic Topic Phrase Identification . 101

7.4.1 Greedy Approximation for Dominating Set Problem 101
7.4.2 Learning-to-rank Topic Identification . 103

7.4.2.1 Ranking Model . 103
7.4.2.2 Ranking Features . 105

7.5 Evaluation . 108

7.5.1 Experimental Setup . 108
7.5.2 Retrieval Results . 111

x

7.5.3 Feature Analysis . 115
7.5.4 Qualitative Analysis . 116

7.6 Summary . 118

8. CONCLUSIONS . 119

8.1 Overview . 119
8.2 Summary . 119
8.3 Contributions . 122
8.4 Future Work . 124

8.4.1 Improvements for Boolean Query Generation 124
8.4.2 Improvements for Phrasal-Concept Query Generation 125
8.4.3 Improvements for Diverse Query Generation 125
8.4.4 Improvements for Search Result Diversification 126

BIBLIOGRAPHY . 127

xi

LIST OF TABLES

Table Page

1.1 Query Patent Example . 5

3.1 Retrieval Features . 35

4.1 Two categories of Boolean Query Ranking Features 50

4.2 Boolean Query Length Statistics . 52

4.3 Boolean Query Generation Performance for Patent Domain 54

4.4 Boolean Query Generation Performance for Medical Domain 54

4.5 Boolean Query Ranking Performance . 56

4.6 Examples of Generated Boolean Queries . 58

5.1 Concept-specific Retrieval Features . 71

5.2 Baseline Retrieval Results . 72

5.3 Best Query Retrieval Results for ACL and OHSUMED 76

5.4 Initial Query Example . 77

5.5 Improved or Degraded Queries against the Best Baseline 77

5.6 Examples of 8 Query Suggestions . 81

5.7 Average Number of Responses . 82

6.1 Features for Similarity Learning . 86

6.2 Query Aspect Evaluation . 92

6.3 Session Evaluation . 93

xii

6.4 Diverse Query Suggestion Example . 96

7.1 Four Types of Ranking Features . 105

7.2 Retrieval Results using Relevance Metrics . 112

7.3 Diversification Results . 114

7.4 Feature Analysis Results . 116

7.5 Examples of Topic Phrase Identification . 117

8.1 Boolean Query Retrieval Performance . 120

8.2 Phrasal-Concept Query Retrieval Performance using ACL 120

8.3 Retrieval Performance of Diverse Queries . 121

8.4 Diversification Performance by Relevance Metrics 121

8.5 Diversification Performance by Diversity Metrics . 122

xiii

LIST OF FIGURES

Figure Page

2.1 Query Generation and Diversification Process . 20

3.1 PRES Curve . 37

4.1 Boolean Query Generation Framework . 44

4.2 Boolean Query Generation Example . 45

5.1 Phrasal-Concept Query Generation Example . 64

5.2 NSDCG@100 of the Top 10 Concept Queries . 74

5.3 User Survey Example . 79

6.1 Diverse Query Generation Framework . 85

6.2 Average Number of New Relevant Documents for Patent Domain 95

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Searches in specific domains are very different from general web search. Domain-

specific searches (e.g., patent retrieval, legal search, academic literature search and

medical information retrieval) have very specific search requirements and environ-

ments, and sometimes well-known Information Retrieval (IR) techniques, proven ef-

fective for web search, are not successful. For example, in patent retrieval, typical

query expansion methods (e.g.,[64, 82]) are less effective [38]. To successfully accom-

plish search tasks in these domains, search techniques should be designed for their

unique search characteristics.

One unique characteristic of domain-specific IR is that searching based on query

documents is more common. That is, search queries are typically formulated based

on document-level descriptions (i.e., query documents). As an example, prior-art

search [36] involves finding past patents that may conflict with new patent appli-

cations; in academic literature search [10], academic authors need to find relevant

research papers that should be cited in their work. In these search tasks, users need

to formulate search queries, after reading query documents, e.g., patent examiners

generate queries from a new patent to validate its patentability. However, formulat-

ing effective queries is a significant burden for users because query documents are

quite long and difficult to understand. In patent retrieval, for example, a patent

document contains 3,900 terms on average [48]. In addition, to protect the invention

and extend the coverage, the content in a patent document is complex, and the au-

1

thors tend to use ambiguous words and expressions [107]. Note that in this thesis,

we define domain-specific IR or domain-specific search as the search tasks based on

query documents. Since searching based on query documents is more common and

typical in many domain-specific IR tasks, which is not easily observed in web search

environments, we conveniently use the terms domain-specific IR and domain-specific

search to represent query documents-based searches.

Another typical characteristic of domain-specific IR is that the search process

can take much longer and be more comprehensive. To complete a single task, more

queries are used and more search results are examined. According to [53], patent

examiners generally spend about 12 hours to complete an invalidity task by examining

approximately 100 patent documents retrieved by 15 different queries on average,

whereas in web search, people use fewer queries and examine only a few retrieved

documents; 81.3% of web search users only issue a single query in a search session,

and 44.5% of them examine only one retrieved document [111].

Given that users in domain-specific searches need to formulate more search queries

from long documents and examine more retrieval results, we propose to reduce the dif-

ficulty of formulating queries and improve the quality of retrieval results by studying

automatic query generation and search result diversification based on query docu-

ments.

1.2 Issues

In this work, we propose methods to automatically generate queries and diversify

search results based on query documents. To improve the effectiveness of the proposed

methods, we focus on resolving three main issues related to domain-specific searches:

(1) query generation, (2) query suggestion and formulation, and (3) search result

diversification. These issues are crucial for improving the search quality of domain-

specific IR, and the proposed methods address them explicitly.

2

First, we propose automatic query generation methods for domain-specific searches,

which help users by reducing the burden of formulating queries from query documents.

In prior-art search, there has been some previous work on generating effective queries

from query patents (i.e., query documents) (e.g., [9, 38, 75, 106]). Since using full

texts of query patents as queries is less effective, to generate effective queries, these

studies have selected top ranked terms (predicted to be effective) extracted from

query patents. However, most of this work can be only applied to patent search envi-

ronments because patent-specific structures (e.g., International Patent Classification

(IPC) codes [75] and patent section information (such as claim, background, and sum-

mary) [9, 106]) are a significant part of the generation. In our work, we assume more

general settings where only query documents are provided so that proposed methods

can be adopted in any domains of interest.

Second, we need to consider the suggestion of generated queries and their rep-

resentation. In previous work, query generation techniques are mainly designed for

generating effective queries which make the search of relevant documents more effi-

cient. To maximize the effectiveness of queries, long and complex weighted queries

are typically generated (e.g., #weight(0.1099 parse 0.1085 dependency 0.0431 label

0.0321 arc 0.0186 head . . .)). This approach can be effective if generated queries

are automatically executed for retrieval. However, such complex queries can be less

useful when query suggestion is required in domain-specific search environments. For

example, Tseng and Wu [98] indicated that the provision of suggested search vocab-

ulary would be helpful in patent search. In domain-specific search tasks, many users

are search professionals (e.g., patent examiners in prior-art search) and they need

to manipulate search queries to retrieve more relevant documents. In addition, they

need to identify how search results are obtained. Thus, we assume that generated

queries can be examined before retrieval (i.e., query suggestion), and this setting may

be more practical to help domain-specific search users (we discuss more about query

3

suggestion in Chapter 1.4). In addition to this, professional users often prefer spe-

cific forms of queries that are particularly useful for their search tasks. For example,

Boolean queries (e.g., {signal ∧ analog}) are common in patent retrieval, and many

patent engineers expect to use Boolean operators in their queries [53] because of their

ease of manipulation and self-documentation in that they define precisely the set of

documents that are retrieved. Another example is that phrasal-concept queries (e.g.,

{“structural paraphrase generation” “large corpora” “multiple sequence alignment”})

are necessary in academic literature search because phrasal concepts are frequently

used in academic papers and natural to users (e.g., academic authors).

Third, diversifying search results is important for domain-specific IR. In general,

search result diversification is the process of re-ordering initial retrieval results so that

the final ranked list can include more diverse aspects (or topics) associated with the

query. In web search, this technique is adopted for clarifying vague information needs,

e.g., a web query “slate”’ can represent one of a broad range of topics. However, in

domain-specific searches, we attempt to improve retrieval effectiveness by covering

more of the topics described in query documents. For example, in prior-art search,

a query patent is very long and includes complex structure [32]. In that structure,

diverse claims are specified, and background patents related to the application are

described. In addition, patent applications can describe multiple components. Thus,

we can find a range of topics in a query patent, and the relevant documents can

pertain to some or all of these topics.

Table 1.1 shows an example query patent and its relevant documents. In this ex-

ample, the patent application describes several important topics such as usage profile,

BIOS, operating system, etc. We can group similar relevant documents pertaining to

each topic. For example, R1 and R2 are related to a topic BIOS, whereas R3 and R4

refers to operating system. In addition, R5 describes a method for controlling network

access, which relate to another query topic, i.e., profile server. Based on these topics,

4

Table 1.1: Query Patent Example

Query Patent
Title: Method and apparatus for providing content on a computer system
based on usage profile.
Abstract: A method and apparatus for determining a
computer system usage profile. A basic input output system (BIOS) module
and/or an operating system module obtain computer system usage profile
information by tracking events such as the frequency of re-boots, the time
required to boot-up and shut-down the operating system . . . data is collected
and communicated to a profile server . . .

List of Relevant Documents
No. Title Topic
R1 Extended BIOS adapted to establish remote communication

for diagnostics and repair.
BIOS

R2 Extended BIOS emulation of a hard file image as a diskette.
R3 Operating System architecture with reserved memory space

resident program code identified in file system name space.
Operating
System

R4 Method for loading an Operating System through a network.
R5 Method and apparatus for controlling network and work-

station access.
Profile
Server

.

the retrieval result can be diversified, meaning that the ranked documents can be

optimized to cover the range of topics. Accordingly, from such a diversified search

result, the users can easily retrieve relevant documents.

1.3 Query Generation Frameworks

All of the issues described in the previous section need to be resolved for improving

users’ experience in domain-specific searches. With this in mind, we introduce our

approaches to automatic query generation based on query documents. We address

the issues by proposing three different query generation models as follows.

We first propose a method of generating effective Boolean queries, described in

[58]. For a number of reasons, Boolean queries are preferred in professional search

(where search users are search professionals, e.g., patent examiners and information

5

specialists in companies and law firms). For example, in patent search, previous work

[53] revealed that the use of Boolean operators is one of the most important features

to formulate effective queries from the perspective of patent professionals. In our

model, we generate Boolean queries by exploiting decision trees learned from pseudo-

labeled documents, i.e., the top k documents initially retrieved by query documents.

We learn a binary decision tree from the pseudo-relevant documents so that the

decision tree could determine whether a document is pseudo-relevant or not. Then,

each positive decision rule, i.e., a path from the root to a positive leaf node indicating

pseudo-relevance, can be the basis of a Boolean query.

Another model that we propose is an automatic phrasal-concept query generation,

using the domain of academic literature search [59]. Academic papers frequently

use phrases to describe their key ideas, and search users (e.g., authors) are familiar

with phrasal concepts. So, we test the assumption that queries generated using

phrasal concepts would be more effective than other baseline methods. From a query

document, we identify “key concepts” – more effective concepts for finding relevant

documents – by using the labeling propagation algorithm [114] which propagates

retrieval effectiveness (labels) of the baseline keyword query to associated candidate

phrases. Note that the baseline query only contains (unigram) words and is generated

by using previous query generation methods (e.g., [47]), whereas phrasal concepts

consist of noun phrases longer than unigram words.

Lastly, we study the problem of diverse query generation based on query docu-

ments [57]. As described in the previous section, diversified search results that can

cover multiple query topics can be useful for the users to ease retrieving relevant doc-

uments. To do this, we propose a query-side diversification method which generates

multiple queries related to diverse query aspects. Specifically, we assume that a query

document can include multiple query topics, and defined a “query topic” as a set of

related terms from a query document. Given a query document, we identify n differ-

6

ent query topics (i.e., term sets) by applying term clustering algorithms (e.g., spectral

clustering [101]) to the terms from the document. Afterwards, we learn decision trees

by using n distinct sets of pseudo-relevant documents (each of which is obtained by

the terms in a query topic), and decision trees to generate diverse queries relevant to

the identified topics.

1.4 Query Suggestion Applications

Query suggestion is an effective and practical way to help users formulate queries

[6, 54]. In a typical query suggestion process, a list of alternative queries is suggested

to a user, after the user inputs an initial query [94]. Query suggestion has been

widely discussed in papers and has become part of many commercial systems (e.g.,

[41, 78, 95]). Domain-specific IR has begun to adopt query suggestion techniques

(e.g., [58, 70]). Following this, we generate multiple queries from query documents,

and then select a reasonable number of effective queries as suggestions.

To effectively help users in domain-specific searches, query suggestion is an es-

sential and promising application. First, given a large number of generated queries,

users can only examine a relatively small number of queries (e.g., 5 to 10 queries),

and selecting effective queries is particularly important. Second, we generate diverse

queries, and are able to provide diverse suggestions, which can expedite searches. Em-

phasizing diverse query suggestion is important because otherwise the system may

suggest multiple similar queries that would produce near-duplicate search results. In

other words, suggesting similar queries can prevent searchers completing their search

tasks efficiently, e.g., patent examiners waste time examining similar results instead

of using additional queries that can retrieve other relevant patents. Therefore, in this

work, we develop query suggestion applications based on the queries generated by

our frameworks. To highlight the effectiveness of our query generation methods, we

7

evaluate the suggestion systems by comparing with other query suggestion methods

(e.g., [14]).

1.5 Search Result Diversification Methods

In Chapter 1.2, we discussed the importance of diversifying search results for

domain-specific IR. Given this motivation, we propose a result-level diversification

method that re-ranks the documents in an initial retrieval to cover more query top-

ics. Note that in Chapter 1.3 we proposed a query-side approach to the diversification

problem, which is a somewhat indirect way to generate diverse search results, but in

this section, we propose a result-level diversification method which directly manipu-

lates search results for diversification. In this, query topics are first identified, and

then re-ranking algorithms (e.g., PM-2 [29] and xQuAD [92]) are applied with the

identified topics. Specifically, given a query document, we extract phrase-level topic

vocabulary (as the basis for query topics) by ranking candidate phrases (extracted

from a query patent) with respect to multiple ranking features (i.e., topicality, pre-

dictiveness [66], query clarity [27], relevance to query patents, cohesiveness, etc.).

These features indicate how well candidate phrases can represent query topics. For

example, topicality and predictiveness are effective features for finding topic terms

of initial queries [28]. Then, we consider the top k phrases as topic phrases used for

diversification. After generating topic phrases, we apply a state-of-the-art diversifi-

cation algorithm that can optimize the document-level “diversity” in a final retrieval

result. In this work, we choose to use the proportionality-based approach proposed in

[29], which re-orders the documents with respect to the “popularity” of their topics

in the initial ranking. Finally, diverse ranked results are produced, and the users can

easily identify relevant documents based on the diverse results.

8

1.6 Summary

In this thesis, we explore effective techniques to improve domain-specific searches.

As part of this, we propose general query generation frameworks for domain-specific

searches. These frameworks include how to generate multiple queries in user-preferred

forms, how to formulate more effective queries that can retrieve more relevant doc-

uments, how to identify query topics from query documents, and how to generate

diverse queries relevant to the topics. In order to use the queries generated by our

frameworks, we introduce query suggestion methods adapted to specific query formu-

lations (e.g., Boolean queries and phrasal-concept queries). Furthermore, we devise

a method to diversify search results. This method aims to re-rank initial retrieval

results so that more diverse query topics are covered in the final rank results. In this

method, we describe how to represent query topics from documents, how to identify

effective query topics, and how to generate diverse search results based on the identi-

fied query topics. By proposing these methods, we attempt to resolve the three main

issues raised to improve the search quality of domain-specific IR.

In our evaluations, we conduct experiments on various search domains, namely

patent retrieval [36], academic literature search [15], and medical information retrieval

[46]. To evaluate query generation frameworks, we employ state-of-the-art query

generation methods (e.g., [47, 75, 80, 107]) as baselines to compare with our approach.

In addition, we adopt state-of-the-art diversification methods (e.g., [28]) to verify the

effectiveness of our diversification approach in domain-specific search environments.

1.7 Contributions

The contributions of our work can be summarized as follows.

• Evidence showing that domain-specific searches can be enhanced by resolving

three issues: (1) query generation, (2) query suggestion and formulation, and

(3) search result diversification.

9

• Methods to generate effective queries based on documents.

• Query formulation in user-preferred representations.

• Query-side diversification methods to generate diverse search results.

• Search result diversification frameworks applied to domain-specific searches.

• Algorithms to identify important topics (or aspects) from documents.

1.8 Organization

This thesis is organized as follows: Chapter 2 reviews previous work from a number

of related research areas, and Chapter 3 describes evaluation settings including target

domains that our methods are applied to, evaluation metrics adapted to domain-

specific search environments, test collections (i.e., queries and relevance judgments),

etc. From Chapter 4 to Chapter 7, we propose our query generation frameworks,

suggestion methods, and diversification approaches; Chapter 4, Chapter 5, Chapter 6,

and Chapter 7 describes Boolean query generation, phrasal-concept query generation,

diverse query generation, and search result diversification, respectively. In each of

these chapters, we provide experimental results and relevant discussion. In Chapter

8, we finally conclude this thesis by summarizing the results and discussing future

work.

10

CHAPTER 2

RELATED WORK

2.1 Overview

Our work is related to a number of research areas: (1) Query Generation, (2)

Query Expansion, (3) Query Suggestion, and (4) Search Result Diversification. In

this chapter, we will describe prior research related to these areas to provide the back-

ground for the approaches proposed in this thesis. We start with a review of query

generation approaches, that have mostly been focused on prior-art patent search.

We then review significant work in query expansion since several query generation

methods exploit pseudo-labeled documents to extract query terms. We also review ex-

isting query suggestion techniques and discuss their relevance to query suggestions for

domain-specific searches. Research related to search diversification is also described.

2.2 Query Generation

Automatic query generation based on a query document is an important task

to find relevant documents for domain-specific searches. Especially in patent prior-

art search tasks, this technique is more important. Texts in patent documents are

complex and difficult to understand because patent documents contain thousands of

words and they intentionally use vague expressions to extend their coverage [48, 107].

So, a number of researches for automatic query generation have been proposed (e.g.,

[38, 75, 107]). These methods use the full texts of patent applications, and gener-

ate queries by ranking the terms in the query patents. For example, Xue and Croft

[107] extracted query terms from the “brief summary” section of query patents by

11

tfidf scoring, and formulated queries by tf-based term weighting. Mahdabi et al.

[75] used Kullback-Leibler divergence between query models (estimated from query

patents) and collection models for term ranking. In addition to this, they extracted

key phrases by tfidf and Mutual Information-based scoring, and expanded the initial

term queries. Similar to this approach, Ganguly et al. [38] selected the top sentences

ranked by similarity to pseudo-relevant documents for query patents. They first ob-

tain pseudo-relevant documents retrieved by a query patent, and generate queries by

selecting the sentences (recognized in the query patent) having more likelihood to the

pseudo-relevant documents. In the TREC Chemical track [71], the task of finding

relevant patents for new chemical patents was proposed, and among all participants,

the approach proposed by Gobeill et al. [40] performed the best. They generated an

effective query by identifying chemical concepts from chemical ontology (e.g., Pub-

Chem1). While these methods are specialized in patent search environments, in this

work, we propose more generalizable approaches for generating effective queries. In

addition, previous work assumed that generated queries are automatically executed

in retrieval, and the generated queries can be complex (e.g., query term weighting is

required) and long (e.g., 150 terms in [107]). However, in this work, we consider us-

ing generated queries for suggestion, and the users can examine the generated queries

before retrieval. In this situation, long and complex queries are less effective.

Outside of patent retrieval, Lee and Croft [67] proposed a learning-based approach

to generate queries based on user-selected passages in a (query) document. They as-

sumed that users explicitly specify passages in a document, and extracted important

chunks (e.g., noun phrases and named entities) by learning a CRF (Conditional Ran-

dom Field) model. This model used textual features including web n-grams, query

logs, Wikipedia titles, etc. However, these features would be less effective for the doc-

1The database of structure and description for chemical molecules
(http://pubchem.ncbi.nlm.nih.gov).

12

uments in domain-specific searches, and our query documents are much longer than

the passages extracted from short web documents. Accordingly, the graphical model

could not perform effecctively. Smucker and Allan [93] proposed a similarity browsing

tool for web retrieval, which could find similar documents to a given document. Given

a short web query, they first generate initial retrieval results and for each retrieved

document (i.e., query document), similar documents are searched. However, to find

similar documents, they simply generated a long query by using the whole text of a

query document or partial contexts of each initial query term in the query document.

Since they concentrated on elaborating retrieval models, the methods to generate

more effective queries were not investigated. Weng et al. [103] presented a docu-

ment decomposition-based approach. They reduced the dimensionality of both query

and target documents, and then used hashing algorithms for indexing and retrieving

relevant documents. The application proposed by Yang et al. [108] can automate

cross-referencing of online contents from different resources (i.e., news and blogs).

From a query document (news), candidate phrases are extracted by calculating tfidf

and Mutual Information, and then they score phrases using phrase association in the

Wikipedia link graph. They use the top k scored phrases as queries to retrieve relevant

blog posts. Although these studies were effective for retrieving similar documents,

they are limited in that generating diverse queries was not considered.

2.3 Query Expansion

Another approach to generating effective queries exploits query expansion tech-

niques (e.g., [9, 76, 37]). In general, automatic query expansion [85, 104] has been

researched to bridge the gap between users’ queries and relevant documents. In par-

ticular, pseudo-relevance feedback [90] has been known as one of the most effective

techniques. Among many proposed methods for pseudo-relevance feedback (e.g., [63]),

some studies are closely related to our work. One related study is the query expansion

13

method proposed by Mitra et al. [82], which addressed the effectiveness of Boolean

filters to improve precision of automatic query expansion. In that, they manually

formulated fuzzy Boolean operators (conjunction and disjunction) and selected ex-

panded terms from a set of pseudo-relevant documents refined by the Boolean filters.

However, their work is limited in that the Boolean filters are manually constructed

while we focus on automatic formulation.

Another related work is concept-based query expansion techniques (e.g., [35, 80]).

Xu and Croft [104] proposed local context analyses for query expansion. They used

co-occurrence statistics to extract concepts (e.g., single terms and phrases) from pas-

sages, and expanded initial queries by them. Metzler and Croft [80] used latent con-

cepts extracted from pseudo-relevant documents to expand short initial queries (e.g.,

“hubble telescope achievements”). They used the Markov Random Field (MRF)

framework [79] to model the dependency between terms in the concepts. In addition,

Fonseca et al. [35] also proposed a concept-based query expansion method. In [35],

they viewed a past query in a query log as a concept, and past queries related to the

current query were suggested to users for selecting more related concepts. One limi-

tation of this study is that a sufficient amount of query log data, which are essential

for their approach, cannot be easily acquired in typical small domain-specific search

environments.

In addition, interactive expansion methods are related to our work. Kumaran

and Allan [61] showed that a selective reduction or expansion of initial long queries

can be effective for improving retrieval performance. To minimize interaction with

users, they generated selective options (i.e., queries) by merging several effective sub-

queries (i.e., reduction) and expansion term sets. These options could generate highly

overlapping search results of original queries. However, they assumed that the original

query is only sentence-length (e.g., 10 or 20 terms) and all possible sub-queries were

14

examined, and this setting is not applicable to document-length initial queries (i.e.,

query documents).

In patent retrieval, standard query expansion techniques are less effective with

initial queries that use full texts of query patents [38, 76]. Many query expansion

methods (e.g., [64, 80, 104]) assume short web queries as initial queries and focus

on improving early precision (more emphasized in web search). However, prior-art

search tasks are recall-oriented, and their initial queries typically contain hundreds

of terms. To alleviate these differences, several query expansion approaches designed

for prior-art search environments have been proposed. For example, Ganguly et al.

[37] used a decomposition-based approach for extracting expansion terms. In that, a

text tiling technique [45] was applied for decomposing a query patent into sub-topic

segments, each segment block was used for retrieving pseudo-relevant documents, and

the pseudo-relevant documents were interleaved to produce a final ranking result.

Mahdabi et al. [76] used term proximity information to identify expansion terms.

Given a query patent, they first generate an initial query by taking claim terms, and

then build a query-specific lexicon that includes the terms from the same IPC patents.

Among many terms in the lexicon, they identify expansion terms by two adjacency

operators used in patent examination (i.e., “ADJn” and “NEARn”). Although these

expansion techniques are effective for prior-art search, expanded queries typically

contain hundreds of terms, and are less useful as suggestions.

2.4 Query Suggestion

Query suggestion is an effective and practical way to help users formulate queries.

In a typical suggestion process, a number of alternative queries are displayed to a

user after an initial query is input [94]. For web search, there has been significant

prior work on query suggestion. Methods for doing this typically rely on using query

logs and clickthrough statistics (e.g., [6, 54, 78]) that are available in a web search

15

environment. For example, Jones et al. [54] proposed a query substitution sys-

tem that suggests strongly related queries identified from query logs, and the query

recommendation techniques proposed in [6] provide alternatives by clustering related

queries in query logs. The most widely used technique is exploiting query-click graphs

(e.g., [26, 78, 83]. In this approach, a bipartite graph is constructed where the set of

vertices is partitioned into two sub-sets: queries and (clicked) documents, and each

edge is defined by user’s click information [26]. By performing a random walking

on this bipartite graph, query similarity can be calculated, and more similar queries

can be shown as suggestions. This approach is successful since suggested queries are

extracted from query logs. However, such resources are not available in the domain-

specific search environments that we focus on.

Without query logs and clickthrough statistics, only a few methods (e.g., [14, 70])

have been proposed for query suggestion, and these studies are strongly related to

our work. Bhatia et al. [14] suggest relevant (n-gram) phrases for an initial query

without query logs. They extract highly correlated n-grams with the partially input

user query, i.e., relevant n-grams are suggested on the fly by completing the query that

the user is typing. In our experiments, we use this approach as a baseline to compare

with our approach (see Chapter 3). In the medical domain, Luo et al. [70] propose

a specialized medical search engine that can suggest related medical phrases. For

this, an external ontology (MeSH2) is used to extract related phrases as suggestions.

However, such an ontology may not be applicable to other domains such as patent

retrieval and academic literature search that we also address in this work.

Another line of related work on query suggestion is diversifying query suggestions

(e.g., [73, 94]). While search result diversification (e.g., [3, 18]) aims at producing

retrieval results that contain a mixture of (topically) different documents, query-side

2Medical Subject Headings (http://www.ncbi.nlm.nih.gov/mesh)

16

diversification focuses on generating a list of diverse queries, which maximizes the

diversity between query-suggestion pairs. Ma et al. [73] proposed a framework for

diversifying query suggestions. They first generated the Markov random walk model

on the query-URL bipartite graph by adding the top ranked query into a candidate

set. Then, other queries were ranked by running the expected hitting time analysis,

which could demote the ranks of (unranked) queries to the ranked queries. Thus, the

result of ranked suggestions (i.e., queries) could be diversified. Song et al. [94] also

discussed the same problem, and selected query candidates from query logs by ranking

them in the order that maximizes the similarity and diversity between the queries.

They measures diversity based on the difference between the original search results

and the results of suggested queries. To quantify the difference, several features

were devised, e.g., the similarity of the ODP3 category of two search results, rank

correlation coefficient for the URLs in two search results, etc. However, these studies

are also limited in their application to domain-specific search environments as they

require query logs and clickthrough statistics.

2.5 Search Result Diversification

Search result diversification is the task of generating a ranked list of documents

that covers a range of query topics (or aspects). Previous work on this task can be

categorized as: (1) implicit or (2) explicit [92]. We provide a brief summary for each

category.

Implicit diversification: The implicit approach does not assume any explicit

representation of query topics. MMR (Maximal Marginal Relevance) [18] and its

probabilistic variants [109] can be included in this approach. For diversification,

these methods assume that each document in the initial retrieval results represents

3Open Directory Project (http://www.dmoz.org)

17

its own topic and iteratively selects the documents that are dissimilar to previously

chosen documents. To measure the dissimilarity, MMR used content-based similarity

functions, but probabilistic distance in the language modeling framework has also

been used in [109]. In addition, the correlation between documents is adopted as a

similarity measure [87, 102]. Rafiei et al. [87] interpreted the problem of diversi-

fying search results as expectation maximization, and proposed the portfolio model

maximizing diversity in search results. Also, Wang and Zhu [102] used an economic

theory dealing with financial investments for optimizing relevance (mean) against its

risk level (variance) in the search result. Based on this, they devised a document

ranking method which generalizes the probability ranking principle for selecting top

n documents, and this was adapted to sub-topic retrieval. In these approaches, the

diversification problem is viewed as minimizing the correlation, and the proposed al-

gorithms are less effective [3, 29, 92] because sometimes the topics in the final results

are not related to the query aspects.

Explicit diversification: In contrast to the implicit method, this approach re-

quires some representation of query topics (e.g., [3, 19, 29, 92]). There are two differ-

ent approaches to implementing explicit diversification: redundancy and proportion-

ality. The redundancy approach is used in many existing methods (e.g., IA-Select

[3], xQuAD [92]). These aim to provide less redundant information in the diversified

results, i.e., documents are promoted if they include novel content that has not ap-

peared in early ranks. In particular, xQuAD (eXplicit Query Aspect Diversification)

used query reformulations to indicate underlying query aspects, and attempted to

maximize the coverage and minimize the redundancy with respect to the underlying

aspects. On the other hand, the proportionality-based algorithms (e.g., PM-2 [29])

selected the documents with respect to the “popularity” of their topics in the initial

ranking, i.e., ranking the documents is proportional to the popularity of each query

topic. This approach exploits the method to allocate seats in party-list proportional

18

representation, for assigning the portions of query topics such that the number of each

topic’s documents in the final result is proportional to the weight of the topic. Both

of these approaches have been successful with test collections that contain manually

created query topics (e.g., from TREC descriptions [29, 92]).

To provide a more realistic context, methods for automatically generating query

topics have been studied (e.g., [30, 86]). As an example, query topics have been

generated by clustering similar queries from query logs [86] or anchor texts from the

web [30]. More recently, term-level diversification [28] has showed the effectiveness of

automatic topic generation based on identifying important vocabulary terms. In this

approach, query topics are described by some set of terms, and instead of generating

the topics directly, only the important words and phrases associated with the topics

are automatically identified, e.g., the words “pain”, “joint”, “woodwork”, and “type”

are identified for the latent topics of “joint pain” and “woodwork joint type”. After

identifying the important vocabulary, the diversification framework (e.g., xQuAD or

PM-2) can be applied using the identified topic terms (the frameworks consider each

term as a topic). The effectiveness of these automatically–found topic terms has been

shown to be similar to the manually generated topics, and significantly better than

other approaches to automatic topic identification. Our diversification framework

for domain-specific searches uses this approach, and we focus on identifying topic

phrases (e.g., “file system” and “system service” for patent retrieval) and diversifying

with respect to these phrases. In [28], a set of terms to represent initial retrieval

results is generated for an initial ranked list of documents. This is similar to the goal

of multi–document summarization (e.g., [65, 66]). Thus, DSPApprox, a hierarchical

summarization algorithm proposed in [65], has been used for identifying topic terms in

[28]. This algorithm iteratively selects the terms which maximize predictiveness and

topicality. However, in addition to predictiveness and topicality, we explore additional

features to identify topic phrases, e.g., relevance, cohesiveness, and query performance

19

predictors (described in Chapter 7). Moreover, we examine the effectiveness of these

features in the context of diversification.

2.6 Summary

In this work, we propose automatic query generation and search result diversifi-

cation frameworks to help users in domain-specific searches. We attempt to reduce

the burden of formulating queries from query documents, and help users to easily

retrieve relevant documents. Figure 2.1 depicts the process of query generation and

search result diversification in domain-specific search environments.

Figure 2.1: Query Generation and Diversification Process

For many domain-specific search tasks, users input a query document, and search

queries are generated based on the document. Most of the prior work (e.g., [38, 75,

106]) assumed that generated queries are only used for retrieval by search engines (A

in Figure 2.1), and the retrieval effectiveness of a query was mostly focused in query

generation. However, we consider using generated queries for suggestion as well as

retrieval (B in Figure 2.1). In addition, we consider the diversification of retrieval

20

results (C in Figure 2.1), which has not been focused in previous work. By using these

approaches, we attempt to resolve the three issues in domain-specific searches, i.e.,

query generation, query suggestion and formulation, and diversification (discussed in

Chapter 1.2).

We restate the contributions of our work as follows.

1. For query generation (1 in Figure 2.1), we devise methods to identify effective

query terms that can retrieve more relevant documents.

2. In query generation, we also devise algorithms to identify important query top-

ics and generate diverse queries based on the identified topics (i.e., query-side

diversification).

3. We propose methods that can formulate queries in particular representations

that users prefer, e.g., Boolean queries or phrasal-concept queries (2 in Figure

2.1).

4. We develop methods to generate diverse and effective suggestions (3 in Figure

2.1).

5. For search result diversification (4 in Figure 2.1), we devise methods for phrase-

level topic identification, and apply state-of-the-art diversification algorithms.

First, we intend to generate queries in user-preferred representations, e.g., Boolean

queries, whereas previous work only assumed to use weighted keyword queries (e.g.,

[38, 75, 106]). Second, in previous work, diversification in domain-specific searches

has not been a major focus (rather than that, only retrieving more relevant documents

has been focused). However, we approach the diversification issue by two different

methods, i.e., query-side and result-level diversification. Third, as diverse queries

are generated, we devise methods to diversify query suggestions. Fourth, we apply

21

state-of-the-art diversification algorithms to domain-specific search environments by

generating topic phrases from query documents.

22

CHAPTER 3

EVALUATION FRAMEWORKS

3.1 Overview

In this chapter, we describe how to set up experiments for evaluating our proposed

methods. We basically design the experiments to simulate domain-specific searches.

Specifically, we choose target domains of interest, define search tasks related to the

selected domains, and generate test-collections (i.e., queries and relevant documents)

for the target domains. Using these, the proposed methods and baselines generate

and suggest queries in simulated settings. In addition, we conduct experiments for

diversification as we propose search result diversification methods. To quantify the

effectiveness of our methods, we measure how many effective queries are generated,

how many of them are “actually” suggested to users (if the users only examine a

small number of suggestions), and how many relevant documents are retrieved by

top suggestions. We also examine how much diverse search results are obtained. For

these, we adopt conventional IR evaluation metrics (e.g., precision, recall, and NDCG

(Normalized Discounted Cumulative Gain) [49]) as well as “diversity” metrics (e.g.,

α-NDCG [25] and Intent-Aware precision [3]). In addition, domain-specific metrics

(e.g., PRES [74] for patent retrieval) are adopted for evaluations. We provide details

of these in the rest of this chapter.

3.2 Domain-specific Search Tasks

We design experiments for three different search tasks considering three domains of

interest: the patent, academic, and medical domains. The search task for the patent

23

domain is patentability search, also known as prior-art search or invalidity search

[36, 98]. This task is very common and important in patent retrieval [53], which aims

to find prior patents (previously published) that may conflict with a new (query)

patent. In this task, given a query patent, we automatically generate and suggest a

list of queries that can effectively retrieve relevant patents. For the academic domain,

the search task is finding academic papers relevant to a current research project. In

this task, we assume that a scientist (user) inputs a summary of his research (e.g.,

title and abstract texts of his research paper) as an initial query document, and a

list of queries is generated and suggested for retrieving existing papers relevant to

the research project. The search task for the medical domain is reference retrieval

for physicians. We assume that physicians provide a statement of information about

their patients as well as their information need, and we generate a list of queries

that can retrieve relevant medical references for the information request. For each

domain, we can also diversify search results by the proposed diversification methods

(described in Chapter 7).

3.3 Test Collection

For the three domain-specific search tasks (Chapter 3.2), we develop test collec-

tions as follows.

Patent Domain: To conduct experiments for the patent domain, we use two

different corpora: USPTO (United States Patent and Trademark Office) and EPO

(European Patent Office) patents. USPTO patents are provided by NTCIR-6 [36, 55].

This collection contains 981,948 patents published from 1993 to 2000. To develop

query documents (new patents), we randomly selected 100 patents published in 2000,

ensuring that their citations list more than 20 patents and at least 90% of them are

included in the test collection. As done in the TREC chemical track [71] and NTCIR-

6 [36], we consider patents cited in each query patent as “relevant”, and 22.64 relevant

24

documents are found on average. We call this collection USPAT. The other collection

we use for the patent domain is the CLEF-IP 2010 [34] corpus which contains 2.6

million EPO patents. We randomly select 300 query patents from the query patent

pool they provide. Although the query documents are described in the three official

EPO languages (English, German, French), we only work with English documents.

Relevance assessments are provided, which also use the citations listed in each query

patent [34]. The average number of relevant documents is 28.87, and we call this

collection EPO.

Academic Domain: As an academic corpus, we use the ACL anthology corpus

that contains academic literature [15]. This collection includes 10,921 academic pa-

pers published from 1975 to 2007, and these papers are about the topics in Natural

Language Processing. The full text of each article is available, and metadata (e.g.,

author names, venues, titles, and citations) is also provided. We removed stop-words

including frequently used acronyms (e.g., “fig.”) and section names (e.g., “introduc-

tion” and “related work”) from the documents. To develop query documents (new

research projects), we randomly selected 183 query papers published in 2006 from

the collection, ensuring that their citations list contain at least 10 articles. As done

in previous research [13, 88, 96], we consider the articles cited in each query paper

as “relevant” and 12.19 citations are listed on average. Note that we ignore the cita-

tions not included in the collection. In addition, we discard the references to articles

outside of the collection that is searched, and the query papers are removed from the

collection and relevance judgments for other papers.

Medical Domain: For the medical domain, we use the OHSUMED collection

[46] which consists of 348,566 medical references (documents) and 106 queries. Each

query contains the statement of patient information and information need from physi-

cians, and we consider this as a query document. This collection provides relevance

judgments manually annotated using three relevance levels: definitely relevant, possi-

25

bly relevant, and not relevant. In the experiments, we consider definitely and possibly

relevant as “relevant”.

3.4 Assumptions for Experiments

In the experiments, we implement domain-specific search simulations in that mul-

tiple queries are generated and suggested. To evaluate query generation and sugges-

tion methods, we made the following assumptions. First, search users directly use

suggested queries without reformulation. For each query document, we suggest a list

of queries generated by our methods. By assuming that the suggested queries are

used without any reformulation, we could show the lower bound of performance that

the proposed methods can achieve. In real environments, users may use our sugges-

tions or formulate new queries based on the suggestions. Second, in a multi-query

session (i.e., multiple queries are suggested in a search session), users try the queries

in the suggestion order. Since modeling user behavior (e.g., [56]) is beyond the scope

of our work, we simply assume that users sequentially examine the queries starting

from the first one. To evaluate diversification techniques, we assume that an initial

ranking result is provided. In other words, for each query document, we generate a

baseline query to produce an initial retrieval result. Then we apply the diversification

framework we propose.

3.5 Baselines

In this work, we propose the methods to generate multiple queries, suggest effective

ones, and diversify search results. Accordingly, we employ appropriate baselines for

each proposed method as follows.

26

3.5.1 Query Generation

PriorArtQuery: As a baseline for patent search, we use a query generation

method described in [107]. Given a query patent, this method generates a prior-art

query which includes the top n unigrams ranked by their tf.idf weight from the “brief

summary” section of the query patent. To produce more effective queries, each query

term is weighted by its term frequency in the query patent. We call this weighted

query PriorArtQuery.

ReductionQuery: Reduction Query is another baseline for patent search, which

is proposed in [38]. Given a query patent, this method first collects pseudo-relevant

documents, the top k results initially retrieved by the query patent (Note that Pri-

orArtQuery can be used for generating initial retrieval results). Then, the sentences

(in the query patent) more similar to the pseudo-relevant documents are extracted to

form a query. We call this query ReductionQuery.

EX–RM: For patent search, we can consider another query generation method

proposed in [75]. In that, a unigram query is first generated by ranking the single

terms in a query patent; for this, a unigram language model is derived based on

the query document, and Kullback–Leibler divergence between the query model and

collection model is used for the ranking. Then, the original query is expanded by

a relevance model estimated from the same IPC (International Patent Classification

code1) documents (i.e., the documents containing at least one common IPC code of

the query patent). IPC codes are manually annotated to any patent documents, and

can classify a patent document into predefined classes. So, the same IPC documents

would contain terms more related to the query patent, and the expanded query would

be effective for retrieving relevant documents. This expanded query is called EX–RM.

1http://www.wipo.int/classifications/ipc/en/

27

Sequential Dependence Model (SDM): Metzler and Croft [79] proposed a

method to capture term dependencies in a query. In this, a joint distribution over

a query and target document is modeled using an Markov Random Field (MRF),

undirected graphical model, and an MRF is generally defined by a graph and set of

non-negative potential functions over the cliques in the graph. Formally, given an

undirected graph, G, the joint distribution over a (initial) query, Q, and document,

D, is defined as:

P (Q,D) =
1

Z
·

∏
c∈C(G)

ψ(c; Λ) (3.1)

where C(G) is the set of cliques in G, Z is a normalizing factor, ψ(·) is a potential

function, and Λ is a corresponding parameter vector.

In constructing G, we assume a sequential dependence between adjacent query

terms, and accordingly 3 different types of cliques are formed as follows:

• TD: set of cliques containing D and exactly one query term.

• OD: set of cliques containing D and two query terms sequentially appeared in

Q.

• UD: set of cliques containing D and two query terms observed by any order in

Q.

OD is a sub-set of UD, and we can control the impact of each clique type by tying

the corresponding parameters (i.e., λTD
, λOD

, and λUD
). Based on these, the actual

ranking function is given as:

P (Q,D) =
1

Z
· exp

{ ∑
c∈TD

λTD
fTD

(c) +
∑
c∈OD

λOD
fOD

(c) +
∑

c∈UD∪OD

λUD
fUD

(c)
}

(3.2)

where f·(c) is a feature function for a clique, c.

The value of each feature function can be calculated by the log-likelihood of a

smoothed language model probability for c, and we empirically set the controlling

28

parameters as λTD
= 0.80, λOD

= 0.15, and λUD
= 0.05. In various IR tasks SDM has

been proven as the most effective technique (e.g., [8, 12, 20]), and we also expect that

this model is particularly effective for the academic literature search tasks because

sequential dependencies are able to capture effective phrases appeared in relevant

papers.

Latent Concept Expansion (LCE): Latent Concept Expansion [80] is a ro-

bust pseudo-relevance feedback technique based on an MRF. Comparing to relevance

models [64], this method is more generalized and can model term dependencies in a

pseudo-relevance feedback process. To obtain feedback terms, we first obtain the top

k pseudo-relevant documents (ranked using the sequential dependence model), and

then the terms in the set of pseudo-relevant documents, RD, are ranked by:

LCE(t) =
∑

D∈RD

exp {γ1SDM(Q,D) + γ2 log ((1− α)P (t|D) + αP (t|C))− γ3 logP (t|C)}

(3.3)

where t is a feedback term, D is a document in Rd, Q is the initial query, SDM(Q,D)

is a ranking score obtained by the sequential dependence model, α is a smoothing pa-

rameter, P (t|D) = tf(t,D)/|D|, P (t|C) = tf(t, C)/|C|, tf(t,D) is the term frequency

in D, tf(t, C) is the term frequency in a collection, C, and γi is a free parameter.

In this method, a feedback term is obtained by considering three features: (i)

document relevance (SDM(Q,D)), (ii) term likelihood to the pseudo-relevant docu-

ment model (log((1−α)P (t|D) +αP (t|C))), and (iii) dampening factor (logP (t|C))

to avoid highly common terms in C. We select the number of top k documents for

RD and m (unigram) terms for feedback, and free parameters are set by n–fold cross

validation. In addition, we did experiments using bigrams for the feedback, but could

not obtain any significant improvements relative to the results using unigrams.

Relevance Model (RM): Relevance Model is another pseudo-relevance feed-

back technique with proven effectiveness and robustness [72]. The basic idea is that

29

to determine feedback terms and their weights, models of feedback documents are

combined using query likelihood scores of feedback documents as weights.

Given a (initial) query, Q, and the set of pseudo-relevance documents, RD, the

feedback formula can be given as:

P (t|Q) ∝
∑

D∈RD

P (t|D)P (D)
∏
q∈Q

P (q|D) (3.4)

where q is a query term in Q.

To improve retrieval performance, we interpolate this relevance model with the

original query model, MQ, [1], and the final formula can be given as:

P (t|M ′
Q) = (1− α)P (t|MQ) + αP (t|Q) (3.5)

whereM ′
Q is an (interpolated) expansion query model and the interpolation parameter

was set as 0.5. We can extract the top m terms ranked by Eq. (3.5) for feedback.

Machine Learning-based Expansion (MLE): This method uses a statistical

learner for pseudo-relevance feedback, inspired by [47] that exploits supervised learn-

ing algorithms. Given an initial query, to obtain a set of feedback terms, a linear

regressor is trained with a set of features where each feature corresponds to a (un-

igram) term appearing in training documents (pseudo-relevant documents obtained

by the initial query). Then, the trained regressor estimates the (pseudo) relevance

score of a new document, and the terms corresponding to highly weighted features are

predicted to be effective for predicting pseudo-relevance. Note that this is a totally

unsupervised procedure in that we do not use human-labeled samples.

We generate a set of training examples by using the top 100 pseudo-relevant

documents and randomly sampled non-relevant documents which are not in the top

100 as positive and negative samples. We scale (pseudo) relevance to an interval

30

[0, 1] and use them as target values in training. Specifically, we assume 11 different

relevance degrees, i.e., {0.0, 0.1, 0.2, . . . , 1.0}, and generate 11 distinct sets, each of

which contains an equal number of training examples where each set is mapped to

the degree of the relevance; the top 100 pseudo-relevant documents are divided into

the degrees from 0.1 to 1.0 (e.g., the top-1 to 10 documents are assigned to 1.0) and

the beyond-100 documents are used for 0.0 (non-relevant). A feature set contains all

words (except stop-words) from the pseudo-relevant documents, and a feature value

is calculated by the tf.idf weight of a term in each document. After training, a weight

vector, β is obtained, and among all components of β, we can select the topm features

(terms) by ranking them in descending order of their absolute weight values in β. To

formulate an expanded query, the initial query is combined with the top m feedback

terms, and the weight value from β is used for feedback term weighting. The bias to

feedback terms against the initial query is set as 0.5. We also test this method with

the features of noun phrases (longer than unigram) syntactically recognized from the

training examples using a phrase recognizer, (MLE-P) and n different noun phrases

can be selected for feedback.

3.5.2 Query Suggestion

As discussed in 2.4, many methods for query suggestion typically rely on using

query logs and clickthrough statistics because they recommend queries for web search

users. However, such resources may not be readily available in domain-specific search

environments. Bhatia et al. [14] proposed an n-gram query suggestion method that

does not use query logs. Given an initial query, they suggest n-grams more correlated

with the query. Since the original method aims at providing relevant n-grams when a

user partially types an initial query (e.g., types the first l characters of the query), we

modify the method to fit in our search environments; we assume that a user finished

typing the initial query and query completion is unnecessary. Based on this, the

31

equation for selecting n-grams is given as:

P (pi|Q0) ≈ P (Q0|pi) (3.6)

where pi is an n-gram phrase and Q0 is an initial query.

We use phrase-query correlations to estimate P (Q0|pi) as follows:

logP (Q0|pi) ≈ log
∏

np∈Q0

P (np|pi) ≈
∑

np∈Q0

log
df(np, pi)

df(pi)
(3.7)

where np is a noun phrase and df(·) denotes the document frequency in a corpus.

For an initial query, Q0, we use the title of a query document, but in query

ranking, as we see in Eq. (3.7), we count only noun phrases (longer than unigram) in

Q0 because counting the correlation of every term in Q0 is less efficient and noisy (e.g.,

the title texts contain less important terms such as “in” and “which”). To develop

suggestions, we rank all n-grams of order 2, 3, 4, and 5 (i.e., bigrams to five–grams)

from pseudo-relevant documents. We call this method NGram throughout this paper.

3.5.3 Search Result Diversification:

To evaluate our search result diversification approach, we adopt the term-level

diversification method proposed in [28]. This method exploits an automatic topic

term identification for improving diversification. In that, a set of terms to represent

query topics is first generated by DSPApprox (a term-level summarization technique)

[66] and then diversification algorithms (i.e., xQuAD [92] and PM-2 [29]) are applied

with the identified topic terms. In Chapter 7, we provide more details of this method.

3.6 Retrieval Models

In order to run generated queries, we use the following retrieval models.

32

Indri: Indri [97] is a language modeling-based search engine. The Indri retrieval

model combines the language modeling [84] and inference network [100] retrieval

frameworks. These approaches have been applied to a broad range of IR tasks,

and proven to be effective (e.g., [81]). We basically use the query likelihood model

to run baseline queries (e.g., PriorArtQuery and EX–RM). However, more complex

approaches (e.g., SDM, RM and LCE) are implemented. In addition, we develop

retrieval models for specific query formulations (e.g., Boolean queries).

Statistical Boolean Retrieval Model: To run Boolean queries, we use a sta-

tistical Boolean retrieval model. For each query document, we first find all documents

satisfying the given Boolean function (i.e., Boolean query) and rank the documents

by the generative probability of the query:

P (BQ|D) ≈
∏
q∈BQ

P (q|D) ≈
∏
q∈BQ

tfq,D + µ · P (q|C)
|D|+ µ

(3.8)

where D is a target document satisfying a Boolean query, BQ, q is the query term

not associated with negation in BQ, tfq,D is the term frequency of q in D, P (q|C) is

the probability of q in the collection, C, and µ is the Dirichlet smoothing parameter

[110].

We do not employ any query processing including query term weighting in this

Boolean retrieval model. Since many current patent search systems (e.g., Patent

Scope2) are also based on these simple term statistics, query evaluation using this

statistical Boolean retrieval model would be more practical and similar to real search

environments than using other enhanced retrieval techniques (e.g., learning-to-rank)

that are hard to integrate into current patent search systems.

Learning-to-rank Retrieval Model: For the academic domain, we implement

a learning-to-rank retrieval model using SVMrank (Support Vector Machine for Rank-

2http://patentscope.wipo.int/

33

ing) [51, 52]. This model can efficiently learn the weights of retrieval features from

training data. Since academic papers can include multiple meta information (e.g., au-

thors, publishers, venues, and citations), the features extracted from this information

could improve retrieval models for the academic literature search task (e.g., research

interests of authors [10] and citation behaviors [13]). We select the 12 most effective

features from those proposed in [13], which describe age of the query paper, citation

pattern, and author citation behavior. In addition, we leverage typical query-based

features (e.g., the tf.idf score) described in [17]. Table 3.1 provides the description of

each feature. In that, a t, q, d, and dq indicate a term, query, target document, and

the query paper where q is generated, respectively; freq(t, d) represents frequency of

term t in document d; idf(t) denotes inverse document frequency of term t; C denotes

the entire collection; |C| denotes the size of vocabulary in C.

PATATRAS: For the patent domain, some specific retrieval models have been

proposed and proven to be effective (e.g., [77, 106]). The PATATRAS model proposed

in [68, 69] can improve retrieval effectiveness by combining multiple retrieval models

based on multilingual documents. This approach performed the best in CLEF-IP

2010 [33]. In this method, each query patent is processed by lemmatization, key-

term extraction, and concept-tagging. Then, the PATATRAS approach is applied,

which can combine multiple retrieval models (i.e., Indri and BM25 [89]) by merging

the different retrieval results based on regression. Since this method relies on a

multilingual concept database and the indexes on multi-language documents, we could

only implement this for the EPO. Note that the patents in EPO are written in English,

French, and German, while USPTO contains the US patents only written in English.

34

Table 3.1: Retrieval Features

Category Feature Description
Query tf(q, d)

∑
t∈q∩d log(freq(t, d)+1), frequency of query

term
idf(q, d)

∑
t∈q∩d log(idf(t)), inverse document fre-

quency

tfidf(q, d)
∑

t∈q∩d log
(

freq(t,d)
|d| · idf(t) + 1

)
, tfidf score

icf(q, d)
∑

t∈q∩d log
(

|C|
freq(t,C)

+ 1
)
, inverse collection

term frequency

lm(q, d)
∑

t∈q∩d log
(

freq(t,d)
|d| + 1

)
, unigram language

model score
Citation tfidfcitation(q, d) tfidf score between q and all ciations of d
Age recency(d) # of years since d was published
Citation cntcitation(d) # of times d was cited
Pattern PageRank(d) PageRank score [16] of d in the citation net-

work including all articles
citation-venue
(d)

citation count of articles published by the
venue of d

Author
Citation

citation-author
(d)

citation count of the most cited author
among authors of d

Behavior authors-self
(dq, d)

over-lapping between authors of dq and au-
thors of d

authors-citing
(dq, d)

over-lapping between authors of dq and au-
thors of articles citing d

authors-anyciting
(dq, d)

over-lapping between authors of dq and au-
thors of articles citing articles written by any
authors of d

authors-venue
(dq, d)

over-lapping between authors of dq and au-
thors of articles citing articles published by
the venue of d

authors-coauthor
(dq, d)

over-lapping between any authors of dq and
coauthors of d (i.e., coauthors indicate the
authors who have coauthored with any au-
thors of d)

35

3.7 Evaluation Metrics

3.7.1 Conventional Evaluation Metrics

In order to measure retrieval performance, we use traditional IR evaluation metrics

(e.g., Precision and Recall) as well as task-specific metrics (e.g., Patent Retrieval

Evaluation Score (PRES) [74]). We also measure Mean Average Precision (MAP)

and Normalized Discounted Cumulative Gain (NDCG) [49] at the top k retrieved

documents. The calculation of each metric is given as follows.

First, Precision at top k is defined as the fraction of k retrieved results (documents)

that are relevant, which can be calculated as:

Precision(R,Dk) =
|R ∩Dk|
|Dk|

(3.9)

where Dk is the top k retrieved results and R is the set of relevant documents.

Second, Recall at top k is measured by the fraction of relevant documents that

are retrieved within the top k results, which can be given as:

Recall(R,Dk) =
|R ∩Dk|
|R|

(3.10)

Since many domain-specific search tasks are recall-oriented (e.g., Prior-Art Search

[36, 77]), this metric is important and frequently used in our evaluations.

To evaluate recall-oriented tasks more effectively, we additionally adopt PRES

[74]. This metric reflects the normalized recall incorporated with the quality of ranks

of relevant documents observed within the maximum number of documents that the

user examines. In PRES, we assume that there is a maximum number of retrieved

documents to be examined by the user (i.e., Nmax), and the worst case for retrieval

is that all the relevant documents are placed after the such maximum number of

documents (obviously the best case is that all the relevant documents are retrieved

36

at top ranks). Figure 3.1 illustrates how the PRES curve can be drawn with this

assumption.

Figure 3.1: PRES Curve

Based on this, the equation for calculating PRES can be given as:

PRES = 1−
∑nR

i=1 rank(ri) + nR(Nmax + n)− (nR(nR− 1)/2)−
∑n

i=1 i

n×Nmax

(3.11)

where n is the number of relevant documents, Nmax is the maximum number of

retrieved documents examined by the user, R is the recall at Nmax, and rank(ri) is

the rank of i-th relevant document.

Additionally, we consider the F-score for evaluations as it balances precision and

recall performance.

Fβ = (1 + β2) · Precision ·Recall
(β2 · Precision) +Recall

(3.12)

where F1-score is the harmonic mean of Precision and Recall.

37

Third, we can measure MAP by calculating Average Precision on retrieval results.

Average Precision, AveP, is the average of precision at each point where a relevant

document is found is computed as:

AveP(R,Dk) =

∑
di∈Dk∩R P (R,Di)

|R|
(3.13)

where di is a i-th ranked result in Dk and Di is the results from 1 to i-th ranked

document (Di ⊆ Dk).

Then, for a given set of queries, Q, MAP can be calculated by:

MAP(Q) =

∑
q∈QAveP(Rq, Dk,q)

|Q|
(3.14)

where q is a query in Q, Rq is the relevant documents of q, and Dk,q is the top k

retrieved results of q.

Fourth, NDCG is measured using the Discounted Cumulative Gain (DCG) which

discounts the documents placed at the lower ranks in the retrieval list. The DCG of

a particular rank, DCG@k, is defined as:

DCG@k = rel1 +
k∑

i=2

reli
log2(1 + i)

(3.15)

where reli is the relevance of the result at position i and reli ∈ {0, 1}.

Based on this, the NDCG at position k, NDCG@k, can be computed as:

NDCG@k =
DCG@k

IDCG@k
(3.16)

where IDCG is an ideal DCG score, i.e., when every relevant document is placed at

the top of the retrieval list.

38

In addition to these, we employ session-based metrics that can measure the overall

effectiveness of multiple queries because we suggest multiple queries for a search

session. Javelin et al. [50] proposed the Nomalized Session Discounted Cumulative

Gain (NSDCG) which discounts documents that appear lower in a ranked list of an

individual query as well as documents retrieved by the later suggested query. Given

a session, NSDCG@k is calculated as follows.

First, a rank list is constructed by concatenating the top k documents from each

ranked list of the session. For each rank i in the concatenated list, the discounted

gain (DG) is computed as:

DG@i =
2reli − 1

log2(1 + i)
(3.17)

where reli ∈ {0, 1}

We then apply an additional discount to documents retrieved by later suggestions.

For example, the documents ranked between 1 and k are not discounted at all, but

the documents ranked between k + 1 and 2k are discounted by 1/ logbq(2 + (bq − 1))

where bq is the log base and determined by search behavior. A larger base, e.g.,

10, indicates that a searcher is patient and willing to examine more suggestions,

while a smaller base, e.g., 2, represents an impatient searcher. In our work, we use

bq = 10 because academic searchers would use many queries to investigate more

relevant articles. Then, Session Discounted Cumulative Gain (SDCG) at top k is

calculated by:

SDCG@k =
nk∑
i=1

1

log10(j + 9)
DG@i (3.18)

where j = ⌊(i− 1)/k⌋ and n is the number of suggestions (queries) in a session.

Accordingly, the final formula for NSDCG@k is given as:

NSDCG@k =
SDCG@k

Ideal SDCG@k
(3.19)

39

where Ideal SDCG@k is an “ideal” score of SDCG obtained by an optimal ranked

list in decreasing order of relevance.

3.7.2 Diversity Metrics

In this work, we attempt to diversify domain-specific search results (see Chapter

1). To measure “diversity” on retrieval results, α-NDCG [25], ERR-IA (a variant of

ERR (Expected Reciprocal Rank) [21]), NRBP [23], and subtopic recall (S-Recall)

are used. These metrics penalize redundancy in retrieval results, i.e., how much of

the information in each retrieved relevant document the user has already obtained in

earlier ranks. Note that these have been used as standard metrics for diversity tasks

in TREC [24].

Moreover, we devise a new metric to measure diversity in “multi-query” sessions

because these proposed metrics are not applicable to evaluating multiple queries (sug-

gested for each query document). In addition, there was no emphasis on recall in

session search results (but we concentrate on recall-oriented search tasks).

Session Novelty Recall (SNR) is a recall-based metric for multi-query sessions. In

this metric, given multiple retrieval results, we ignore relevant documents already

found by previous suggestions, i.e., newly retrieved relevant documents are only

counted. Besides, following the idea in [50], we discount the documents retrieved

by later suggestions. The computation of this metric is given as follows.

First, we construct a rank list, L, by concatenating the top k documents from

each ranked list in a session. Next, in the list, we discard any retrieved documents

which are retrieved by any previous queries, i.e., the rank list contains only distinct

retrieval results. In addition, each retrieved result is labeled by the query which first

retrieved it.

SNR =

|L|∑
i=1

rel(dji)

logb(j + b− 1)

/
|R| (3.20)

40

where dji is the document placed at the i-th rank in L and retrieved by the j-th

suggestion in a session, R is the set of relevant documents, b is the number of queries

that the user examines where b > 1, rel(d) returns 1 if d is relevant; otherwise, 0.

Ideally, if every relevant document is retrieved by the first query, SNR should

be the maximum, i.e., 1. If none of the relevant documents are retrieved by any

suggestions, the minimum is obtained, i.e., 0. Note that NSDCG and SNR can be

applied to session retrieval results (obtained by multiple queries).

41

CHAPTER 4

BOOLEAN QUERY GENERATION

4.1 Overview

For a number of reasons, both historic and technical, Boolean queries are par-

ticularly common in professional search – domain-specific search tasks whose users

are search professionals [58]. For example, in prior-art search, according to the user

surveys [5, 53], the use of Boolean operators is one of the most important features

to formulate effective queries from the perspective of patent professionals (i.e., search

users). In addition, most patent users who participated in the survey from [5] did

not regard query term weighting and query expansion as important, whereas more

than 95% of the survey participants agreed that implementing Boolean operators

is necessary. This is not because Boolean queries are the most effective. In fact,

a number of studies over the years (e.g., [77, 82, 99]) have shown that “keyword”

queries are often significantly more effective. However, Boolean queries are easy for

domain-specific users to manipulate and can provide a record of what documents are

retrieved. Thus, professional search users continue to have a strong preference for

Boolean queries. Therefore, in this chapter, we propose our method for generating

effective Boolean queries based on query documents. We start by defining terms and

formulating relevant tasks for Boolean query generation and suggestion. After that,

we describe our methods to generate effective Boolean queries and suggest them. In

evaluations, we provide experimental results of the proposed methods by comparing

with baseline query generation approaches (described in Chapter 3.5).

42

4.2 Problem Formulation

Definition 1. (Query Document): The query document is an initial document

input by a user, which initiates a search task. For example, in patent retrieval, a new

patent can be a query document, which initiates a prior-art search task. A query

document is a subject for which multiple queries against search engines are formed,

and the retrieval results are examined by users.

Definition 2. (Boolean Query): A Boolean query is a sequence of query terms all

of which are connected by conjunction and each of which can be prefixed by negation,

e.g., battery∧ion. In our work, as query term candidates, we consider bigrams as well

as unigrams. Since too long queries are not much useful as suggestions, we empirically

set the maximal number of terms in a Boolean query as 10.

Definition 3. (Pseudo-Relevant Documents): Pseudo-relevant documents are

the top k documents initially retrieved by the query document. For example, we can

generate a baseline query by the query generation method proposed in [107], and the

pseudo-relevant documents are obtained by the baseline query. In our query genera-

tion, we exploit the pseudo-relevant documents to generate more effective queries.

Problem 1. (Boolean Query Generation): Boolean query generation is formu-

lating Boolean queries from a set of query term candidates. Using terms appearing

in a set of pseudo-relevant documents for a query document, we formulate Boolean

queries that consist of effective terms and Boolean operators (AND and NOT), where

query term candidates can be unigrams or bigrams extracted from the pseudo-relevant

documents.

Problem 2. (Boolean Query Ranking): Boolean query ranking is determining a

preference among generated Boolean queries for a query document with respect to

an IR evaluation metric, e.g., recall. This is necessary for suggesting a reasonable

number of effective Boolean queries (e.g., 5 to 10) to users because many queries can

be generated in the Boolean query generation phase. We produce a ranked list of

43

generated Boolean queries where an effective Boolean query should be placed within

the high ranks (e.g., top 10).

4.3 Decision Tree-based Boolean Query Generation

In this section, we propose a decision tree-based method for generating effec-

tive Boolean queries. Figure 4.1 describes the process of our Boolean query genera-

tion. We train decision trees using the baseline retrieval results (containing the top

k pseudo-relevant documents and beyond k non-relevant documents) and formulate

corresponding Boolean queries (BQs).

Figure 4.1: Boolean Query Generation Framework

Binary decision trees are equivalent representations of Boolean functions [91]. If

we could train a decision tree where a node corresponds to a term appearing in

training documents in order to determine whether a document is relevant to a topic,

the learned decision tree could imply a Boolean query representing a set of relevant

documents. In addition, the length and query terms of a Boolean query are naturally

44

determined by the depth and the nodes of the tree with reasonable accuracy. A

problem, however, is that we do not have training data to learn a tree which can be

generalized for every query because each query is associated with a different set of

terms. So, instead of relevant documents, we use pseudo-relevant documents (Def.

3) as training data. In other words, we learn a decision tree by using the top k

documents as positive examples. As negative examples, presumably non-relevant

documents (ranked beyond k in the baseline retrieval results) are used. Accordingly,

Boolean queries generated from the positive nodes of the learned decision tree are

expected to be as effective as the baseline query because the decision tree is learned

from the pseudo-relevant documents.

Once we learn a decision tree for a query document, we identify a single path from

a root to a positive leaf node in the decision tree and convert the rule (path) into a

Boolean query. Accordingly, a decision tree produces as many Boolean queries as the

number of positive leaf nodes. Figure 4.2 depicts how to generate Boolean queries

Figure 4.2: Boolean Query Generation Example

from an example decision tree whose attributes (query term candidates) are “alloy”,

“wheel”, and “steel”, and PR / NR values of each leaf node denotes a positive (pseudo-

relevant) / negative (non-relevant) decision for input documents. For example, a

document including “alloy” and “wheel” is classified as pseudo-relevant because a

number of pseudo-relevant examples used for training include the two terms. That

45

is, the path from “alloy” to the first PR leaf can formulate the query, BQ1, which is

expected to retrieve documents containing “alloy” and “wheel”. Since we concentrate

on using conjunction and negation operators to formulate Boolean queries, we can

generate two queries, BQ1 and BQ2, rather than a single unified query such as (alloy∧

wheel) ∨ (alloy ∧ steel). This is because AND and NOT have more impact on the

retrieval effectiveness and BQ1 or BQ2 performs empirically better than the unified

query with respect to recall at the top 100 results that we use to evaluate a Boolean

query.

Algorithm 1 Boolean Query Generation

Input:
T = {T1, T2, . . . , TN}: N different sets of attributes where Ti is a set of query term
candidates
Rb: the baseline retrieval results for a query document

Output:
S: a set of Boolean queries

1: Initialize S = { }
2: RP ← the top k documents from Rb ◃ positive examples
3: RN ← k documents randomly selected from the beyond k documents from Rb

◃ negative examples
4: for i = 1 to N do
5: Train a decision tree using {RP , RN} as training examples and Ti as attributes
6: Find all paths from the root node to every positive leaf node in the trained

decision tree and formulate corresponding Boolean queries
7: Append the formulated Boolean queries to S
8: end for
9: return S

Algorithm 1 shows the process of generating Boolean queries from several sets of

query term candidates (i.e., attributes), a set of pseudo-relevant documents (the top k

baseline retrieval results) and a set of non-relevant documents (the beyond k baseline

retrieval results). To produce a sufficient number of Boolean queries for each query

document, we train several decision trees with different attributes, while all the trees

are trained by the same training set. In this approach, the training set includes the

k positive (pseudo-relevant) documents and an equal number of negative instances

46

(non-relevant) for a query document. To obtain N sets of attributes, we extract the

terms appearing in the query document or pseudo-relevant documents, and change

the number of terms that belong to each set. We describe the details of generating

attributes as follows.

We consider all terms appearing in the query document or its pseudo-relevant

documents as query term candidates, and select m different terms as attributes by

ranking them. To do this, we select unigrams which are likely to be generated from

the query document or pseudo-relevant documents, assuming that terms are effective

for retrieving relevant documents if the terms occur frequently in the query document

or pseudo-relevant documents. For the ranking, we use the following language models:

P (w|qd) ≈ tf(w, qd)

|dq|

P (w|Dprel) ≈
∑

d∈Dprel
tf(w, d)∑

d∈Dprel
|d|

(4.1)

where w is a unigram term, qd is a query document, tf(w, dq) indicates w’s frequency

in dq, and Dprel is the set of pseudo-relevant documents for dq.

In the ranking, stop-words1 are ignored, and we can rank all terms in the query

document or pseudo-relevant documents by using Eq. (4.1). We select the top m

terms as attributes for decision trees, and considerN differentm’s (i.e.,m, 2m, 3m, . . . , N ×m)

to obtain N different sets of attributes.

In addition to this, we consider bigrams as query term candidates, and add an

equal number of bigrams into each set of selected unigrams. To rank bigrams, we

estimate smoothed bigram language models for the query document and the pseudo-

relevant documents as follow:

1Stop-words contain articles, prepositions, acronyms (e.g., “fig.”), (relative) pronouns, and gen-
eral nouns (e.g., “method”, “figure”, “apparatus”, etc.), frequently appeared in domain-specific
documents (e.g., patents)

47

P (wi−1wi|qd) ≈ (1− λ)tf(wi−1wi, qd)

tf(wi−1, qd)
+ λP (wi|qd)

P (wi−1wi|Dprel) ≈ (1− λ)
∑

d∈Dprel
tf(wi−1wi, d)∑

d∈Dprel
tf(wi−1, d)

+ λP (wi|Dprel)
(4.2)

where λ is a bias to unigrams, and the bigrams containing any stop-word are ignored.

4.4 Boolean Query Ranking

To select a reasonable number of effective queries from a pool of generated Boolean

queries, we propose a Boolean query ranking model and introduce features for the

model.

4.4.1 Learning-to-Rank Boolean Queries

In order to rank generated Boolean queries, we learn a ranking function which

predicts the preference between Boolean queries. That is, given a query document

and its generated Boolean queries, our ranking model produces a ranked list of the

Boolean queries in descending order of retrieval effectiveness. To measure the retrieval

effectiveness of each Boolean query, we need to use an evaluation metric appropriate to

the given search task, e.g., recall at 100 (R@100) is used for prior-art search. Thus,

we use ranks by the effectiveness of the Boolean queries generated for each query

document as target values to be predicted. The formal definition of this ranking

model is given as follows.

Suppose that Y = {r1, r2, . . . , rl} is a set of ranks, where l denotes the number of

ranks, and we can order the ranks r1 ≻ r2 ≻ . . . ≻ rl where ≻ indicates the preference

between two ranks. For training, a set of query documentsQD = {qd1, qd2, . . . , qdn} is

given and each query document qdi is associated with BQi = {bqi1, bqi2, . . . , bqin(qdi)},

a set of Boolean queries, where n(qdi) means the number of generated Boolean queries

for qdi and a list of labels yi = {yi1, yi2, . . . , yin(qdi)}, each of which yij ∈ Y indicates

the rank of each Boolean query, bqij. A feature vector xij = Ψ(qdi, bqij) ∈ X is

48

generated from each query document and Boolean query pair. We can represent a

set of training examples as S = {(qdi, BQi, yi)}mi=1.

A ranking function f : X 7→ ℜ maps a feature vector associated with a Boolean

query to a score for the query. Specifically, this model generates a permutation

of integers spanned in [1, n(qdi)] for qdi, the corresponding Boolean query list, and

the ranking function f . The permutation π(qdi, BQi) is defined as a bijection from

{1, 2, . . . , n(qdi)} to itself where bqij is identified by an integer of [1, n(qdi)] and π(j)

denotes the position of bqij. The model is learned to minimize a loss function which

is defined by the disagreements between permutation π(qdi, BQi) and rank list yi for

every training query document.

For learning, we use SVMrank. In contrast to Boolean Query Generation where

only pseudo-relevance is considered, we use real relevance judgments to compute

the retrieval effectiveness of training examples for Boolean Query Ranking. This

is because Boolean Query Ranking uses generalizable features while Boolean Query

Generation uses terms which strongly depend on the given query documents.

4.4.2 Features

In order to compose a feature vector for our query ranking model, we leverage fea-

tures from previous studies for predicting query performance (e.g., [27, 42, 113]). The

study described in [62] proved that query quality predictors are effective for ranking

sub-queries. Since generated Boolean queries also consist of subsets of terms related

to query documents, we can expect those quality predictors also help to recognize

effective Boolean queries. However, we additionally use more features specialized for

our task because we observed that Boolean queries often show different character-

istics from adhoc queries. Accordingly, we categorize our features into two groups,

General Query Quality Predictors and Boolean Query Quality Predictors. Table 4.1

summarizes the features in each group. General Query Quality Predictors contain

49

Table 4.1: Two categories of Boolean Query Ranking Features

General Query Quality Predictors
QCS Query Clarity Score [27]
QS Query Scope [42] in pseudo-relevant documents
SOQ Similarity to Original Query [42]
SCQ Similarity Collection Query [113]
IDF Inverse Document Frequency
ICTF Inverse Collection Term Frequency

Boolean Query Quality Predictors
BQCB Boolean Query retrieval list Coverage of Baseline retrieval results
BQS Boolean Query Scope in pseudo-relevant documents
LBQR Length of Boolean Query retrieval Results
BQTF Boolean Query Term Frequency in pseudo-relevant documents

features proposed by previous studies for quality prediction of adhoc queries. Table

4.1 describes these features, named QCS, QS, SOQ, SCQ, IDF, and ICTF. Since

Boolean queries show different aspects from adhoc queries for which those features

have been proposed, we need to adjust the way these features are computed. For

example, since adhoc queries do not contain negation (e.g., ¬tartar) in contrast to

a Boolean query, we consider terms associated only with conjunctions. SOQ mea-

sures cosine similarity between a Boolean query and the baseline query while QS is

computed only within pseudo-relevant documents, not within the whole collection

because we aim to generate Boolean queries to retrieve pseudo-relevant documents.

For IDF, ICTF, and SCQ, as [62] did, we calculate the sum, the standard deviation,

the ratio of the maximum to the minimum, the maximum, the arithmetic mean, the

geometric mean, the harmonic mean, and the coefficient of variation of each value of

a query term. These modified rules are applied to both unigrams and bigrams.

Boolean Query Quality Predictors are features with the purpose of estimating

Boolean query quality. All these features except BQTF are related to the retrieval

results of a Boolean query because comparing a Boolean query retrieval list with

the baseline results is a simple and effective way to predict Boolean query quality.

50

BQCB is the ratio of the number of documents retrieved by both a Boolean query

and the baseline query to the number of documents retrieved by the baseline query.

This feature denotes how many of the documents retrieved by the baseline query

can be found by a Boolean query. BQS is a measure of the number of pseudo-

relevant documents retrieved by a Boolean query relative to the whole size of pseudo-

relevant documents, i.e., k. This feature helps to assure the effectiveness of a Boolean

query. LBQR measures the number of retrieved documents for a Boolean query.

Since we found that an effective Boolean query sometimes returns a shorter result

list containing highly relevant documents than the baseline results, we consider this

feature as a signal to find such Boolean queries. BQTF counts the frequency of a

conjunctive query term in pseudo-relevant documents, assuming that a frequent term

in pseudo-relevant documents might be effective for retrieving the documents. Note

that we do not consider negation terms because they rarely appear in pseudo-relevant

documents. Besides, for BQTF, the same statistics as used for IDF are calculated.

Overall, a feature vector contains 37 different feature values (from 10 different types).

4.5 Evaluation

We evaluate our Boolean query generation and suggestion methods by simulating

professional search. We first provide the details of experimental setup and then report

experimental results and discussion with Boolean query examples.

4.5.1 Experimental Setup

To perform decision tree learning, the C4.52 algorithm was used, with pruning

turned on to obtain more accurate trees. For Boolean Query Ranking, SVMrank is

used as a learning-to-rank algorithm, and 10-fold cross-validation is performed with

random partitioning. Queries and documents are stemmed by the Krovetz stemmer

2http://en.wikipedia.org/wiki/C4.5 algorithm

51

[60]. We also conduct the experiments for two domain-specific search tasks: (1)

patent search and (2) medical reference retrieval (see Chapter 3.2). Accordingly, we

use USPTO and OHSUMED test collections, described in Chapter 3.3. In addition,

we adopt PriorArtQuery (described in Chapter 3.5 to generate baseline queries for

USPTO and the query likelihood model for the queries in OHSUMED. Indri is used

to implement retrieval models, and we assume that the top 100 documents of the

baseline retrieval results are pseudo-relevant. To run our Boolean queries, we use the

statistical Boolean retrieval model described in Chapter 3.6.

To measure the retrieval effectiveness of each query, we use recall at top 100

(R@100) because the search tasks in the patent and medical domains are known as

recall-oriented and the top 100 patents are typically examined in real examination

processes as reported in [53]. In addition, the F1-score is used since it can capture

both recall and precision simultaneously and help to measure search efficiency. To

compare the effectiveness between a Boolean query and baseline query, we use the

best recall score of the top n Boolean query suggestions for each query document. As

described in Chapter 3.4, the users would sequentially examine the suggested queries

from the top 1 to n, and can eventually identify the best one. By doing this, we

can figure out the maximum performance that our Boolean queries can achieve, and

identify how many suggestions need to be examined to find an effective Boolean query.

Table 4.2: Boolean Query Length Statistics

Collection Mean Std. Dev. Min
USPTO 3.26 1.01 2

OHSUMED 3.14 1.46 2

We also measure each generated query’s length (i.e., the number of terms in a

generated query), as shown in Table 4.2. Note that we use unigram queries for this

statistics, and the terms associated with negation can be counted. In both collections,

52

generated queries can contain about three terms on average, and the minimum length

is 2 (i.e., at least two terms are included in every query). However, the average length

of USPTO queries is significantly longer than that of OHSUMED queries (by the

Wilcoxon rank-sum test with p < 0.05).

To evaluate the Boolean query generation method, we additionally define the fol-

lowing two metrics: (1) Failure Rate and (2) Success Rate.

Failure Rate measures the percentile ratio of “failure” Boolean queries to all

generated ones for each query document. Boolean queries which failed to retrieve any

target documents are considered as a “failure”.

Success Rate measures the percentile ratio of “effective” Boolean queries to the

all generated ones, where “effective” means a Boolean query performing identical to

or better than the baseline query with regard to R@100. This metric denotes how

many Boolean queries achieve the baseline performance.

4.5.2 Results

4.5.2.1 Generation Performance

The first experiment is conducted to verify the effectiveness of Boolean Query

Generation. In the USPAT, we generate 4 types of attribute sets; unigrams and uni-

grams+bigrams from a query patent (i.e., qd), and unigrams and unigrams+bigrams

from the pseudo-relevant documents (i.e., Dprel). For OHSUMED, only 2 types, un-

igrams and unigrams+bigrams from the pseudo-relevant set, are used because each

provided query contains only a few sentences. Table 4.3 and 4.4 show the perfor-

mance of Boolean query generation for both domains. We report the average of each

evaluation metric over all query documents. Note that we additionally measure the

portion of “moderate” queries to all generated queries, which perform moderately

(i.e., between success and failure) for retrieving relevant documents.

53

Table 4.3: Boolean Query Generation Performance for Patent Domain

USPTO
Evaluation
Metric

unigram
(qd)

unigram+bigram
(qd)

unigram
(Dprel)

unigram+bigram
(Dprel)

Success Rate 7.26% 4.56% 7.84% 4.63%
Avg. ♯ of Success 14.13 9.62 14.32 10.86
Failure Rate 9.47% 7.64% 6.98% 6.19%
Avg. ♯ of Failure 17.25 15.06 11.97 13.28
Moderate Portion 83.27% 83.27% 83.27% 83.27%
Avg. ♯ of Moderate 157.59 180.34 149.57 194.02
Avg. ♯ of Gen. 188.97 205.02 175.86 218.16

Table 4.4: Boolean Query Generation Performance for Medical Domain

OHSUMED
Evaluation
Metric

unigram
(Dprel)

unigram+bigram
(Dprel)

Success Rate 6.18% 5.85%
Avg. ♯ of Success 14.58 16.81
Failure Rate 7.93% 5.85%
Avg. ♯ of Failure 16.37 18.22
Avg. ♯ of Gen. 206.53 238.43

Our decision tree-based generation algorithm can generate a substantial number of

distinct Boolean queries. About 200 queries are generated for each query document,

of which 6 to 9% fail to retrieve any target documents. In USPAT, pseudo-relevant

documents are more reliable resources to generate Boolean queries than query patents

because of the smaller failure rate on average. Also, adding bigrams can lead decision

trees to generate more queries, and the relative failure rate could drop. However,

bigrams seems to be harmful in terms of the success rate. In addition, considering the

number of “effective” Boolean queries (the number of successes), about 7% of queries

show better or equal performance to the baseline query. Although this percentage

may look low, we obtain many effective queries via this generation process. Indeed,

as you see from the number of successes, more than 10 effective queries are generated

54

for each query document. If we can place these effective queries at top ranks using

our Boolean query ranking method, search users who examine these suggestions will

find the effective queries. We address the performance of the query ranking technique

in the following section.

4.5.2.2 Retrieval Performance

In the next series of experiments, we evaluate the effectiveness of Boolean Query

Ranking by investigating if it succeeds in placing effective Boolean queries at high

ranks, i.e., top 1 to 10. In training, generated queries for each query document are

ordered by their R@100 scores. For the evaluation, we compare the best-performing

query among the top 1 to 10 suggestions with the baseline query for each query

document. Thus, we calculate R@100 and F1@100 of the results obtained by the

best-performing query and baseline query.

Table 4.5 shows the retrieval results within the top 1 to 10 ranked Boolean queries

by 10-fold cross validation. In the table, a † indicates a significant difference from

the baseline and a ∗ denotes a significant difference of unigram results from uni-

gram+bigram results in each row (the paired t-test is performed with p < 0.05). In

addition, significantly improved results over the baseline in each column are marked in

bold, and “cut-off” indicates that all Boolean queries ranked within the cut-off ranks

are examined. From this table, we can identify how many top n Boolean queries need

to be examined to find an “effective” one (i.e., performing as well as the baseline).

In other words, the results of the top n queries which are not significantly different

from the baseline result show that at least one effective Boolean query can be within

the top n suggestions.

In Table 4.5, we see that effective Boolean queries can be found within the top 2

or 4 suggestions in each corpus. In USPAT, an effective Boolean query is observed

within the top 2 ranks in both unigram and unigram+bigram cases. Furthermore, in

55

Table 4.5: Boolean Query Ranking Performance

Domain Metric Recall@100 F1@100
Baseline 0.2557 0.1184

USPTO cut-off unigram unigram+
bigram

unigram unigram+
bigram

1 0.2227† 0.2174† 0.1062† 0.0969†

2 0.2538 0.2445 0.1204 0.1096
3 0.2670 0.2529 0.1264 0.1166
4 0.2761 0.2535 0.1303 0.1169
5 0.2820 0.2592 0.1330†∗ 0.1191
6 0.2852 0.2597 0.1345†∗ 0.1194
7 0.2883†∗ 0.2622 0.1359†∗ 0.1209
8 0.2911†∗ 0.2695 0.1370†∗ 0.1257
9 0.2952†∗ 0.2710 0.1388† 0.1265
10 0.2991†∗ 0.2722 0.1402† 0.1277

Baseline 0.4377 0.2636
OHSUMED cut-off unigram unigram+

bigram
unigram unigram+

bigram
1 0.3068† 0.3052† 0.2155† 0.2222†

2 0.3618† 0.3611† 0.2490 0.2580
3 0.3865† 0.3754† 0.2669 0.2774
4 0.3970 0.3923† 0.2763 0.2874
5 0.4009 0.4032 0.2836 0.2944
6 0.4137 0.4082 0.2959 0.3042†

7 0.4141 0.4106 0.2961† 0.3045†

8 0.4143 0.4170 0.2963† 0.3046†

9 0.4393 0.4232 0.3076† 0.3169†

10 0.4411 0.4232 0.3089† 0.3185†

the unigram case, significantly improved results in terms of R@100 can be obtained

by examining 7 or more Boolean queries. This is surprising to us because we ex-

pected Boolean queries to perform similar to the baseline. However, the result is a

good indication that our method provides effective suggestions. In terms of F1, the

top 5 unigram queries contain the queries that can outperform the baseline. These

suggested queries retrieve about the same number of relevant documents as the base-

line results, but with higher precision. That is, these Boolean queries may be more

efficient in that they can allow users to examine fewer documents. On the other hand,

56

effective queries are not successfully generated in the case of unigram+bigram. For

example, the number of generated effective queries in the unigram+bigram case is

smaller than in the unigram case as seen in Table 4.3. Furthermore, many unigram

results show statistically significant improvements over the unigram+bigram results,

when comparing query performance at the same top n suggestions.

In OHSUMED, more queries need to be examined to find effective Boolean queries

compared to USPAT. For example, four query suggestions should be examined in the

unigram case in the OHSUMED, while only two queries are needed in the USPAT.

Furthermore, even more queries should be examined in the unigram+bigram case.

In addition, we could not obtain significantly better Boolean queries with respect to

R@100 in this domain. For the F1-score, however, we also identify more efficient

Boolean queries by examining the top 6 or 7 queries. A critical difference between

OHSUMED and USPTO is that there is little distinction between unigram and uni-

gram+bigram results in the OHSUMED while unigram queries are consistently better

than unigram+bigram queries in the USPTO. Overall, our ranking model is effective

in placing “effective” Boolean query suggestions within the top 2 to 5 ranks.

4.5.2.3 Qualitative Analysis

We now provide a qualitative analysis of our system via real examples. Table

4.6 shows the top 5 Boolean queries suggested by our method, for a sample query

document in USPAT. The title of the sampled query document is “compressor driving

apparatus”, and, in the table, ♯Ret. indicates the number of documents retrieved by

each query. For this sample query document, the baseline query shows moderate

performance (0.30 for R@100, 0.10 for F1@100), and some suggestions generated

by our method can outperform the baseline. Many Boolean queries retrieve less

than 100 documents, and some long suggestions (e.g., powerunit∧ air conditioner∧

output∧inverter∧circuit) can precisely retrieve relevant documents in the short result

57

Table 4.6: Examples of Generated Boolean Queries

Rank Unigram Queries R@100 F1@100 ♯Ret.
1 inverter ∧ compressor 0.35 0.12 100+
2 inverter ∧ compressor ∧ circuit 0.55 0.18 100+
3 inverter ∧motor 0.05 0.02 100+
4 ¬inrush ∧ ¬metallic ∧ inverter∧

compressor ∧ relay
0.10 0.04 72

5 ¬inrush ∧ ¬metallic ∧ ¬board ∧ circuit
∧compressor ∧ supply ∧ inverter

0.25 0.13 58

Rank Unigram+Bigram Queries R@100 F1@100 ♯Ret.
1 ¬inverter driving ∧ inverter∧

compressor ∧ circuit
0.20 0.07 87

2 inverter ∧ air conditioner ∧ circuit 0.50 0.17 100+
3 ¬power unit ∧ air conditioner ∧ output

∧inverter ∧ circuit
0.55 0.25 68

4 ¬relay driver ∧ ¬compressor driving∧
inverter ∧ circuit

0.05 0.03 48

5 switching elements ∧ air conditioner 0.30 0.10 100+

lists. Several suggestions return significantly more relevant documents. The suggested

Boolean queries can provide reasonable query contexts. For example, “compressor” is

often combined with “inverter”, “supply”, “circuit” in Table 4.6 because compressor

driving apparatus can include power supply, inverter drivers and storage circuits.

Moreover, looking at the negated terms, professional searchers can recognize where

negation is applied in the provided context. For example, “power unit” is negated

when it comes with “air conditioner”, “output”, “inverter”, and “circuit”. Since we

found that past cited patents are dealing with inverters or circuits for air conditioners,

power supplies can be considered less important.

4.6 Summary

In this chapter, we proposed a framework to automatically generate and suggest

Boolean queries to assist professional users. We assume that many domain-specific

search tasks are interactively performed by information professionals. In our method,

58

we first generate Boolean queries by exploiting decision tree learning and pseudo-

relevant documents. To provide a reasonable number of suggestions, we rank the

generated queries by a query ranking model using query quality predictors. In the

evaluation, we found that our method can not only generate many effective Boolean

queries but also select highly effective queries for suggestion.

59

CHAPTER 5

PHRASAL-CONCEPT QUERY GENERATION

5.1 Overview

Academic literature search (e.g., finding relevant research papers) is one of the

most promising domains that can be helped by query generation. In this domain,

the typical users are scientists, and they need to find existing articles relevant to

their current work. Since a scientific study is related to a number of research topics,

people typically use many queries for retrieving a comprehensive list of related papers.

In this situation, query generation can reduce the burden of formulating effective

queries and the complexity of the search by providing effective query examples. In

addition, sometimes scientists need to find relevant papers outside their specific area

of expertise, and generated queries can be a good guideline for exploring new areas.

To develop effective queries for literature search, we need to consider its unique

characteristics. In contrast to general web search, the literature search task is carried

out in a very specific environment, and a query generation method should be designed

for the unique characteristics of that environment. One unique characteristic is that

phrasal concepts and terminology (e.g., “lexicon acquisition using bootstrapping”)

are frequently used as keywords in target documents (i.e., research papers). Since

scientists use longer technical terms to describe their research ideas, phrasal concepts

are frequently observed in academic writing. It follows that queries that emphasize

phrasal concepts should be more effective for discriminating relevant documents from

non-relevant documents in retrieval. In addition, typical users of literature search may

prefer using phrasal-concept queries because phrases and terminology tend to have

60

clear meanings, and users can more easily understand the areas that the generated

queries are targeting.

Given that phrasal concepts are important for literature search, we propose a

query generation method that can formulate phrasal-concept queries by exploiting

pseudo-labeled documents. We first define relevant terms and problems for phrasal-

concept query generation, and then describe our method to generate and suggest

phrasal-concept queries. For evaluation, the ideal situation is that scientists provide

their research descriptions as initial queries, and relevant articles are identified by

asking the same scientists. However, no such data is available, and there have been

alternatives proposed to automatically generate evaluation data from existing citation

databases (e.g., [88]). For example, He et al. [44] developed an initial query using

the sentences containing citations from a published paper, and regard the citations

as the relevant articles. This approach favors a local recommendation because it only

considers local contexts of the query paper (i.e., published paper) [43]. On the other

hand, the settings used in [13, 96] assume that the abstract and title of the query

paper are a research summary written by the user, and the list of references cited in

the paper is the set of relevant documents. This method uses the global context of

the query paper for retrieval, and we adopt this approach in our work.

Furthermore, we evaluate our phrasal-concept query generation method based on

user preference as well as retrieval effectiveness. We conduct user experiments to

verify that users prefer the queries generated by our technique, compared to other

effective query generation and query expansion methods. To assess the retrieval

effectiveness of our method, we compare the retrieval performance to other query

expansion methods in simulated literature search environments.

61

5.2 Problem Formulation

Definition 1. (Baseline Query): Given an initial query (e.g., a summary of a

research work), a baseline query is its improvement by state-of-the-art query expan-

sion methods (e.g., LCE and RM). We exploit the baseline query to generate more

effective phrasal-concept queries.

Definition 2. (Phrasal Concept): A phrasal concept is a syntactic expression rec-

ognized as a noun phrase in a document. Syntactic phrases will be more recognizable

to users in general than arbitrary n-grams (e.g., bigrams and trigrams). In addition,

noun phrases are suitable for representing important “concepts” in academic papers

(e.g., technique names such as “Markov Random Field”), and noun phrase concepts

have been shown to be effective for improving retrieval effectiveness [11]. In our work,

we use the terms phrasal-concept and concept, interchangeably.

Definition 2. (Key Concept and Related Concept): A key concept is an effective

phrasal-concept for finding relevant documents, and a related concept is a phrasal-

concept related to a key concept, which helps users to understand the key concept

better. For example, “text classification via WordNet” can be a key concept, and

“Support Vector Machine” and “WordNet similarity feature” could be related con-

cepts. A key concept can have multiple related concepts, and to measure the relation

between a concept and the key concept, various statistical similarity measures can be

used (see Chapter 5.3).

Problem 1. (Key Concept Identification): Given a set of phrasal concepts, key

concept identification is ranking the concepts by their estimated retrieval effectiveness,

i.e., highly ranked concepts are predicted to be more effective for retrieving relevant

documents. We assume that the top n ranked concepts are the key concepts.

Definition 3. (Phrasal-Concept Query): A phrasal-concept query is a combina-

tion of a key concept and a set of related concepts. To improve the understandability

62

of each suggestion and maximize retrieval performance, we include only a single key

concept and its related concepts in a phrasal-concept query.

Problem 2. (Phrasal-Concept Query Suggestion): Phrasal-concept query sug-

gestion is suggesting a list of phrasal-concept queries to users. We suggest up to n

queries which are sorted in descending order of predicted retrieval effectiveness of

their key concepts. Since the key concepts in Problem 1 are ranked by their predicted

retrieval effectiveness, we can address this problem by solving Problem 1.

5.3 Phrasal-Concept Query Generation

Phrasal-concept queries, which explicitly specify important phrases, are effective

and useful for academic literature search. Given a query paper (e.g., a summary of a

new research project), we generate a list of n phrasal-concept queries in the following

steps:

Step-1 : Generate a baseline query and gather the pseudo-relevant documents of the

baseline query.

Step-2 : Extract candidate concepts from the pseudo-relevant documents.

Step-3 : Identify n key concepts by ranking the candidate concepts using the baseline

query. Related concepts may be also extracted.

Step-4 : Construct a list of n concept queries as query suggestions.

Given a query document, the first step is generating an effective baseline query.

For this, we can use existing query expansion methods (e.g., LCE and RM) for gen-

erating more improved queries. Since we assume that the users simply input a bag

of words (describing a new research idea) as an initial query, such an initial query

may perform poorly and may not be helpful for obtaining effective pseudo-relevant

documents where phrasal concepts are extracted in the next step. To alleviate this,

63

we use query expansion methods to generate a more effective set of pseudo-relevant

documents. The query weighting schemes corresponding to the expansion method

can also be applied. To formulate better baseline queries, we conducted preliminary

experiments with several query expansion and generation methods and found that the

LCE and MLE (described in Chapter 3.5) performed significantly better in our search

environments; we provide more details about this in Chapter 5.4. Once a baseline

query is formulated, we can obtain the top k pseudo-relevant documents from the

retrieval results.

Figure 5.1: Phrasal-Concept Query Generation Example

Next, we extract candidate (phrasal) concepts by ranking the phrases recognized

from the pseudo-relevant documents. Then, in the third step, we rank the candidates

with respect to their retrieval effectiveness predicted from the baseline query terms.

64

After ranking, we assume that the top n (phrasal) concepts are key concepts, and

combine each key concept with the related concepts that have high co-occurrence

with the key concept. Finally, we can construct a list of phrasal-concept queries,

each of which includes a single key concept and multiple related concepts. Figure 5.1

shows an example of phrasal-concept query generation following this process, and the

details of each step are described in the following sections.

5.3.1 Extracting Candidate Phrasal-Concepts

In the second step, we collect candidate (phrasal) concepts used for identifying

key concepts and their related concepts. By retrieving documents with the baseline

query, we obtain pseudo-relevant documents, and then use them to extract candidate

phrasal-concepts. Instead of using the pseudo-relevant documents, we can directly ex-

tract candidate concepts from only query documents. However, in academic literature

search, query documents can be relatively short (e.g., a few paragraphs for describing

new research projects) and more effective concepts may not be observed by a small

pool of candidate concepts, derived from only query documents; typically pseudo-

relevant documents could provide more effective terms for retrieval (e.g., [64, 38, 80]).

In experiments, we generate a query document by concatenating title and abstract

text, and most concepts in such a query document are appeared in pseudo-relevant

documents.

As we consider a noun phrase (NP) as a phrasal concept (Def. 2), we apply an

NP recognizer1 to the pseudo-relevant documents. However, due to the long length of

academic articles (such as journal papers), too many phrasal-concepts are recognized

from the whole text of an article. Therefore, to reduce the size of the candidate set,

we assume that a title and abstract contain important phrasal-concepts which can

represent the whole article. Accordingly, we can generate two different candidate sets:

1Montylingua (http://web.media.mit.edu/ hugo/montylingua/)

65

(i) all phrasal-concepts from only the titles of pseudo-relevant documents, and (ii) N

important phrasal-concepts from titles and abstracts of pseudo-relevant documents;

among all the recognized phrasal-concepts, we can use n-gram language models to

estimate the importance of each phrasal-concept recognized from the titles and ab-

stracts of pseudo-relevant documents. In the evaluation, we use 300 phrasal-concepts

extracted by using trigram language models. The ranking function based on this

model is given as:

P (w1w2 . . . wl) ≈
∏l

i=3 P (wi|wi−2wi−1)

P (wi|wi−2wi−1) ≈ λ1P (wi|wi−2wi−1) + λ2P (wi|wi−1) + λ3P (wi)
(5.1)

where w1w2 . . . wl is a concept whose word-length is l and λj is a bias to each language

model.

To avoid the sparseness problem, the trigram language models are smoothed by

bigram and unigram language models, and for each model we use maximum likeli-

hood estimations based on term frequencies in the pseudo-relevant documents. We

empirically set the biases as λ1 = 0.7, λ2 = 0.2, and λ3 = 0.1. If a phrasal-concept

is longer than a trigram, we identify multiple trigrams from the phrasal-concept (see

the first part of Eq. (5.1), and take a product of the probability of each trigram to

estimate the probability of the whole concept.

5.3.2 Identifying Key Phrasal-Concepts

After collecting candidate phrasal-concepts, we identify key concepts by ranking

the candidate (phrasal) concepts with respect to their predicted retrieval effectiveness.

Given a set of candidate concepts and the baseline query, we assume that the concepts

more similar to the baseline query will be more effective because the baseline query is

effective for retrieving relevant documents. As an example, in Figure 5.1, the query

document describes some graph-theoretic constraints for non-projective dependency

66

parsing. In the baseline query, “dependency” and “parse” are effective keywords and

highly weighted, and we can infer that among many related phrasal-concepts for this

paper, “non-projective dependency parsing” is one of the most important phrasal-

concepts. Since this phrasal-concept intuitively looks very similar to the keywords

in the baseline query (i.e., “dependency” and “parse”), it may have higher retrieval

effectiveness. To identify this phrasal-concept as a key concept, we use the similarity

between the phrasal concept and keywords. Thus, in ranking, we place the phrasal

concepts more similar to many baseline query terms at higher ranks, and the highly

ranked phrasal concepts are regarded as “key concepts”. To do this, we use the label

propagation algorithm [114] where the labels (effectiveness) of the baseline query

terms are propagated to the candidate concepts through a similarity matrix which

defines the similarities between the candidate concepts and baseline query terms.

Algorithm 2 Phrasal-Concept Ranking

Input:
V is an input set divided into two sub-sets: the set of baseline query terms, Vb ⊂ V ,
and the set of candidate phrasal-concepts ,Vc ⊂ V
Y is a label vector divided into two sub-sets: the set of baseline query terms,
Yb ⊂ Y , and the set of candidate phrasal-concepts, Yc ⊂ Y
W is a similarity matrix which defines the similarities between ∀vi,∀vj ∈ V
t is the number of iterations

Output:
Vc is the ranked list of candidate concepts

1: Let D be a diagonal and row sum matrix of W
2: Initialize Y (0) = [Yb, Yc] where ∀yb ∈ Yb, yb = 1 and ∀yc ∈ Yc, yc = 0
3: for i = 0 to t− 1 do
4: Calculate Y (i+1) = D−1 ·W · Y (i)

5: end for
6: Sort Y

(t)
c ⊂ Y (t) in decreasing order

7: return the list of Vc where the ranking of vc ∈ Vc corresponds to the order of
yc ∈ Y (t)

c

Suppose that we construct two vectors: (i) the vector of baseline query terms, Vb,

and (ii) the vector of candidate phrasal-concepts, Vc. Define a term vector, V , as V =

67

[Vb, Vc] and construct a label vector Y = [Yb, Yc] where each yb ∈ Yb is mapped to each

vb ∈ Vb and each yc ∈ Yc is mapped to each vc ∈ Vc, i.e., (v1, y1), (v2, y2), . . . , (vm, ym)

where m = |V | = |Y |. In addition, we define a |V | × |V | similarity matrix, W which

represents the similarities between ∀vi and ∀vj, i.e.,W [i, j] = sim(vi, vj). To calculate

sim(vi, vj), we can use one of the following similarity measures.

Point-wise Mutual Information (PMI) is a statistical measure which quantifies

the discrepancy between the co-occurrence probability in the joint distribution of

vi and vj where the co-occurrence probability is estimated using their individual

distributions. Using a corpus, the PMI of two terms (i.e., vi and vj) is calculated as:

PMI(vi, vj) = log
P (vi, vj)

P (vi)P (vj)
≈ log

df(vi, vj)×N
df(vi)df(vj)

(5.2)

where vi, vj ∈ V , df() denotes the document frequency in a corpus, and N is the

number of all documents in the corpus.

Chi-square statistics (χ2) is a statistical method that determines whether vi

and vj are independent by comparing the observed co-occurrence frequencies with the

expected frequencies assuming independence.

χ2(vi, vj) =
(a× d− b× c)2 ×N

(a+ b)× (a+ c)× (b+ d)× (c+ d)
(5.3)

where a = df(vi, vj), b = df(vi)− a, c = df(vj)− a, and d = N − a− b− c.

Likelihood (LK) measures the likelihood of vj to vi, i.e., how much vj can be

generated from vi. The calculation is given as:

LK(vi, vj) = P (vj|vi) ≈
df(vi, vj)

df(vi)
(5.4)

Unlike the other measures, LK is directional, i.e., LK(vi, vj) ̸= LK(vj, vi).

68

With V , Y , and W , we perform the phrasal concept ranking algorithm (Alg. 2)

which produces a ranked list of the candidate (phrasal) concepts. In ranking, an initial

output vector Y (0) contains Yb corresponding to Vb and Yc corresponding to Vc where

the values of Yb are 1.0 which indicates “labeled” (the highest retrieval effectiveness)

and the values of Yc are 0 which indicates “unlabeled”. Given a number of iterations

(i.e., t), the propagation runs iteratively, and the values of Yc of phrasal concepts more

similar to the baseline query terms may have higher values than the others less similar

to the baseline query terms. Since t is a controlling parameter, if an excessively high

value of t is input, too many propagations are executed, and the values of ∀v ∈ V

would be converged, i.e., the values of all candidate concepts are equal. Therefore, an

appropriate value of t can be found by retrieval experiments (described in Chapter

5.4). After t iterations, the algorithm ranks Vc by the corresponding values of Yc, and

the phrasal concepts with greater values are placed at higher positions in the output

list. In the output list, we assume that the top n phrasal concepts are “key concepts”.

After identifying key concepts, we extract related concepts for each key concept.

Since a similarity measure (e.g., PMI) can be defined between two phrasal concepts,

we use it to extract “related concepts” among all candidate phrasal-concepts. In

extraction, for each key concept, vKC , we determine the set of “related concepts”,

VRC , as:

VRC = {v|sim(vKC , v) > θ} (5.5)

where θ is the cut-off value, vKC is a key concept, v is a candidate phrasal-concept,

vKC ̸= v. In the experiments, we empirically set θ as 0.01, 0.02, and 0.01 for PMI,

χ2, and LK, respectively.

Note that key concepts are identified as highly effective for retrieval, whereas

related concepts are just strongly related to a key concept and provide additional

context to the key concept for the users.

69

5.3.3 Constructing Phrasal-Concept Queries

Given the top n key (phrasal) concepts, we construct n phrasal-concept queries

by associating each key concept with its related concepts. As defined in Chap-

ter 5.2, we ensure that a phrasal-concept query contains only a single key con-

cept because a long query which contains several key concepts may be too com-

plex to understand as a query suggestion. In addition, to further simplify the sug-

gestions, we select the l most related concepts in the set of related concepts, VRC

(see Eq. (5.5)). In the experiments, we empirically set l as 4, i.e., we make a

query contain at most 5 phrasal-concepts including a key concept. Finally, the

n phrasal-concept queries are suggested to users, where each query is formed as

< Key Concept, Related Concept1, Related Concept2, . . . >. The queries are listed

in descending order of predicted retrieval effectiveness of their key concepts.

5.4 Retrieval Experiments

5.4.1 Experimental Setup

We implement retrieval experiments that simulate the processes of literature

search based on the assumptions described in Chapter 3.4. For the experiments,

we conduct two different search tasks considering the academic and medical domains,

and accordingly two test-collections, i.e., ACL and OHSUMED (described in Chap-

ter 3.3), are adopted. To develop initial queries, we use the title and abstract of

each query paper. To measure retrieval performance, we use MAP and NDCG. In

addition, the multi-query session-based metric, NSDCG, is used for optimizing the

proposed method that generates multiple queries for a query document. To run

phrasal-concept queries, we implement the learning-to-rank retrieval model described

in Chapter 3.6, and 16 features (listed in Table 3.1) are used. In addition to this,

we create four concept-specific features because we generate phrasal-concept queries

and can improve the impact of the concepts in these queries. Table 5.1 describes

70

these concept-specific retrieval features, and overall 20 features are used for running

phrasal-concept queries.

Table 5.1: Concept-specific Retrieval Features

Feature Description
exit-key-
concept(q, d)

binary feature which returns 1 if the target document, d,
contains the key concept of the query, q; otherwise, returns
0

exit-all-
concepts(q, d)

binary feature which returns 1 if d contains all concepts of
q; otherwise, returns 0

loglike-key-
concept(q, d)

log-likelihood of q for d, estimated only by the key concept
of q. logP (q|d) ≈ log freq(kc, d)/(ld − lkc + 1) where kc is
a key concept of q, ld is the length of d (♯ of words in d)
and lkc is the length of kc (♯ of words in kc).

loglike-all-
concepts(q, d)

log-likelihood of q for d, estimated by every concept of q.
logP (q|d) ≈

∑
c∈q log freq(c, d)/(ld − lc + 1) where c is a

concept of q, ld is the length of d (♯ of words in d) and lc is
the length of c (♯ of words in c).

5.4.2 Baseline Query Investigation

In order to adopt more robust baselines, we conduct a preliminary experiment.

Among many successful methods to generate effective queries for initial queries (e.g.,

[11, 35, 47, 63, 79, 80], we select several methods using pseudo-relevance feedback

(i.e., RM and MLE) and dependence models (i.e., MRF and LCE), which can empha-

size concepts that are important in a search query and more applicable to academic

search environments. We use the Indri search engine to implement each method (for

MLE and MLE-P, least-angle regression [31] is used), and the initial query uses the

query-likelihood (QL) model [84]. For LCE, we use unigrams for the feedback, which

performs better than using bigrams. In addition, 3-fold cross-validation is performed

to find optimal parameters (e.g., the number of feedback terms) for each model. We

use the top 30 and 100 retrieval results for measuring retrieval performance, and Ta-

ble 5.2 shows the retrieval results for each method. Note that statistically significant

71

improvements are marked using the last letter of each method, e.g., D indicates a

significant improvement over SD, and the paired t-test is performed with p < 0.05.

Table 5.2: Baseline Retrieval Results

Method \Metric MAP NDCG@30 NDCG@100
SD 0.1201 0.2488 0.2905
QL 0.1228 0.2507 0.3019
RM 0.1317DL 0.2587D 0.3106D

MLE-P 0.1331DL 0.2530 0.3220DL

LCE 0.1354DL 0.2624DL 0.3243DLE

MLE 0.1470DLEPM 0.2773DLEPM 0.3411DLEPM

In Table 5.2, the dependence model (SD) performs badly because two term depen-

dencies are less effective for capturing longer academic concepts. Moreover, since we

use an entire title and abstract for an initial query, in such a long query, we observed

that many unreliable dependencies are constructed, which is harmful for retrieval.

As an example, “♯1(task provide)” and “♯1(provide empirical)” are formed from

the query of “Experiments on the classification task provide empirical support for the

qualitative and relational . . . ”. Note that “♯N(. . .)” indicates an ordered window

which means that terms must appear ordered, with at most N −1 terms between any

terms , e.g., “♯1(task provide)” matches “task provide” as an exact phrase. In addi-

tion, the methods using PRF (LCE, RM, MLE-P, and MLE) can outperform SD and

QL. However, MLE-P is less effective than MLE because it is hard to find discrimina-

tive phrases which are commonly shared only within positive documents, compared

with unigrams. In other words, the number of discriminative phrases, which only

appear in many pseudo-relevant documents (not frequent in many non-relevant docu-

ments), is much smaller than the number of discriminative unigrams. Since MLE and

LCE can perform better than the others, we choose them to formulate the baseline

queries for each query document.

72

5.4.3 Optimizing Parameters

Before the evaluation, we optimize the parameters of our method. In the phrasal-

concept ranking algorithm (Alg. 2), the number of iterations and a similarity measure

which defines a similarity matrix can influence the determination of key phrasal con-

cepts. In addition, for academic literature search, we can use two different sets of

candidates for ranking: (i) phrasal concepts only from titles of pseudo-relevant docu-

ments, and (ii) phrasal concepts from titles or abstracts of pseudo-relevant documents

(see Chapter 5.3). Thus, we test with different numbers of iterations, combinations

of 2 candidate sets, and three different similarity measures. However, for medical

reference retrieval, we use all phrasal concepts identified from pseudo-relevant docu-

ments because the OHSUMED collection does not provide section information, but

the three different similarity measures can be tested.

Figure 5.2 depicts the average NSDCG@100 over 1 to 20 iterations using the ACL

collection. ‘TTL’ indicates concepts from the titles of pseudo-relevant documents,

and ‘TTL+ABST’ means concepts from the titles and abstracts of pseudo-relevant

documents. Besdies, LK, PMI, and χ2 denotes the likelihood, PMI, and Chi-Square

similarity measures, respectively. Indri is used to run the queries generated from

each setting, and 3-fold cross-validation is applied. For each session, we generate 10

phrasal-concept queries using the 6 different combinations. First, as the number of

iterations increases, the performance reached a peak and afterward slightly decreases.

Second, among the three proposed similarity measures, LK (likelihood) shows signif-

icantly better performance than PMI and χ2. Third, the queries using the concepts

from titles only (TTL) can reach the maximum more quickly and are slightly better

than the queries using the concepts from titles or abstracts (TTL+ABST). This is

because, in many papers, titles are sufficiently expressive while the abstract is often

more verbose and noisy. To find an optimal combination, we compared the average

NSDCG@100 of every combination, and the queries generated using TTL, LK and 5

73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.04

0.06

0.08

0.10

0.12

0.14

0.16

of iterations

ns
D

C
G

@
10

0

LK, TTL
LK, TTL+ABST
PMI, TTL
PMI, TTL+ABST
CHI,TTL
CHI,TTL+ABSTFigure 5.2: NSDCG@100 of the Top 10 Concept Queries

iterations significantly outperformed most of the other cases (statistical significance

in p < 0.05). Experiments using the OHSUMED collection showed similar tendencies.

5.4.4 Retrieval Results

With the optimized parameters, we verify the retrieval effectiveness of our method

on the two different search tasks. We use 3-fold cross-validation for evaluations, and

LCE and MLE queries are used as baselines. As another baseline, we can consider the

n-gram suggestion method (NGram). However, we do not use it for this experiment

74

because NGram focuses on finding relevant phrases for an initial query rather than

improving their performance. Instead, we use that for user experiments (see Chapter

5.5). Besides, since the query expansion methods can significantly outperform n-gram

suggestion in retrieval effectiveness, they can provide stronger baselines for retrieval

experiments.

For academic literature search, we use the 20 features described in Table 3.1

& 5.1 for our phrasal-concept queries, and the 16 features (Table 3.1) for baseline

queries since the baseline queries do not contain phrasal concepts so we cannot use the

four concept-specific features (Table 5.1). In the experiments with medical reference

retrieval, we only use query-based features among the features in Table 3.1 because

OHSUMED does not provide the meta information that is essential to implement non-

query features (i.e., Age, Citation, Citation Pattern, and, Author Citation Behavior

in Table 3.1). So, only 5 features (i.e., Query in Table 3.1) are used with LCE and

MLE queries, and four concept-specific features are additionally included for phrasal-

concept queries in OHSUMED experiments.

To compare the performance between our method (PHRASAL-CONCEPT) and

the baseline, we use the best average precision scores of the top 1 to 10 ranked phrasal-

concept queries for each session, e.g., if the users browse the top 10 suggestions, we

select the best query whose average precision score is the highest. Since our method

generates multiple queries for a session, we select a single best query by the assumption

that users examine the search results by all the top n queries and identify the best

query among them. In other words, we report an upper bound of the performance

achieved by our method. Since authors sometimes need to use many queries to explore

more relevant articles to their papers, browsing all of the top n suggestions is not

unusual, and they can subsequently recognize the most effective query among them.

Besides, the baseline method can only generate a single best query, and the metric

for multiple-query session (i.e., NSDCG) is not applicable.

75

Table 5.3: Best Query Retrieval Results for ACL and OHSUMED

Collection ACL OHSUMED
Method NDCG@100 MAP NDCG@100 MAP
LCE 0.4874 0.2638 0.4321 0.2748
MLE 0.5086 0.2744 0.4249 0.2660

Top 1 0.5301LM 0.2899LM 0.4328 0.2812M

Top 2 0.5471LM 0.3073LM 0.4865LM 0.3398LM

Top 3 0.5626LM 0.3211LM 0.5236LM 0.3737LM

Top 4 0.5715LM 0.3294LM 0.5387LM 0.3865LM

PHRASAL Top 5 0.5780LM 0.3364LM 0.5505LM 0.3973LM

CONCEPT Top 6 0.5833LM 0.3426LM 0.5601LM 0.4058LM

Top 7 0.5873LM 0.3473LM 0.5643LM 0.4097LM

Top 8 0.5909LM 0.3497LM 0.5695LM 0.4145LM

Top 9 0.5933LM 0.3518LM 0.5748LM 0.4183LM

Top 10 0.5941LM 0.3546LM 0.5791LM 0.4228LM

Table 5.3 shows the average NDCG@100 and MAP of the results obtained by

the best-performing query within the top 1 to 10 suggestions. In each column, a

statistically significant improvement is marked using the first letter of each baseline

method, e.g., M denotes a significant improvement over MLE. Note that the paired

t-test is performed with p < 0.05. First, in ACL, from the first suggestion, users

can find an effective phrasal-concept query which can significantly outperform any

baselines. Second, in OHSUMED, users need to examine the top two or more queries

to find an effective phrasal-concept query that can perform significantly better than

the best baseline (i.e., LCE). Third, phrasal-concept queries are significantly better

than the baselines in most cases. Unlike the baseline queries, phrasal-concept queries

can exploit the concept-specific features, and this leads to significant improvements

over the baselines. For example, in Table 5.4, phrasal concepts in the concept query

can effectively work with the concept-specific features for retrieval, whereas those

features are not applied to the baseline query. This result is quite significant because

we can identify that phrasal concepts can be new effective features for the literature

search task, and are complementary to the previously developed features.

76

Table 5.4: Initial Query Example

Initial Query Title: acquisition of verb entailment from text
Abstract: the study addresses the problem of auto-
matic acquisition of entailment relations between verbs.
while this task has much in common with paraphrases
acquisition which aims to discover . . .

Baseline Query verb, emnlp, acquisition, entailment, semantic, pantel,
related, text, deepak, value, special, grenoble, taxon-
omy, . . .

Phrasal-Concept
Query

paraphrases and textual entailment, generic paraphrase-
based ap-proach, semantic approach, relation extrac-
tion, entailment relation

5.4.5 Further Analysis

In Table 5.5, we show the number of improved or degraded queries with respect

to the best baseline (i.e., MLE), within the top 10 suggestions for the 183 queries in

the ACL collection. From this table, we can study the robustness of the proposed

approach. About 70.6% of the queries generated by our method are more effective

than the baseline. Moreover, about 44.4% of the generated queries dramatically

outperform the baseline (i.e., improvements are greater than or equal to 25%).

Table 5.5: Improved or Degraded Queries against the Best Baseline

Improved \Degraded Query Count Percentile Ratio
(∞,−25%] 139 7.6%

(−25%, 0.0%) 398 21.8%
0.0% 0 0.0%

(0%,+25%] 480 26.2%
[+25%,∞) 813 44.4%

Sum 1830 100%

77

5.5 User Experiments

In the user experiments, we conduct a questionnaire survey to identify preferences

among a number of query suggestions. In other words, we ask users to select the most

effective suggestion among many query examples generated by several methods. By

doing this, we intend to identify which methods can generate more useful queries for

users. We first describe the details of the survey, and then provide the results.

5.5.1 Survey Settings

In our survey, we assume a situation where users (assessors) need to construct a list

of articles relevant to a given paper (the “query” papers in our previous experiments).

Each assessor is asked to select the most effective queries from the list of queries for

finding the relevant articles. For each query paper, we first provide its title and

abstract as a summary of the paper. Then, we list 8 different query suggestions

generated by 4 different methods (NGram, RM, MLE; see Chapter 3.5), and our

method (PHRASAL-CONCEPT)) to an assessor. For each baseline, we generate two

different queries by selecting the top 1 to 5 and top 6 to 10 terms (or n-grams) ranked

by the method. We also use the top 1 and 2 phrasal-concept queries generated by our

method. As a result, 8 queries are suggested, and two suggestions per method were

provided. To prevent assessors from inferring methods by the order of suggestions,

we randomly shuffle the suggestion order. We ask assessors to select one or two

queries that they believe would be more useful to retrieve relevant articles among the

8 suggestions. By doing this, the methods that can generate more effective queries

for users would be chosen.

Figure 5.3 shows an example of a question in the survey. To collect query papers,

we selected 15 papers among the 183 query papers in our ACL collection (described

in Chapter 3.3). For a fair comparison, the 15 papers were selected considering the

results of retrieval experiments (reported in Table 5.5); first, we selected 5 papers for

78

Figure 5.3: User Survey Example

which our proposed method worked significantly better than the baseline method in

retrieval experiments (i.e., MLE); second, 5 papers were chosen for which the baseline

method outperformed our method; finally, 5 papers were randomly selected among

the papers for which our method performed as well as the baseline. This survey was

done by the help of 20 volunteers who were graduate students majoring in computer

science and familiar with the topics in computational linguistics (on which the ACL

query papers focus).

5.5.2 Survey Results

In the survey, a total of 484 responses was collected, and for each question (query

paper), a respondent selected 1.61 queries on average, out of 8 queries (we asked to

select only one or two of the best queries). We first analyze the quality of queries

generated by each method.

Table 5.6 shows the top one and two suggested queries by each method for two

research papers. In the table, the number in parenthesis indicates the number of

79

responses which selected each method. First, it is clear that our phrasal-concept

queries can present more plausible phrases than the baselines. For instance, “extract-

ing structural paraphrases” refers to a task while “multiple sequence alignment” refers

to a technique used in the field of paraphrase recognition (paper 1). Also, “extract-

ing product features and opinions” and “learning subjective nouns” are important

tasks in the study of opinion analysis (paper 2). Thus, these key concepts are related

to many citations of each query paper. Second, the quality of NGram suggestions

looks poor. Most of the suggested phrases are too general, and their meanings are

vague since this method simply counts only correlations between the initial query

and phrases without considering properties needed for queries in a specific domain.

Another interesting point is that MLE tends to suggest the names of important au-

thors who published frequently cited papers, e.g., “Regina Barzilay” (for paper 1)

and “Theresa Wilson” (for paper 2). This is because MLE uses statistical learning

to extract highly discriminative terms, e.g., author name.

Next, we provide the average number of responses that selected queries generated

by each method per question, as shown in Table 5.7. In the survey, 20 assessors

answered each question, and each assessor can choose one or two queries among 8

different suggested queries generated by 4 different methods. For example, 20.87% of

RM means that for a question, 20.87% of all 20 assessors prefer the query suggestions

generated by RM. The statistically significance is marked using the first letter of each

method (the paired t-test is performed with p < 0.001).

First, users strongly prefer to use our phrasal-concept queries, i.e., PHRASAL-

CONCEPT accounted for 62% of the all responses. Second, although NGram can

suggest phrases to the user, NGram suggestions are significantly less preferred because

of their poor quality. As discussed above, the concepts suggested by our method look

more readable and effective to retrieve relevant documents, and thus the assessors

in the survey show preference for phrasal-concepts. However, user preferences in the

80

Table 5.6: Examples of 8 Query Suggestions

Query Paper 1. Title: paraphrase recognition via dissimilarity significance
classification.

Top 1 Suggestion Top 2 Suggestion
RM (3) paraphrase, sentence, word, pair,

translate
phrase, match, align, extract,
parallel

MLE (5) barzilay, paraphrase, align, syn-
onymy, pair

similar, regina, call, high, con-
tiguous

NGram (0) noun phrase, artificial intelli-
gence, training data, test set, ma-
chine translation

machine learning, total number,
statistical machine translation,
human language technology

PHRASAL-
CONCEPT
(31)

extracting structural para-
phrases, aligned monolingual
corpora, paraphrase genera-
tion, large paraphrase corpora,
multiple sequence alignment

unsupervised construction, sen-
tential paraphrases, exploiting
massively parallel news sources,
monolingual machine translation,
paraphrase identification and cor-
pus construction

Query Paper 2. Title: feature subsumption for opinion analysis.
Top 1 Suggestion Top 2 Suggestion

RM (7) feature, word, sentence, set, opin-
ion

polarity, classify, term, train,
data

MLE (0) feature, fix, Theresa, classify,
classification

set, class, recall, Joachim, manual

NGram (0) noun phrase, part of speech,
training data, test set, machine
learning

supervised learning, error rate,
statistical learning, number of
words, set of features

PHRASAL-
CONCEPT
(31)

extracting product features and
opinions, review classification via
human provided information, ex-
traction pattern boot-strapping,
learning extraction patterns,
learning subjective nouns

phrase level sentiment analysis,
con-textual polarity, opinionated
sentences, review classification
via human provided information,
subjectivity analysis

81

Table 5.7: Average Number of Responses

Method Response Percentile Ratio
NGram 0.73 2.27%
MLE 4.93 15.29%
RM 6.74N 20.87%
PHRASAL-CONCEPT 19.87RMN 61.57%
Sum 32.27 100.0%

survey may not reflect the exact effectiveness of suggestions in retrieval. Nevertheless,

these preference results reveal that phrasal-concepts are more preferred by academic

search users. Accordingly, our method is more useful than the baseline methods from

the user perspective.

5.6 Summary

In this chapter, we proposed a phrasal-concept based query generation technique,

which is specifically designed for academic literature search. To generate more effec-

tive queries, we identify key concepts from pseudo-relevant documents by exploiting

a label propagation technique and baseline query. By combining the key concept

and its related concepts, a phrasal-concept query is generated. Through user studies

and retrieval experiments, we show that users strongly prefer to use phrasal-concept

queries generated by our method, and the phrasal-concept queries can improve re-

trieval performance in literature search environments.

82

CHAPTER 6

DIVERSE QUERY GENERATION

6.1 Overview

In this chapter, to improve domain-specific searches, we introduce the concept of

diverse query generation based on query documents. While most previous work on

query generation (e.g., [38, 107]) has focused on generating a single best query that

can retrieve more relevant documents from a single retrieval result, little work has

been done for generating diverse queries that can improve overall retrieval effectiveness

in sessions (i.e., more relevant documents in aggregated retrieval results obtained by

multiple queries in a session). In other words, emphasizing diverse query generation

is important because query documents typically contain several different aspects (or

topics) and many different types of relevant documents could be related to these

aspects. We have already discussed this in Chapter 1.2, and now propose a diverse

query generation framework. We first formulate the diverse query generation problem,

and define associated terms. Then, we describe our framework to generate diverse

queries. In addition, we propose a diverse suggestion method that suggest diverse

and effective queries. To evaluate our framework, we conduct retrieval experiments

on the patent and academic domains.

6.2 Problem Formulation

Definition 1. (Query Aspect): Query aspect denotes a topic in a query document.

We assume that a query document includes multiple query aspects. Since a query

document is generally very long (e.g., a patent contains about 3,000 terms on average

83

[48]) and can include complex structures, multiple aspects can be identified in a query

document. To represent a query aspect, we use the set of related terms from the query

document.

Definition 2. (Keyword Query): A keyword query is a set of terms, e.g., Q =

{stereo, digital, sound, amplifier}. We simply create keyword queries for diverse query

generation. In addition, term weighting is not considered here because it is less

useful for suggestion. Since very long queries are also not useful as suggestions, we

empirically restrict query length to 5 terms.

Problem 1. (Query Aspect Identification): We assume n different query aspects

in a query document, and query aspect identification is generating n distinct sets of

terms, each of which contains relevant terms to represent a query aspect.

Problem 2. (Diverse Query Generation): Diverse query generation is generating

diverse queries based on query aspects (identified in Problem 1). Given n query

aspects, we generate n sets of queries, each of which related to a query aspect.

Problem 3. (Diverse Query Suggestion): Diverse query suggestion is suggesting

k diverse and effective queries from the generated queries (Problem 2).In this, di-

versification is based on the query aspects (recognized in Problem 1), and suggested

queries should be effective for retrieving relevant documents as well as being related to

diverse aspects. By doing this, the overall search results obtained by the suggestions

would contain more relevant documents related to the diverse aspects.

6.3 Diverse Query Generation Framework

We now describe our framework for generating diverse queries, as shown in Figure

6.1. In this framework, we adopt a two-step process: (Step-1) identifying n different

query aspects and (Step-2) generating multiple queries related to n query aspects.

Query aspect identification (Step-1) is required for generating diverse queries in Step-

2. We generate queries based on the query representation that users explicitly specify,

84

and exploit pseudo-relevant documents to generate effective queries that can retrieve

more relevant documents. We provide the details of each step as follows.

Figure 6.1: Diverse Query Generation Framework

6.3.1 Query Aspect Identification

The first step is identifying n query aspects. By defining a query aspect as a set

of related terms from the query document (Def. 1), we transform this task into a

term clustering problem, i.e., given terms extracted from a query document we form

n different clusters, each of which contains a subset of the terms. Specifically, for a

query document, we extract m distinct terms by their tf.idf weights (stop-words are

not extracted), and generate m× (m− 1)/2 term pairs (the similarity is undirected).

By estimating the similarity for each term pair < ti, tj >, we can generate a m-by-

m symmetric similarity matrix whose diagonal value (similarity of < ti, ti >) is 1.

Then, we apply a term clustering algorithm using this matrix to generate n different

term sets. In our experiments, we extract 500 terms from each query document, and

use the spectral clustering algorithm implemented by [22], but any other clustering

methods can be applied. Next, we describe our method to estimate the similarity of

< ti, tj >.

85

We define similarity between terms by a mixture of topical relatedness (or associ-

ation) and retrieval effectiveness when terms are clustered together. In other words,

we make clustering algorithms group the terms if they are topically associated and

are also effective for retrieving relevant documents. To achieve this, we introduce the

following similarity function.

Sim(ti, tj) = (1− λ) · T (ti, tj) + λ ·R(ti, tj) (6.1)

where ti and tj is a term pair from a query document.

In Eq. (6.1), T (ti, tj) measures topical relatedness between ti and tj, while R(ti, tj)

estimates retrieval effectiveness. λ is a controlling parameter. For measuring topical

association (T), we utilize term statistics obtained from the document corpus (e.g.,

PMI). To estimate R, we leverage the features from query performance predictors

(e.g., query clarity [27], query scope [42], etc.). Table 6.1 lists the features for imple-

menting topical association and retrieval effectiveness.

Table 6.1: Features for Similarity Learning

Category Features
Topical
Relatedness

PMI of < ti, tj > calculated by 8-word windows recog-
nized in all documents in a corpus
PMI of < ti, tj > measured by titles
PMI of < ti, tj > calculated by 8-word windows identi-
fied in query document

Retrieval Query Clarity (QC) [27]
Effectiveness Query Scope (QS) [42]

Similarity Collection / Query (SCQ) [113]
Inverse Document Frequency (IDF)
Inverse Collection Term Frequency (ICTF)

Using these similarity learning features, we can rewrite the Eq. (6.1) as follows.

Sim(ti, tj) =
∑
k

wk · fk(ti, tj) (6.2)

86

where fk indicates a feature defined in Table 6.1 and k is a weight of the k-th feature.

To predict more accurate similarity, we employ a supervised learning approach.

Given a term pair < ti, tj >, a supervised learner estimates its similarity score by

learning an optimal value of the feature weights (w = w1, . . . , wk). To do this, we

generate training examples (i.e., labeled term pairs) as follows.

For each query document, N different term pairs are extracted, and we label each

pair (i.e., example) as positive or negative, i.e., L(< ti, tj >) ∈ 0, 1. Since we represent

similarity by topical association and retrieval effectiveness, a term pair is positive if its

terms are highly associated and effective for retrieving relevant documents; otherwise,

the term pair is negative. To determine this, we use the following conditions, and an

example is positive if it satisfies every condition; otherwise the example is negative.

1. Two terms involve high “retrieval effectiveness” if they have a high generation

probability based on the language model estimated for any relevant document.

2. Two terms are highly “associated” if their PMI estimated from any relevant

document is greater than a threshold.

For the first condition, we calculate the probability of a term t for a relevant document

as follows.

P (t|RD) =
tf(t, RD) + µ · Pc(t)

|RD|+ µ
(6.3)

where tf(t, RD) is the frequency of t in a relevant document RD, Pc(t) is a corpus

probability, and µ is a Dirichlet smoothing parameter.

For each RD, we assume that that the top 100 terms ranked by Eq. (6.3) satisfy

the criteria for effectiveness. For the second constraint, we assume that PMI esti-

mated from RD indicates topical associations that are effective for retrieving relevant

documents. To calculate PMI of < ti, tj > , we use 8-word windows, and ti and

tj are highly associated if PMI(ti, tj : RD) > θ where θ is a cut-off value. Since

we exploit real “relevant” documents for labeling training examples, we use l-fold

87

cross-validation; (l− 1)/l query documents and their relevant documents are used for

training, and the other query documents whose relevant documents are hidden are

used for testing.

6.3.2 Diverse Query Generation

As a result of the first step, we obtain n distinct sets of terms, each of which rep-

resent one query aspect in a query document. Based on this, we generate queries by

exploiting the query generation method described in Chapter 4.3. For each query as-

pect (i.e., a set of terms), we first retrieve pseudo-relevant documents (PRD) obtained

by the terms in the aspect; we use those terms as a query and assume that the top k

retrieved documents are pseudo-relevant. In addition, we generate an equal number

of non-relevant documents (NRD) by randomly selecting another k documents from

those ranked below the top k. Then, we train binary decision trees using PRD and

NRD where the terms in PRD are used as attributes (see Alg. 1). Once a decision

tree is learned, we generate a query by extracting attributes (terms) on a single path

from the root to a positive leaf node (i.e., pseudo-relevance). We define a query as

a list of keywords (e.g., Q = {“battery”, “charger”, “cellular”, “phone”}), and ignore

the attributes associated with negation.

6.4 Diverse Query Suggestion

We define diversifying query suggestions as suggesting k queries that will be effec-

tive for finding relevant and novel documents for a query document. To do this, we

exploit the xQuAD diversification model proposed in [92] and introduce the following

probabilistic query suggestion framework. Note that the proportionality-based diver-

sification (which can perform slightly better than the xQuAD approach) is proposed

after we develop the diverse query generation method, and the xQuad framework was

the state-of-the-art method when we research on diversifying query suggestions. In

88

the xQuAD approach, among all generated queries, we select the queries that are

more relevant to the query document and novel relative to the current suggestion list.

Alg. 3 describes this framework.

Algorithm 3 Diverse Query Suggestion (DivQS)

Input:
L is a list of generated queries
DQ is a query document
k is the number of queries to be suggested

Output:
S is the ranked list of query suggestions

1: S ← ∅
2: while |S| < k do
3: q∗ ← argmaxq∈L\S(1− λ) · P (q|DQ) + λP (q, S|DQ)
4: L← L\q∗
5: S ← S ∪ q∗
6: end while
7: return S

Given a query document DQ and a list of generated queries L, we iteratively

choose the most probable query obtained by:

(1− λ) · P (q|DQ) + λ · P (q, S|DQ) (6.4)

where S is the list of suggested queries and q is a candidate query from L.

In Eq. (6.4), P (q|DQ) denotes the relevance of q to DQ, while P (q, S|DQ) indicates

the novelty of q to S. That is, these two probabilities are optimizing relevance and

diversity, controlled by λ. P (q|DQ) can be computed by
∏

t∈q PLM(t|DQ), i.e., the

unigram language model estimated from DQ, and P (q, S|DQ) can be estimated using

the identified query aspects.

Using the set of query aspects AQ we can marginalize P (q, S|DQ) as:

P (q, S|DQ) =
∑

ap∈AQ

P (ap|DQ) · P (q, S|ap) (6.5)

89

where ap is a query aspect in AQ.

In Eq. (6.5), we consider P (ap|DQ) as the importance of an aspect ap for DQ, which

is estimated by
∏

t∈ap PLM(t|DQ).

By assuming that the current candidate query q is independent of the queries

already selected in S, P (q, S|ap) can be derived as:

P (q, S|ap) = P (q|ap) · P (S|ap) (6.6)

P (q|ap) measures the coverage of q with respect to ap, and P (S|ap) provides a measure

of novelty to the current suggestion list S for a given ap.

To estimate these probabilities, we use retrieval results obtained by q, S, and

ap. Specifically, we assume that a query’s top 100 retrieved documents can represent

underlying topics of the query, and P (q|ap) can be estimated by how much the topics

in ap are covered by q. The equation is given as:

P (q|ap) ∼=
|Retq ∩Retap|
|Retap|

(6.7)

where Retap is the set of the top 100 documents retrieved by ap. Note that we use

the terms in a query aspect as a query.

For the estimation of P (S|ap), we further assume that the queries chosen as sugges-

tions in S are independent for ap, and the following estimation can be given.

P (S|ap) ∼= P (qs1, qs2, . . . , qsn−1|ap) ∼=
∏
qs∈S

(1− P (qs|ap)) (6.8)

where qs is a query in S and P (qs|ap) ∼= |Rqs ∪Rap|/|Rap|.

As a result, Eq. (6.4) can be rewritten as:

(1− λ) · P (q|DQ) + λ ·
∑

ap∈AQ

[
P (ap|DQ) · P (q|ap) ·

∏
qs∈S

(1− P (qs|ap))

]
(6.9)

90

We use Eq. (6.9) in the diversification algorithm (Alg. 3), and for each query docu-

ment, k queries are selected as suggestions.

6.5 Evaluation

6.5.1 Experimental Setup

For evaluation, we conduct experiments on the patent and academic domains (see

Chapter 3.2), and the corresponding test collections, i.e., USPAT and ACL (described

in Chapter 3.3), are used. Queries and documents are stemmed by the Krovetz stem-

mer [60]. To identify query aspects and generate diverse suggestions, we perform

5-fold cross-validation with random partitioning. For learning similarity, we use Lo-

gistic Regression [4]. To run each suggested query, we use the query likelihood model

[84] implemented by Indri [97]. In addition, as discussed in Chapter 3.4, we evaluate

with the top 100 documents ranked by each query suggestion. To measure retrieval

effectiveness and diversity, we use session-based metrics, i.e., Normalized Session Dis-

counted Cumulative Gain (NSDCG) and Session Novelty Recall (SNR) (see Chapter

3.7 for more detail) because multiple queries are suggested for each query document.

In the experiments, we first evaluate query aspect identification (described in

Chapter 6.3.1) which is important for generating diverse queries, and then verify the

effectiveness of diverse queries generated for each query document. We empirically

set the number of generated aspects as 10 or 20, and this setting could provide some

significantly improvements in the experiments. However, further explorations to find

somewhat optimal values can be necessary. For evaluating query aspect identification,

we generate an initial baseline query (BL0) by using ReductionQuery (described

in Chapter 3.5). To evaluate diverse suggestion results, we employ two different

baselines. The first baseline (BL1) is NGram that can suggest multiple n-grams more

correlated with the query document. The other baseline (BL2) is the decision tree-

based query generation method proposed in Chapter 4. We generate keyword queries

91

by ignoring the terms associated with negation. The difference between BL2 and our

diverse query generation (DivQ) is that DivQ identifies multiple query aspects (from

a query document) to generate diverse queries.

6.5.2 Retrieval Results

(Query Aspect Identification Performance) In this experiment, we hypoth-

esize that more relevant documents are retrieved if an identified query aspect is ef-

fective. We measure the retrieval effectiveness of each query aspect by formulating a

query using the terms in each query aspect. Table 6.2 shows the retrieval results of

query aspects and the baseline (BL0). For each query document, 10 query aspects are

identified and a single baseline query is used. We measure recall (R@100) in two dif-

ferent ways: (1) selecting the best one among n different query aspects (Max R@100)

and (2) aggregating the retrieved relevant documents (within rank 100) by all query

aspects (Agg. R@100). We report an average value of each metric over the query

documents in each corpus. BL0 and QA indicates ReductionQuery and the identified

query aspects (see Chapter 6.3.1), respectively. In addition, a * indicates a signifi-

cant improvement over the baseline (BL0), and the paired t-test is performed with

p < 0.05. First, regarding Max. R@100, our method can generate at least one query

Table 6.2: Query Aspect Evaluation

Metric PAT(patent) ACL(academic)
BL0 QA BL0 QA

R100 0.1091 − 0.4452 −
Max. R100 − 0.1491∗ − 0.4695∗

Agg. R100 − 0.1918∗ − 0.6369∗

aspect which can significantly outperform the baseline. Second, from Agg. R@100 we

see that significantly more relevant documents are retrieved when using all identified

aspects. This is a useful result because query aspects can find relevant documents

92

that are missed by BL0 and the query suggestions generated by these aspects should

also perform well.

Table 6.3: Session Evaluation

PAT(patent)
Metric ♯Q BL1 BL2 DivQ (n = 10) DivQ (n = 20)
SNR 5 0.1560 0.17151 0.18551 0.196112

@100 6 0.1625 0.18131 0.19821 0.209912

7 0.1688 0.18701 0.208612 0.222312

8 0.1759 0.19131 0.215812 0.234012

9 0.1809 0.19531 0.224812 0.244212

10 0.1893 0.1989 0.232212 0.250912

NSDCG 5 0.0812 0.0827 0.120912 0.131912

@100 6 0.0808 0.0851 0.118812 0.129612

7 0.0799 0.0876 0.117212 0.127412

8 0.0791 0.0906 0.115112 0.125112

9 0.0785 0.0932 0.113712 0.123512

10 0.0783 0.0959 0.112712 0.121212

ACL(academic)
SNR 5 0.5459 0.57311 0.632912 0.651912

@100 6 0.5561 0.59281 0.658112 0.681112

7 0.5770 0.60951 0.677512 0.698112

8 0.5893 0.61741 0.696112 0.712212

9 0.6011 0.62601 0.710612 0.726012

10 0.6078 0.63511 0.719212 0.739212

NSDCG 5 0.3273 0.3116 0.420012 0.434712

@100 6 0.3304 0.3121 0.426412 0.440212

7 0.33382 0.3120 0.431212 0.443812

8 0.33622 0.3119 0.434512 0.446112

9 0.33792 0.3110 0.436312 0.446812

10 0.33852 0.3099 0.435712 0.445712

(Diverse Query Suggestion Performance) Next, we evaluate the diverse

query generation method in terms of retrieval effectiveness and diversity. For each

query document, we use the diverse query suggestion method (i.e., Alg. 3 described

in Chapter 6.4) to suggest 5 to 10 queries, and 10 or 20 different query aspects are

used for generating queries (i.e., n = 10 or 20). The baselines (BL1&2) generate the

same number of query suggestions for the same query document. Table 6.3 reports

93

retrieval performance of each method using the patent and academic collections. In

each row, the best result is marked by bold, and a significant improvement over each

baseline is denoted by the number of the baseline, e.g., 1 denotes an improvement

over “BL1” (the paired t-test is performed with p < 0.05). First, in both domains,

BL2 can outperform BL1 in terms of SNR. Second, diverse queries (DivQ) can gener-

ate significantly more diversified results and retrieve more relevant documents. SNR

verifies that DivQ is more effective at finding new relevant documents missed by pre-

vious queries (since SNR ignores the relevant documents retrieved by any previous

queries). Third, considering NSDCG, DivQ is significantly better at placing relevant

documents at higher ranks. This is because the queries generated by DivQ contain

more discriminative terms from relevant documents.

6.5.3 Further Analysis

We now provide some additional analysis of our diverse query generation. The

main reason for generating diverse queries is so that more relevant documents can

be retrieved, which cover “diverse” aspects of a query document (as shown in Table

6.3). In accordance with this, by examining more query suggestions, we can find

new relevant documents which are not covered by previously suggested queries. To

highlight this, we measure the average number of new relevant documents retrieved

by the k-th query in the top 10 suggestions. Figure 6.2 shows this for the patent

domain.

In Figure 6.2, our diverse queries (DivQ) can retrieve more new relevant documents

than the baseline queries (i.e., BL1&2), and as a result of examining the top 10

suggestions, more relevant documents are retrieved by the diverse queries.

In addition, we evaluate the quality of our suggested queries. For this, we employ

five users (assessors) and ask them to determine whether each suggestion looks useful

for retrieving relevant documents. We randomly selected 10 query papers from the

94

ACL test collection (described in Chapter 3.3), and for each query paper, we provide

its title, abstract, and 5 queries generated by our method. Table 5.6 shows an example

of query suggestions and query paper. For each query, we assume that the query is

“useful” if three or more assessors tag it as useful. Out of 50 queries, we found that

37 queries (i.e., 74%) are useful. For example, in Table 5.6, the query {“WCDG”,

“information”, “dependency”, “grammar”} is particularly useful because this query

paper proposes an hybrid parser based onWeighted Constraint Dependency Grammar

(i.e., WCDG) and many cited papers are related to this query. In addition, research

about probabilistic parsing models are also cited in this query paper, and the query

{“Collins”, “statistical”, “parse”} is quite useful for retrieving this work.

6.6 Summary

In this chapter, we proposed a framework for generating diverse queries, which

can help to retrieve more relevant documents. We identify diverse query aspects,

generate queries related to these aspects, and then suggest a diverse ranked list of

these queries. Through experiments, we showed that the suggestions generated by our

approach produce more diverse and effective search results in comparison to baseline

methods. Our method is easily reproducible and general; we do not require any

Figure 6.2: Average Number of New Relevant Documents for Patent Domain

95

Table 6.4: Diverse Query Suggestion Example

Query Paper
Title: Hybrid Parsing – Using Probabilistic Models as Predictors
for a Symbolic Parser
Abstract: In this paper, we investigate the benefit of stochastic
predictor components for the parsing quality which can be obtained
with a rule-based dependency grammar. By including a chunker, a
supertagger, a PP attacher, and a fast probabilistic parser we were
able to improve upon the baseline by 3.2%, bringing the overall
labelled accuracy to 91.1% on the German NEGRA corpus. We
attribute the successful integration to the ability of the underlying
grammar model to combine uncertain evidence in a soft manner,
thus avoiding the problem of error propagation.

No. Suggested Query
1 {probabilistic, model, treebank, dependency, predictor}
2 {Collins, statistical, parse}
3 {WCDG, information, dependency, grammr}
4 {best, probabilistic, parse, tree}
5 {Charniak, grammar, treebank, parse}

manually constructed data or external resources, and effectiveness was verified in two

different domains.

96

CHAPTER 7

SEARCH RESULT DIVERSIFICATION

7.1 Overview

Domain-specific search has some unique features relative to web search. As dis-

cussed in Chapter 1, one major characteristic in domain-specific search is that search

queries are formulated from a query document (e.g., a new patent in prior-art search).

Typically these queries are complex and can cover diverse aspects of the query docu-

ment in order to retrieve relevant documents that cover the full scope of the query doc-

ument. Given this context, search diversification techniques can potentially improve

the retrieval performance of domain-specific search by introducing diversity into the

document ranking. In Chapter 6, we proposed a query-side diversification approach

(i.e., diverse query generation) to generate diversified search results. However, in this

chapter, we examine the effectiveness of a result-level diversification framework that

can re-order an initial retrieval result so that the final ranked list can include more

diverse aspects (or topics) associated with the query document. Note that “query

aspect” is referred to as “query topic” in this chapter. In this diversification process,

query topics are first identified, and then re-ranking algorithms (e.g., [92, 29]) are

applied with the identified topics. Using this framework involves developing methods

to identify effective phrases related to the topics mentioned in the query document.

In experiments, we evaluate the result-level diversification approach using standard

measures of retrieval effectiveness and diversity.

97

7.2 Problem Formulation

Diversifying domain-specific search results is designed to improve the retrieval

effectiveness of initial ranked results. As discussed in Chapter 1.5, we assume that

diverse topics are involved in a query document, and that diversification of initial

search results based on those topics will improve retrieval performance.

Given a query document QD, let T = t1, t2, . . . , tn be a topic set for QD and

W = w1, w2, . . . , wn be a weight set where some weight wi is assigned to each topic

ti. Note that this weight is used as the importance [92] or popularity [29] by the

diversification algorithm applied. In addition, an initial document list for QD is given,

i.e., D = d1, d2, . . . , dm, and each di’s relevance to ti can be estimated, i.e., P (di|ti).

Using < T,W,P (di|ti) >, typical diversification algorithms (e.g., [29, 92]) generate a

subset of D which forms a diverse rank result S where |S| = K. However, recent work

[28] found that explicitly specified topic structures (e.g., grouping topic terms to form

a topic such as “user interface”, “sharing”) are less beneficial for improving search

performance. Instead, identifying topic terms (e.g., “user”, “interface”, “sharing”)

and directly using such terms without the more complex step of topic identification

can be effective. Following this, we formulate a phrase-level diversification method

for domain-specific search. We assume that phrases are more useful than words

(i.e., unigrams) to express domain-specific topics. For example, patent documents

frequently contain longer technical terms (e.g., “portable duplex radio telephone”)

and academic papers also include many phrasal concepts (e.g., “lexical acquisition”).

Thus, we identify a set of topic phrases for T , and apply diversification frameworks

(e.g., [28]) using these phrases.

The formal definition of phrase-level diversification is given as follows. Let us

assume that a topic t ∈ T can be represented by an arbitrary set of phrases, i.e.,

t = {p1, p2, . . . , pn(t)} where pi is a topic phrase for QD and n(t) is the number of

phrases to form t. Then, T can be rephrased as:

98

T
′
=

{
{pt11 , pt12 , . . . , pt1n(t1)}, . . . , {p

tn
1 , p

tn
2 , . . . , p

tn
n(tn)
}
}

(7.1)

We hypothesize that there is a set of phrases that can contain all phrases in T
′
,

i.e., P
′
= {p|∀p ∈ T ′}, and the phrase-level diversification is defined as generating a

diverse ranked list S ⊂ D using P
′
. In effect, each phrase is treated as a topic in the

diversification model (see Chapter 7.3). As a result of diversification, S covers more

topic phrases and contains more diverse relevant documents.

7.3 Diversification Framework

Explicit diversification methods (e.g., PM-2 [29] and xQuAD [92]) assume that

some set of query topics (or aspects) is specified, and generate diverse ranked results

based on these topics. Among many algorithms, we select to use the proportionality-

based approach (PM-2) for our diversification task, which is the most recently pro-

posed state-of-the-art technique. This approach exploits the Sainte-Laguë method,

allocating seats in proportional representation, for assigning the portions of topics in

S such that the number of each topic’s documents in S is proportional to the weight

of the topic, i.e., wi. Specifically, PM-2 requires a set of topics T , an initial document

retrieval list D, and an empty list S. In each iteration, the quotient qti of each topic

ti is computed as:

qti =
wi

2si + 1
(7.2)

where si is the current portion of ti in S.

Using this, PM-2 selects the most proportional topic t∗i with the largest qti, and

places the document d∗ ∈ D into S such that d∗ is mostly relevant to t∗i as well as

other topics:

d∗ ← argmax
d∈D

λ · qt∗i · P (d|t∗i) + (1− λ)
∑
i̸=i∗

qti · P (d|ti) (7.3)

where P (d|ti) is an estimated relevance of d to ti.

99

Although Eq. (7.3) is effective for diversifying web search results, there are limi-

tations when using it for domain-specific search where a search process starts from a

query document. In PM-2, Eq. (7.3) only considers the relevance of a document to

each topic, not directly to the whole query document. This setting could work for web

search results because the diversification aims to clarify ambiguous web queries. On

the other hand, many domain-specific search tasks are recall-oriented, i.e., not miss-

ing relevant documents in a relatively long retrieval result is more important than

placing them at top ranks. So, keeping the documents “relevant” to QD (by some

estimation) in S is important. To do this, we combine Eq. (7.3) with the relevance

score of d for QD.

d∗ ← argmax
d∈D

µ · relevance(d) + (1− µ) · diversity(d) (7.4)

where relevance(d) is an estimated relevance score of d for QD and diversity(d) is the

diversity score calculated by Eq. (7.3).

Using Eq. (7.4), we can choose the document not only related to the appropriate

topic but also highly relevant to the query patent. In experiments, we use the retrieval

score obtained by the baseline retrieval model as the estimation of relevance(d). After

selecting d∗, the algorithm updates the portion of each topic in S (i.e., si) by its

normalized relevance to d∗:

si ← si +
P (d∗|ti)∑
j P (d

∗|tj)
(7.5)

Then, this process is repeated with the updated si, and stops after S contains K

documents. The final ranking of a document is determined by the order in which

the document is included in S. As described in Chapter 7.2, we use phrase-level

diversification for domain-specific search, and thus the set of topic phrases (interpreted

100

as topics) is the input to this diversification model. In the next section, we present our

method to generate topic phrases, which is important for diversification performance.

7.4 Automatic Topic Phrase Identification

The goal of identifying topic phrases is generating a list of effective phrases for

diversification. As discussed in Chapter 7.2, we need to generate P
′
which contains

all possible phrases to represent query topics. This is an important task because the

diversification model (described in Chapter 7.3) assigns the documents in S primarily

based on the input phrases. To identify effective topic phrases, we assume that query

patents include sufficient phrases for query topics. In Chapter 5, we extract phrasal

concepts from pseudo-relevant documents (initially ranked by the query document).

However, in the diversification framework, we use the phrases appeared in the query

document, and they are directly used to represent query topics (i.e., the topics residing

in the query document).

Given a query document QD, we extract a set of noun phrases, P = p1, p2, . . .

syntactically recognized in QD, and assume that some subset of P can be the effective

set of topic phrases, i.e., P
′
. Note that we use OpenNLP1 to recognize syntactic

phrases.

7.4.1 Greedy Approximation for Dominating Set Problem

To obtain P
′
, previous work [28] has used DSPApprox, the multi-document sum-

marization technique proposed in [65, 66]. In this approach, it is assumed that an

effective topic term (i.e., phrase) is useful to predict other terms, and its conditional

probability is used for measuring how well the term predicts others [65]. In general,

this approach can find topic terms by identifying a set of terms that are highly prob-

able to predict many other terms in a vocabulary. In fact, finding such a set can be

1NLP library (http://opennlp.apache.org)

101

viewed as a Dominating Set Problem (DSP). Since the generalized DSP is NP-hard

[39, 65], DSPApprox is a greedy approximation to solve DSP.

In [65, 66] DSPApprox is originally used for generating a set of terms to summarize

target documents. However, it is also useful to find a diverse set of topic terms (i.e.,

phrases) for the query document. As done in [28], we can also use DSPApprox to

select a set of topic phrases as follows.

Given an initial ranking result (i.e., D) and a query document (i.e., QD), the

algorithm first extracts candidate phrases from QD (i.e., P) and generates a set

of vocabulary from D, which includes many topic terms. Then, it measures the

“topicality” of each phrase (e.g., relevance to QD) and its “predictiveness”, i.e., how

well the phrase can predict the appearances of other vocabulary terms, which can

be represented by P (p|t) where p is a candidate phrase and t is a vocabulary term.

After this, the algorithm greedily selects a subset of P (i.e., P
′
) by maximizing both

topicality and predictiveness of P
′
. Next, we provide how to estimate “topicality”

and “predictiveness” of each phrase.

Topicality measures how informative a phrase is to describe QD, and to compute

this, we generate a relevance model [64] for QD, PR(t|QD).

PR(t|QD) =
∑
d∈R

P (t|d)P (d|QD) (7.6)

where R is a set of (pseudo) relevant documents for QD.

Then, a topicality of a phrase p is calculated as:

Topic(p) = PR(p|QD) log2
PR(p|QD)

Pc(p)
(7.7)

where Pc(p) is a collection probability of p.

This actually is the same as the contribution of p’s clarity score for QD [28].

102

Predictiveness measures each phrase’s ability to predict the occurrences of other

terms in the initial retrieval result. The calculation of this is given as:

Predict(p) =
1

Z

∑
v∈Cp

Pw(p|v) (7.8)

where Pw(p|v) is the probability of a phrase p co-occurring with a term v in a window

of size w, Cp is a term set, each of which co-occurs with p by the window, and Z is

the normalizing factor.

As done in [28], Z is typically set as the size of the vocabulary. Using these

estimations, we can perform DSPApprox for identifying topic phrases, and the details

of this approach are described in [65, 28]. Since DSPApprox is a simple greedy

algorithm only considering topicality and predictiveness, to improve the identification

process, in the next section, we propose a learning-to-rank framework that combines

these two features with other features.

7.4.2 Learning-to-rank Topic Identification

7.4.2.1 Ranking Model

In order to obtain an effective set of topic phrases, we rank the candidate phrases

extracted from the query document, i.e., P , and use the top k phrases as topic phrases.

For this, our ranking model produces a ranked list of the phrases in descending order

of their (predicted) effectiveness to derive more query topics. This is formally defined

as follows.

Given a query document QD, let T = t1, t2, . . . , tn be a set of relevant topics, and

P = p1, p2, . . . , pl be a set of candidate phrases extracted from QD, where l denotes

the number of extracted phrases. Suppose that Y = y1, y2, . . . , yl is a set of ranks,

and the order of the ranks is given as: y1 ≻ y2 ≻ yl where ≻ indicates the preference

between two ranks. For each phrase pj ∈ P , some corresponding rank, y(pj), is

assigned. To learn a ranking function, we generate training examples as follows.

103

Let R = r1, r2, . . . be the set of relevant documents for QD, and we need to map

each relevant document ri to a topic tj ∈ T . To do this, we can exploit manually

labeled topic information for each relevant document. For example, in the patent

domain, there are IPC2 codes which are annotated to any patent documents and can

classify a patent document into predefined topic classes. We first extract all IPC

codes from the relevant documents, and assume that each IPC code can form a query

topic in T . Then, we map the relevant documents to the corresponding topics thru

their annotated IPC codes. We can rewrite T as:

TR =
{
{rt11 , rt12 , . . . , rt1nr(t1)}, . . . , {r

tn
1 , r

tn
2 , . . . , r

tn
nr(tn)

}
}

(7.9)

where nr(t) is the number of relevant documents assigned to t.

Using TR, we can create rank labels of training examples, i.e., the ranked list

of candidate phrases. For each phrase p, we calculate its clarity score [27] which

indicates the effectiveness of p can derive the relevant documents of each topic. The

calculation is given as:

scr(p) =
∑
ti

∑
r∈ti

P (p|r) · log2
P (p|r)
Pc(p)

(7.10)

where Pc(p) is the collection probability.

In Eq. (7.10), we use the unigram language model to estimate each phrase’s

probability, and the candidate phrases highly generative for more query topics are

ranked higher. By using this, we can generate the training ranked list as:

Ŷ = {yp1 , yp2 , . . . , ypl} such that ypi ≻ ypj if scr(pi) > scr(pj) (7.11)

2International Patent Classification (http://www.wipo.int/classifications/ipc/en/)

104

For training, a set of query documents, QD =
{
QD1, QD2, . . . , QD|QD|

}
, are given,

and a feature vector xij = f(QDi, pij) ∈ Xi is generated for the pair of a query

document and its candidate phrase. Then, we use < Xi, Ŷi > for learning a ranking

function.

7.4.2.2 Ranking Features

To compose a feature vector in our ranking model (described in Chapter 7.4.2.1,

we use four types of features: (1) relevance, (2) importance, (3) predictiveness, and

(4) cohesiveness. Table 7.1 summarizes these four types of features, and we describe

each type as follows.

Table 7.1: Four Types of Ranking Features

Type Description
Relevance Query Relevance (RelQD), Pseudo Relevance (RelPR)
Importance Query Clarity (i.e., Topicality) [27], Query Scope [42],

Inverse Collection Term Frequency, Inverse Document
Frequency, Word Count

Predictiveness [65] Query Document-based (PredictQD), Pseudo Relevance-
based (PredictPR)

Cohesiveness Query Document-based (CohvQD), Pseudo Relevance-
based (CohvPR)

Relevance: Relevance contains two features measuring some probabilistic rele-

vance to the query document or pseudo-relevant documents. We consider as pseudo-

relevant the top N documents ranked in the initial retrieval result, i.e., D. Given a

phrase p = {w1, w2, . . . , w|p|}, its query relevance is calculated as:

RelQD(p) =
∏
w∈p

P (w|QD) (7.12)

where w is a unigram word in p, and P (w|QD) is the probability by the smoothed

language model [110] drived from QD.

105

Pseudo-relevance exploits the relevance model [64] estimated by the pseudo-relevant

documents, and the calculation is given as:

RelPR(p) =
∏
w∈p

PR(w|QD) (7.13)

where PR(w|QD) =
∑

d∈PR P (w|d) · P (d|QD) and PR is the set of pseudo-relevant

documents.

We use query relevance and pseudo-relevance as relevance features. Since these

features use the query model derived from the entire text of the query document

or pseudo-relevant documents, they would help to identify the phrases likely to be

associated with the overall query topics.

Importance: Importance indicates effectiveness related to retrieving relevant

documents. To measure this, we leverage the features for predicting query perfor-

mance (e.g., [27, 42, 113]). Given a phrase, we calculate its query clarity score [27]

based on the query model directly derived from the query document or the relevance

model used above. In addition, we use query scope [42], inverse document frequency,

inverse collection term frequency, and word count, which are generally used for mea-

suring pre-retrieval effectiveness. Note that the contribution of the topicality feature

used in DSPApprox is the same as that of the query clarity feature we use. Since the

diversification algorithm (described in Chapter 7.3) mainly uses the topic phrases for

diversification, identifying highly effective phrases for retrieving relevant documents

is important to increase the retrieval effectiveness of the final retrieval result.

Predictiveness: Predictiveness [65] measures the extent to which a term predicts

the occurrences of other terms in a query vocabulary. We use two different types of

query vocabulary: 1) all terms in the query document and not numbers, and 2) the

terms that appeared in at least two pseudo-relevant documents and not numbers.

Note that stop-words and section terms (e.g., “background” and “summary”) are

removed. First, predictiveness using the query document vocabulary is given as:

106

PredictQD(p) =
1

Z

∑
v∈CQD

p

Pw(p|v) (7.14)

where CQD
p indicates the set of terms that a term v co-occurs within the windows

recognized in QD, w is the size of each window, Pw(p|v) indicates such co-occurrence

probability using w, and Z is the normalization factor.

Similarly predictiveness using the pseudo-relevant vocabulary is given as:

PredictPR(p) =
1

Z

∑
v∈CPR

p

Pw(p|v) (7.15)

where CPR
p indicates the co-occurrence term set by the windows identified in PR.

For each feature, the normalization factor is set by the size of the corresponding

vocabulary, and we empirically set w to be 20 (as done in [28]). These predictiveness

features are effective for extracting diverse phrases that can represent the terms in

each topic vocabulary.

Cohesiveness: Cohesiveness quantifies the coherence of the terms in a phrase.

We assume that the terms more co-occurring in query document contexts can be key-

words. As an example, for the patent “Method and apparatus for providing content

on a computer system based on usage profile” the terms “usage” and “profile” would

frequently co-occur and may be effective to find its relevant documents. To capture

this, we estimate the cohesiveness of the terms in a phrase by measuring relative

co-occurrences of the terms. Like the predictiveness features, we use two different

resources to measure cohesiveness, i.e., the query document and the pseudo-relevant

documents. The cohesiveness using the query document is calculated as:

CohvQD(p) =
Pw(w1, w2, . . . , w|p||QD)∏

w∈p Pw(w|C)
(7.16)

where Pw(w|C) indicates the window-based probability in the collection, and the size

of the window is set the same way in predictiveness.

107

In addition, the feature using the pseudo-relevant documents is given as:

CohvPR(p) =
Pw(w1, w2, . . . , w|p||PR)∏

w∈p Pw(w|C)
(7.17)

The cohesiveness features are useful for phrases containing terms related (i.e., co-

occurring) to each other. If the terms are coherent in the query contexts (e.g., query

document or pseudo-relevant documents), such terms would be keywords, and it is

probable that those also appear in relevant documents.

7.5 Evaluation

To evaluate our approach, we conduct the experiments as follows. For each query

document, we generate a baseline query (e.g., EX-RM described in Chapter 3.5) to

produce an initial retrieval result. Then, we apply the diversification framework,

described in Chapter 7.3, with topic phrases. To generate the topic phrases, we use

either DSPApprox or the learning-to-rank method (proposed in Chapter 7.4.2). In the

rest of this chapter, we provide more details of the experiments as well as experimental

results.

7.5.1 Experimental Setup

For evaluation, we use two different patent test collections: USPTO and EPO

(described in Chapter 3.3). Queries and documents are stemmed using the Krovetz

stemmer [60] and stop-words are removed. We adopt baseline retrieval models to

generate initial retrieval results. Among several query generation methods (e.g., Pri-

orArtQuery and ReductionQuery), we select EX-RM (see Chapter 3.5) which can

significantly outperforms the others in our initial experiments using the USPTO col-

lection. To develop baseline retrieval results for EPO, we use PATATRAS (described

in Chapter 3.6) which performed the best in the CLEF-IP 2010 [33]. More details of

the settings are provided as follows.

108

(Evaluation Metrics) Since we attempt to diversify search results, we use con-

ventional IR evaluation metrics to measure retrieval effectiveness as well as diversity

metrics which measure “diversity” on retrieval results. For measuring relevance, we

utilize MAP, Precision, NDCG, and Recall, which are typically used for adhoc re-

trieval tasks. In addition, PRES [74] is adopted, which is particularly designed for

recall-oriented search tasks. This metric reflects the normalized recall incorporated

with the quality of ranks of relevant documents observed within the maximum num-

bers of documents that the user examines (see Chapter 3.7). As diversity metrics,

α-NDCG [25], ERR-IA (a variant of ERR [21]), NRBP [23], and subtopic recall (S-

Recall) are used. These metrics penalize redundancy in retrieval results, i.e., how

much of the information in each retrieved relevant document the user has already

obtained in earlier ranks. Note that these have been used as standard metrics for

diversity tasks in TREC [24]. Since the experiments are conducted for the patent

domain and patent examiners (i.e., the search users) typically examine 100 patents

on average in the invalidity search processes [53], we assume that the top 100 ranked

documents are used to calculate the value of each metric.

(Topic Relevance Judgment) Although we develop the list of relevant docu-

ments for each query document (i.e., patent), the diversity metrics require the iden-

tification of query aspects for the relevant documents. In other words, for each query

document, we need to group relevant documents if they belong to the same topic.

The manual judgments required for this would be too laborious, and domain experts

are essential because they can fully understand domain-specific topics. To alleviate

this, we devise a semi-automatic method.

Each patent document contains a list of IPC codes that classify the document into

a hierarchical taxonomy. As an example, the IPC code “H01S 3/14” indicates the

patents related to “lasers characterized by the material used as the active medium”.

So, we exploit these codes to generate the topics of each query patent as follows. Given

109

a query patent, we first extract all IPC codes from its relevant documents. We sort

the codes in descending order of the number of corresponding relevant documents, i.e.,

ca ≻ cb if ♯rel(ca) > ♯rel(cb) where ♯rel(c) indicates the number of relevant documents

containing the code c. Then, we scan from the top and remove the code if it covers

all relevant documents (i.e., ♯rel(c) = |R|) because such a code is too general and

does not help to measure true diversity. After this, we assume that each remaining

code can represent a topic for the query patent, and map relevant documents to their

corresponding topics. In our experiments, the queries in USPTO and EPO include

4.94 and 8.66 topics, respectively.

Since any patent documents contain IPC codes, it could be argued that diver-

sification can be performed using IPC codes that appear in initial retrieval results.

That is, the topic set for each query patent is directly estimated by the IPC codes,

i.e., T = {t1 = ca, t2 = cb, . . .}. However, the topics of IPC codes are very abstract

and general, e.g., “H01F 1/01” means “magnetic bodies of inorganic materials”. We

assume that true topics in a query patent are more specific and concrete. Thus, we

generate topic phrases for representing detailed topics (as described in Chapter 7.2).

IPC codes are treated as a crude estimation for true topics, and used for evaluating

diversity in retrieval results.

In training of our phrase ranking model (described in Chapter 7.4.2.1), we need

to use the sets of relevant documents grouped by their IPC codes (i.e., relevant

documents and their IPC codes are necessary). However, in testing, we do not require

IPC codes because the trained ranking model automatically generates the ranks of

given candidate phrases by using the features described in Chapter 7.4.2.2. Such

training and testing scheme is typically used in many supervised learning frameworks

(e.g., learning-to-rank document retrieval [17, 105]), and in real systems, only the

ranking models trained using relevant documents are used to generate the ranked list

of phrases.

110

(Parameter Settings) The diversification algorithm described in Chapter 7.3

is applied to the top 200 documents in initial retrieval results, i.e., K = 200. For

web search tasks, the PM-2 performed better with K = 50 [29], but prior-art search

requires the examination of more documents (e.g., top 100 documents). Thus, we

empirically set K = 200, and consequently, the topic phrase identification techniques

(i.e., DSPApprox and the learning-to-rank method) are also performed with these top

200 documents. In addition, we need to tune two free parameters for this algorithm,

i.e., λ and µ (see Eq. (7.3) and Eq. (7.4)). For this, we consider each value in the

range of [0.1, 1.0] with an increment of 0.1, and 10-fold cross-validation is performed

with random partitioning. The topic phrase identification techniques also require

the free parameter k, which indicates the number of topic phrases to be extracted

from the candidate pool. We use multiple values of k = {5, 10, 20, 40, 60, 80, 100}

and the 10-fold cross-validation is applied. The learning-to-rank topic identification

is also performed using this 10-fold cross-validation. Note that the average number

of phrases in the pool is 487.17 and 313.89 over USPTO and EPO query patents,

respectively.

7.5.2 Retrieval Results

We evaluate our approach in terms of retrieval effectiveness and diversity. We first

verify the retrieval effectiveness of the ranked results obtained by each method. Table

7.2 shows the evaluation results using both USPTO and EPO. In that, LTR and DSP

denote diversification using the learning-to-rank topic identification and DSPApprox,

respectively. In each row, a significant improvement over each method is marked by

the first letter of the method, e.g., B indicates an improvement over Baseline, and

the paired t-test is performed with p < 0.05. Also, the best performance is marked

by bold. For each retrieval result, we measure overall performance (e.g., MAP and

111

Recall) as well as early precision (i.e., Precision at 20 and NDCG at 20), and report

an average value of each metric over the query documents in each corpus.

Table 7.2: Retrieval Results using Relevance Metrics

Corpus Metric Baseline DSP LTR
USPTO MAP 0.1221

(0.0%)
0.1337B

(+9.50%)
0.1516BD

(+19.46%)
PRES 0.2766

(0.0%)
0.2789
(+0.81%)

0.2985BD

(+7.32%)
Precision@20 0.1503

(0.0%)
0.1530
(+1.80%)

0.1687BD

(+10.91%)
NDCG@20 0.2087

(0.0%)
0.2176B

(+4.26%)
0.2527BD

(+17.41%)
Recall 0.4261

(0.0%)
0.4282
(+0.49%)

0.4285
(+0.56%)

EPO MAP 0.2414
(0.0%)

0.2482B

(+2.78%)
0.2536BD

(+5.30%)
PRES 0.4148

(0.0%)
0.4184
(+0.86%)

0.4292BD

(+3.46%)
Precision@20 0.2857

(0.0%)
0.2945B

(+3.08%)
0.3010B

(+5.36%)
NDCG@20 0.3440

(0.0%)
0.3562B

(+3.55%)
0.3630B

(+5.52%)
Recall 0.5159

(0.0%)
0.5166
(+0.14%)

0.5209
(+0.97%)

First, our diversification framework can provide significant improvements relative

to the baseline retrieval results on many relevance metrics, while recall does not sig-

nificantly increase. That is, the diversification keeps the relevant documents that

appear in the initial ranked results, and effectively promotes their ranks. This is

important because, using the diversification, search users are more likely to find rele-

vant documents in early ranks. In particular, the MAP and NDCG scores increase if

we use either LTR or DSP for the topic phrase identification, which means that the

diversification technique is useful for domain-specific search. Second, LTR is more

effective than DSP. In USPTO, LTR significantly outperforms DSP in all cases (ex-

112

cept Recall), but in EPO it is better in terms of only MAP and PRES. Comparing

to EPO, the values of early precision metrics (e.g., NDCG and Precision) in USPTO

are dramatically lower, i.e., many relevant documents retrieved in USPTO are ranked

out of 20. Thus, the baseline results of USPTO may provide more chances to promote

relevant documents which are initially found below rank 20, and the topic phrases

identified by LTR would effectively work for such relevant documents.

Next, we evaluate the “diversity” of retrieval results obtained by each method.

Specifically, we measure the values of α-NDCG, ERR-IA, S-Recall at early ranks

(i.e., top 20) and overall ranks. Table 3 presents the diversity-based evaluation results.

Note that each retrieval result is truncated at rank 100.

First, for both collections, our diversification approach is effective for generating

significantly more diversified results. The diversity performance in USPTO is espe-

cially improved, e.g., +26.10% is achieved in terms of NRBP. This result indicates

that the diversification can increase the ranks of relevant documents related to di-

verse topics, and enabling the user to recognize the diverse aspects of query patents.

Second, the sub-topic recall at rank 100 (i.e., S-Recall@100) is less improved by the

diversification. We believe the cause of this result is that within rank 100, the baseline

has already found sufficient amounts of each topic from retrieved relevant documents.

Thus, the diversification may not find new topics not covered by the initial retrieval

results. However, within rank 20, significantly more topics are extracted by the di-

versification, i.e., S-Recall@20. Third, the diversification performance in USPTO

looks better than that in EPO whereas the retrieval effectiveness measured in EPO

is much better than that measured in USPTO (see Table 7.2). This is because the

relevant documents in EPO includes more topics, i.e., the (average) number of topics

in relevant documents of USPTO and EPO is 4.94 and 8.66, respectively. Thus, the

retrieval results for USPTO easily contain relatively more topics, i.e., the ratio of

found topics to the whole topics. Lastly, different from the relevance results (Table

113

Table 7.3: Diversification Results

Corpus Metric Baseline DSP LTR
USPTO NRBP 0.1662

(0.0%)
0.1814B

(+9.18%)
0.2248BD

(+26.10%)
α-NDCG@20 0.3441

(0.0%)
0.3596
(+4.53%)

0.4179BD

(+17.70%)
α-NDCG@100 0.4158

(0.0%)
0.4306
(+3.55%)

0.4785BD

(+13.10%)
ERR-IA@20 0.1948

(0.0%)
0.2089B

(+7.24%)
0.2499BD

(+22.10%)
ERR-IA@100 0.2015

(0.0%)
0.2155
(+6.95%)

0.2557
(+21.20%)

S-Recall@20 0.5299
(0.0%)

0.5443
(+2.72%)

0.5678
(+6.70%)

S-Recall@100 0.7074
(0.0%)

0.7088
(+0.19%)

0.7186
(+1.50%)

EPO NRBP 0.1312
(0.0%)

0.1433BL

(+9.22%)
0.1368B

(+4.26%)
α-NDCG@20 0.3439

(0.0%)
0.3601B

(+4.72%)
0.3627B

(+5.47%)
α-NDCG@100 0.4345

(0.0%)
0.4476B

(+3.00%)
0.4493B

(+3.39%)
ERR-IA@20 0.1576

(0.0%)
0.1692B

(+7.37%)
0.1659B

(+5.26%)
ERR-IA@100 0.1650

(0.0%)
0.1766B

(+7.01%)
0.1729B

(+4.77%)
S-Recall@20 0.3815

(0.0%)
0.39020B

(+2.75%)
0.4054BD

(+6.26%)
S-Recall@100 0.6256

(0.0%)
0.6257
(+0.03%)

0.6267
(+0.18%)

114

7.2), LTR is significantly better than DSP only when using the USPTO collection.

In EPO, significant differences between the results obtained by both methods are

rarely observed. This is because LTR uses the ranking model trained by relevant

documents, which can select more effective phrases, whereas DSP only utilizes the

topicality and predictiveness in an unsupervised manner. Since a supervised learning

approach typically takes advantages from a labeled data (i.e., relevant documents),

LTR can be useful when relevant documents are provided. In summary, the diversi-

fication approach we used can improve retrieval effectiveness as well as the diversity

of patent search results.

7.5.3 Feature Analysis

We now provide an analysis of features used in the learning-to-rank topic identi-

fication (LTR) described in Chapter 7.4.2. As summarized in Table 7.1, we use four

different types of features for LTR, and conduct another experiment to examine the

influence of each feature type for diversification. Since calculating the effects of some

features on the topic phrase identification is very difficult, we indirectly measure their

effectiveness by performing diversification using the topic phrases generated by the

target features.

We first extract topic phrases by LTR using all features with 10-fold cross-validation,

and diversify initial retrieval results. Then, following the same partitions, we train

the ranking model with all features except for one feature type, and run the diversifi-

cation with the topic phrases extracted by this model. After this, we observe the final

performance change by the feature drop, i.e., how much the topic phrase identification

depends on the dropped feature type. Note that the parameters for this experiment

are the same as used previously.

Table 7.4 shows the feature analysis using the USPTO collection where LTR is

notably effective. In that, we use MAP and α-NDCG for the analysis, and like

115

the previous experiments, each retrieval result contains the top 100 documents. In

each column, a * indicates a significant different from {All}, and the paired t-test is

performed with p < 0.05.

Table 7.4: Feature Analysis Results

Features MAP α-NDCG
{All} 0.1516

(0.0%)
0.4785
(0.0%)

{All} − {Cohesiveness} 0.1472
(−2.90%)

0.4729
(−1.16%)

{All} − {Relevance} 0.1455
(−4.02%)

0.4606∗

(−3.75%)
{All} − {Predictiveness} 0.1438∗

(−5.12%)
0.4621∗

(−3.42%)
{All} − {Importance} 0.1415∗

(−6.66%)
0.4521∗

(−5.51%)

First, all the features we used seem to have positive effects on diversification.

Whenever a feature is dropped, the value of every metric decreases. Second, the pre-

dictiveness and importance features look more influential than the others since these

features can cause a significant decrease in MAP. Considering α-NDCG, the relevance

features are also significant. Since we reuse the predictiveness already proposed for

DSPApprox, it is somewhat obvious that the predictiveness features are important

for the topic phrase identification. However, we additionally identify other significant

features, i.e., relevance and importance that represent the relevance of phrases to

query patents and their predicted effectiveness to retrieve relevant documents (i.e.,

query performance predictors).

7.5.4 Qualitative Analysis

We now provide a qualitative analysis of our topic phrase identification using an

example. Table 7.5 shows the top 5 topic phrases generated for an example query

patent (which is in the same as Table 1.1). The application in this patent provides

116

profiled information about computer system usage, and several modules such as Basic

Input Output System (BIOS), Operating System (OS), and Profile Server make up

the whole system. For this query patent, the baseline performs reasonably well (its

Table 7.5: Examples of Topic Phrase Identification

Query Patent
Title: Method and apparatus for providing content on a computer system
based on usage profile.

Abstract
A method and apparatus for determining a computer system usage profile
. . . A basic input output system (BIOS) module and/or an operating
system module obtain computer system usage profile information by tracking
events such as the frequency of re-boots, the time required to boot-up and shut-
down the operating system . . . data is collected and communicated to a profile
server . . .

Initial Retrieval
AvePrec 0.1288
α-NDCG 0.4058

Diversification
DSP LTR

AvePrec 0.1409 0.1939
α-NDCG 0.4560 0.6155
Rank 1 computer device usage profile information
Rank 2 event BIOS module
Rank 3 execution remote network
Rank 4 OS OS profile module
Rank 5 microprocessor boot process

average precision score is slightly higher than MAP over all queries (see Table 7.2)),

and diversification is effective for improving the initial retrieval result.

One observation is that DSPApprox (DSP) can identify phrases that describe

other query terms, i.e., phrases with high predictiveness. For example, “computer

device” appears to be highly representative for the peripheral devices used for BIOS,

e.g., printer and keyboard, and “event” stands for the actions recorded in the usage

profile, e.g., re-boot and shut-down. On the other hand, our learning-to-rank method

(LTR) can recognize key phrases that describe significant topics in the query patent

117

and that are more effective for retrieving relevant documents. As an example, “BIOS

module” and “OS module” are important components for the application, and as

discussed in Chapter 1.2 (using Table 1.1), we assume that such components may form

query topics. In addition, these phrases are related to several relevant documents for

this query patent. Moreover, the other phrases, e.g., “remote network” and “boot

process”, are also effective for retrieving relevant documents such as “Generic remote

boot for networked workstations by creating local bootable code image” (the title of

a relevant document for this query patent).

Another interesting observation is that DSPApprox favors unigram phrases. Al-

though we use the same phrase pool for both methods, unigram phrases are more

highly ranked by DSPApprox. This bias can be caused by the high predictiveness

scores of one-word phrases since they tend to co-occur with more terms than multi-

word phrases. The LTR method uses a supervised learning framework, and the weight

on the predictiveness feature can be effectively controlled.

7.6 Summary

In this chapter, we addressed the problem of diversifying patent search results

based on query patents. To solve this, we propose a result-level diversification ap-

proach using topic phrase identification. Given an initial retrieval result of each

query document, we identify topic phrases to represent underlying query topics, and

diversify based on the identified phrases. Through experiments, we showed that this

phrase-level diversification can improve patent search results in terms of retrieval ef-

fectiveness and diversity. In addition, we devise a learning-to-rank method to identify

topic phrases, and verify its effectiveness in comparison to the state-of-the-art topic

term identification algorithm.

118

CHAPTER 8

CONCLUSIONS

8.1 Overview

This chapter summarizes the dissertation. In Chapter 8.2, we again describe the

important problems for improving domain-specific searches and highlight key results

that verify the effectiveness of our proposed approaches. Chapter 8.3 restates the

main contributions of this dissertation, and Chapter 8.4 discusses the limitations of

our approaches and the future directions for improvements.

8.2 Summary

In this dissertation, we propose IR techniques for improving the domain-specific

users’ search experiences. The techniques we introduce are designed for the unique

characteristics of domain-specific searches (e.g., patent retrieval, academic literature

search, and medical search). As discussed in Chapter 1.1, an important characteristic

of domain-specific IR is that users manually formulate search queries after reading

query documents (e.g., new patents in prior-art search and new project descriptions

for literature search). To reduce the difficulty of formulating effective queries, we

propose query generation methods based on query documents. In addition, we devise

query suggestion methods to help users formulate more effective queries. To resolve

the diversity issue (described in Chapter 1.2), we introduce two different diversifica-

tion approaches: (1) query-side diversification that generates diverse queries and (2)

result-level diversification that directly diversifies retrieval results.

119

In Chapter 4, to formulate effective queries for professional users, we propose a

method to generate effective Boolean queries. We showed that this Boolean query

generation approach can generate a substantial number of Boolean queries, i.e., about

200 queries are generated for each query document (as reported in Table 4.3). In

addition, the best query among the top 10 suggested queries significantly improves

retrieval effectiveness compared to the baseline (PriorArtQuery) (see Table 8.1). Note

that a † indicates a significant improvement over the baseline, and the paired t-test

is performed with p < 0.05.

Table 8.1: Boolean Query Retrieval Performance

Domain Method F1@100
Patent Baseline 0.1184

Best of top-10 queries 0.1402†

Medical Baseline 0.2636
Best of top-10 queries 0.3089†

In Chapter 5, we propose a method for generating phrasal-concept queries (e.g.,

{“structural paraphrase generation” “large corpora” “multiple sequence alignment”})

to improve academic literature search. In the retrieval experiments using the ACL

collection (described in Chapter 3.3), we verified that phrasal-concept queries are

significantly better than the baseline keyword queries (LCE and MLE) (see Table

8.2). Note that an LM denotes significant improvements over the baselines (i.e., LCE

and MLE), and the paired t-test is performed with p < 0.05.

Table 8.2: Phrasal-Concept Query Retrieval Performance using ACL

Method NDCG@100 MAP
LCE 0.4874 0.2638
MLE 0.5086 0.2744
PHRASAL-CONCEPT 0.5301LM 0.2899LM

120

In order to diversify search results, we propose a diverse query generation method

that can suggest a list of diverse queries. In the experiments, we showed that our

query-side diversification method is effective for retrieving more relevant documents.

In Table 8.2, the baseline queries are generated by the decision tree-based method (de-

scribed in Chapter 4), and the diverse queries are also generated by the same method

but query aspects are considered in the generation; we first extract multiple query

aspects from the query document, and then each query aspect is used to generate

the queries by the decision tree-based method. Note that a † indicates a significant

improvement over the baseline and the paired t-test is performed with p < 0.05.

Table 8.3: Retrieval Performance of Diverse Queries

Domain Metric Baseline Queries Diverse Queries
Patent SNR@100 0.1989 0.2509†

NSDCG@100 0.0959 0.1212†

Academic SNR@100 0.6351 0.7392†

NSDCG@100 0.3099 0.4457†

In Chapter 7, we describe a phrase-level diversification framework that can identify

topic phrases and directly diversify search results based on the identified phrases. By

comparing with the baseline (EX-RM), we showed that our diversification method

can improve the retrieval effectiveness and diversity of search results (see Table 8.4

& 8.5). Note that a † indicates a significant improvement over the baseline and the

paired t-test is performed with p < 0.05.

Table 8.4: Diversification Performance by Relevance Metrics

Corpus Method MAP PRES Recall
USPTO Baseline 0.1221 0.2766 0.4261

Diversification 0.1516† 0.2985† 0.4285†

EPO Baseline 0.2414 0.4148 0.5159
Diversification 0.2536† 0.4292† 0.5209†

121

Table 8.5: Diversification Performance by Diversity Metrics

Corpus Method NRBP α-NDCG@100 ERR-IA@100
USPTO Baseline 0.1662 0.4158 0.2015

Diversification 0.2248† 0.4785† 0.2557†

EPO Baseline 0.1312 0.4345 0.1650
Diversification 0.1368† 0.4493† 0.1729†

Based on these results, we examined the effectiveness of our query generation

and diversification methods. By conducting retrieval experiments on various search

domains, the evaluations were performed in more robust ways, and the proposed

techniques were shown to be effective for enhancing the search quality of domain-

specific IR.

8.3 Contributions

To recap, the major contributions of our work are as follows.

1. Evidence showing that domain-specific searches are improved by re-

solving three issues: (1) query generation, (2) query suggestion and

formulation, and (3) search result diversification. As discussed in Chap-

ter 1.2, these three issues are important for domain-specific searches, and our

query generation and diversification methods are designed to resolve these is-

sues. Moreover, the experimental results verified that the proposed approaches

are effective for improving domain-specific searches.

2. Methods to generate effective queries based on documents. We pro-

posed three different query generation methods based on query documents: (1)

Boolean query generation, (2) phrasal-concept query generation, and (3) diverse

query generation. We showed that these approaches are effective for improving

122

various domain-specific search tasks (e.g., prior-art search, academic literature

search, and medical reference retrieval).

3. Query formulation in user-preferred representations. Our methods can

generate effective Boolean queries preferred by professional users (e.g. patent

examiners) and phrasal-concept queries useful for academic users (e.g., research

scientists). Through the user experiments described in Chapter 5.5, we verified

the effectiveness of phrasal-concept queries for academic literature search.

4. Query-side diversification methods to generate diverse search results.

To resolve the diversity issue, we proposed the method to generate diverse

queries, and in overall session-retrieval results, diverse queries can retrieve sig-

nificantly more relevant documents than baseline queries (that do not consider

the diversity).

5. Search result diversification frameworks applied to domain-specific

searches. We exploited the term-level diversification framework (described in

[28]) for diversifying domain-specific search results. To improve diversification

performance in domain-specific searches, we modified the diversification algo-

rithm (see Chapter 7.3) and proposed the learning-to-rank method to identify

topic phrases.

6. Algorithms to identify important topics (or aspects) from documents.

To identify query aspects (i.e., sets of query document terms; see Chapter 6.2),

we used the term clustering method described in Chapter 6.3.1. In addition, we

proposed a similarity learning method to predict the similarity between query

terms. For extracting topic phrases (i.e., phrases to represent query topics), we

proposed the learning-to-rank approach to rank topic phrases by considering

topicality, predictiveness, and various features (see Chapter 7.4).

123

8.4 Future Work

We now describe the limitations of each proposed method and discuss further

improvements.

8.4.1 Improvements for Boolean Query Generation

In this method, we primarily focus on using conjunction (‘AND’) and negation

(‘NOT’) operators for generating Boolean queries because these operators have more

impact on patent retrieval performance for very detailed documents. However, profes-

sional searchers often use the disjunction (‘OR’) operator for representing synonym

groups. In fact, Boolean Conjunctive Normal Form (CNF), i.e., a conjunction of

disjunctions where each disjunction contains a term and its synonyms, is effective

to resolve term mismatch problems between queries and relevant documents in legal

search [112]. Thus, adding synonym structure into the current suggestion framework

may provide further improvements and is useful for extending to the legal domain. In

addition to this, we can elaborate the decision tree-based query generation method

(see Chapter 4.3) as follows.

First we can generate more effective queries by focusing on the terms discriminant

in more important (pseudo) relevant documents. In our method, we equally treat

each pseudo-relevant example regardless of its rank in the initial retrieval. However,

we can consider different weights on the pseudo-relevant documents by their ranking

scores, and this could help the generated queries to focus on more effective terms

(i.e., effective to retrieve more (pseudo) relevant documents). Second, we can simply

identify more effective Boolean queries without learning the Boolean query ranking

model (described in Chapter 4.4). We can predict the retrieval effectiveness of each

generated query by measuring its information gain on pseudo-relevant documents.

In other words, more effective Boolean query would be more precise to imply more

124

pseudo-relevant documents. By doing this, we could reduce the complexity of our

method and resolve the difficulty of optimizing the ranking model.

8.4.2 Improvements for Phrasal-Concept Query Generation

The merit of this approach is reproducibility and generalizability. To generate

effective concept queries, we mainly use the concepts identified from pseudo-relevant

documents, and similarities recognized within the corpus. In other words, external

resources or manually constructed data are not required. However, as Bai et al.

studied [7], query contexts mined from external ontologies may help to identify more

effective concepts and their relationships. Thus, it can be useful to explore global

information-based approaches applicable for the queries in academic literature search.

In addition, using “semantic” concepts for query generation can be helpful because

semantic entities (e.g., author names and domain-specific terminology) may be crucial

to creating more effective and more “interesting” queries from the user’s perspective.

We observed that several author names are extracted as expansion terms in the MLE

queries which use machine learning algorithms to select discriminant features (i.e.,

expansion terms).

8.4.3 Improvements for Diverse Query Generation

The complexity of our diverse query generation model can be significant for a

practical system. In general, domain-specific users spend much more time to complete

a single search task (e.g., patent examiners use about 12 hours to validate a new

patent [53]), and the efficacy (rather than the efficiency) is more important in this

method. However, reducing the complexity may help users to find more relevant

documents because users can examine more retrieved documents in a given amount

of time. The cost of running the diverse query generation model is mainly based

on three different parts: (1) query aspect identification, (2) query generation, and

(3) diverse query suggestion. The complexity of the latter two parts can be simply

125

improved by controlling the number of generated queries, the size of pseudo-relevant

documents or query vocabulary. To reduce the cost of identifying query aspects from a

query document, we may need to consider more efficient term clustering algorithms.

Spectral clustering (currently used in our method) can be less efficient for a large

set of aspect terms (i.e., a long query document). To alleviate this, we used the

parallel spectral clustering approach implemented using distributed systems [22]. In

addition, instead of using spectral clustering, we can consider other efficient clustering

algorithms (e.g., hierarchical clustering) and further exploration may require to find

optimal parameter settings (e.g., linkage criteria).

8.4.4 Improvements for Search Result Diversification

In our diversification framework, we mainly exploit human-labeled topic informa-

tion (e.g., IPC1 codes annotated in patents) for evaluating the diversity of search

results and learning topic phrases. However, this approach forces us to use only

patent test collections because only patent documents provide this type of manual

coding. So, for applying this framework to other domains, we require a more general

proxy to represent topics in relevant documents. One way to solve this is using doc-

ument clustering techniques [2], i.e., clustering relevant documents by their topics.

In this method, exploring effective algorithms to generate more accurate clusters is

crucial, and domain-specific knowledge bases (e.g., medical term ontology) may help

to improve the clustering accuracy by providing semantic features.

1International Patent Classification (http://www.wipo.int/classifications/ipc/en/)

126

BIBLIOGRAPHY

[1] Abdul-jaleel, Nasreen, Allan, James, Croft, W. Bruce, Diaz, O, Larkey, Leah,
Li, Xiaoyan, Smucker, Mark D., and Wade, Courtney. UMass at TREC 2004:
Novelty and hard. In Proceedings of the 13th Text Retrieval Conference (2004),
TREC-13.

[2] Aggarwal, Charu C., and Zhai, ChengXiang. A survey of text clustering algo-
rithms. In Mining Text Data, Charu C. Aggarwal and ChengXiang Zhai, Eds.
Springer US, 2012, pp. 77–128.

[3] Agrawal, Rakesh, Gollapudi, Sreenivas, Halverson, Alan, and Ieong, Samuel.
Diversifying search results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining (New York, NY, USA, 2009),
WSDM ’09, ACM, pp. 5–14.

[4] Andrew, Galen, and Gao, Jianfeng. Scalable training of l1-regularized log-
linear models. In Proceedings of the 24th International Conference on Machine
Learning (New York, NY, USA, 2007), ICML ’07, ACM, pp. 33–40.

[5] Azzopardi, Leif, Vanderbauwhede, Wim, and Joho, Hideo. Search system re-
quirements of patent analysts. In Proceedings of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval (New
York, NY, USA, 2010), SIGIR ’10, ACM, pp. 775–776.

[6] Baeza-Yates, Ricardo, Hurtado, Carlos, and Mendoza, Marcelo. Query rec-
ommendation using query logs in search engines. In Proceedings of the 2004
International Conference on Current Trends in Database Technology (Berlin,
Heidelberg, 2004), EDBT’04, Springer-Verlag, pp. 588–596.

[7] Bai, Jing, Nie, Jian-Yun, Cao, Guihong, and Bouchard, Hugues. Using query
contexts in information retrieval. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (New York, NY, USA, 2007), SIGIR ’07, ACM, pp. 15–22.

[8] Balasubramanian, Niranjan, Allan, James, and Croft, W. Bruce. A comparison
of sentence retrieval techniques. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2007), SIGIR ’07, ACM, pp. 813–814.

127

[9] Bashir, Shariq, and Rauber, Andreas. Improving retrievability of patents in
prior-art search. In Proceedings of the 32Nd European Conference on Advances
in Information Retrieval (Berlin, Heidelberg, 2010), ECIR’2010, Springer-
Verlag, pp. 457–470.

[10] Basu, Chumki, Hirsh, Haym, and Cohen, William W. Technical paper rec-
ommendation: A study in combining multiple information sources. Journal of
Artificial Intelligence Research 14 (2001), 231–252.

[11] Bendersky, Michael, and Croft, W. Bruce. Discovering key concepts in verbose
queries. In Proceedings of the 31st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (New York, NY,
USA, 2008), SIGIR ’08, ACM, pp. 491–498.

[12] Bendersky, Michael, Croft, W. Bruce, and Smith, David A. Two-stage query
segmentation for information retrieval. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2009), SIGIR ’09, ACM, pp. 810–811.

[13] Bethard, Steven, and Jurafsky, Dan. Who should I cite: Learning literature
search models from citation behavior. In Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management (New York,
NY, USA, 2010), CIKM ’10, ACM, pp. 609–618.

[14] Bhatia, Sumit, Majumdar, Debapriyo, and Mitra, Prasenjit. Query suggestions
in the absence of query logs. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval (New
York, NY, USA, 2011), SIGIR ’11, ACM, pp. 795–804.

[15] Bird, Steven, Dale, Robert, Dorr, Bonnie J., Gibson, Bryan, Joseph, Mark T.,
yen Kan, Min, Lee, Dongwon, Powley, Brett, Radev, Dragomir R., and Tan,
Yee Fan. The ACL anthology reference corpus: A reference dataset for bibli-
ographic research in computational linguistics. In Proceedings of International
Conference on Language Resources and Evaluation (2008), LREC’08.

[16] Brin, Sergey, and Page, Lawrence. The anatomy of a large-scale hypertextual
web search engine. Comput. Netw. ISDN Syst. 30, 1-7 (Apr. 1998), 107–117.

[17] Cao, Yunbo, Xu, Jun, Liu, Tie-Yan, Li, Hang, Huang, Yalou, and Hon, Hsiao-
Wuen. Adapting ranking SVM to document retrieval. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (New York, NY, USA, 2006), SIGIR ’06, ACM, pp. 186–
193.

[18] Carbonell, Jaime, and Goldstein, Jade. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings
of the 21st Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (New York, NY, USA, 1998), SIGIR ’98,
ACM, pp. 335–336.

128

[19] Carterette, Ben, and Chandar, Praveen. Probabilistic models of ranking novel
documents for faceted topic retrieval. In Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management (New York, NY, USA, 2009),
CIKM ’09, ACM, pp. 1287–1296.

[20] Cartright, Marc-Allen, Feild, Henry A., and Allan, James. Evidence finding
using a collection of books. In Proceedings of the 4th ACM Workshop on Online
Books, Complementary Social Media and Crowdsourcing (New York, NY, USA,
2011), BooksOnline ’11, ACM, pp. 11–18.

[21] Chapelle, Olivier, Metlzer, Donald, Zhang, Ya, and Grinspan, Pierre. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management (New York, NY, USA, 2009),
CIKM ’09, ACM, pp. 621–630.

[22] Chen, Wen-Yen, Song, Yangqiu, Bai, Hongjie, Lin, Chih-Jen, and Chang, Ed-
ward Y. Parallel spectral clustering in distributed systems. IEEE Transactions
on Pattern Analysis and Machine Intelligence 33, 3 (2008), 568–586.

[23] Clarke, Charles L., Kolla, Maheedhar, and Vechtomova, Olga. An effective-
ness measure for ambiguous and underspecified queries. In Proceedings of the
2Nd International Conference on Theory of Information Retrieval: Advances in
Information Retrieval Theory (Berlin, Heidelberg, 2009), ICTIR ’09, Springer-
Verlag, pp. 188–199.

[24] Clarke, Charles L. A., Craswell, Nick, Soboroff, Ian, and Cormack, Gordon V.
Overview of the TREC 2010 web track. In Proceedings of the nineteenth Text
Retrieval Conference (2010), TREC-19.

[25] Clarke, Charles L.A., Kolla, Maheedhar, Cormack, Gordon V., Vechtomova,
Olga, Ashkan, Azin, Büttcher, Stefan, and MacKinnon, Ian. Novelty and di-
versity in information retrieval evaluation. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (New York, NY, USA, 2008), SIGIR ’08, ACM, pp. 659–666.

[26] Craswell, Nick, and Szummer, Martin. Random walks on the click graph. In
Proceedings of the 30th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (New York, NY, USA, 2007),
SIGIR ’07, ACM, pp. 239–246.

[27] Cronen-Townsend, Steve, Zhou, Yun, and Croft, W. Bruce. Predicting query
performance. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2002), SIGIR ’02, ACM, pp. 299–306.

[28] Dang, Van, and Croft, Bruce W. Term level search result diversification. In
Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval (New York, NY, USA, 2013), SIGIR ’13,
ACM, pp. 603–612.

129

[29] Dang, Van, and Croft, W. Bruce. Diversity by proportionality: An election-
based approach to search result diversification. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (New York, NY, USA, 2012), SIGIR ’12, ACM, pp. 65–74.

[30] Dang, Van, Xue, Xiaobing, and Croft, W. Bruce. Inferring query aspects from
reformulations using clustering. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (New York, NY, USA,
2011), CIKM ’11, ACM, pp. 2117–2120.

[31] Efron, Bradley, Hastie, Trevor, Johnstone, Iain, and Tibshirani, Robert. Least
angle regression. The Annals of Statistics 32, 2 (04 2004), 407–499.

[32] Fall, C. J., Törcsvári, A., Benzineb, K., and Karetka, G. Automated catego-
rization in the international patent classification. SIGIR Forum 37, 1 (Apr.
2003), 10–25.

[33] Florina, Piroi. CLEF-IP 2010: Prior-art candidates search evaluation summary.
Tech. rep., IRF-TR-2010-00003, Information Retreival Facility, 2010.

[34] Florina, Piroi, and Tait, John. Clef-ip 2010: Retrieval experiments in the intel-
lectual property domain. Tech. rep., IRF-TR-2010-00005, Information Retreival
Facility, 2010.

[35] Fonseca, Bruno M., Golgher, Paulo, Pôssas, Bruno, Ribeiro-Neto, Berthier, and
Ziviani, Nivio. Concept-based interactive query expansion. In Proceedings of
the 14th ACM International Conference on Information and Knowledge Man-
agement (New York, NY, USA, 2005), CIKM ’05, ACM, pp. 696–703.

[36] Fujiii, Atsushi, Iwayama, Makoto, and Kando, Noriko. Overview of the patent
retrieval task at the NTCIR-6 workshop. In Proceedings of NTCIR-6 Workshop
Meeting (May 2007), NTCIR-6, pp. 359 – 365.

[37] Ganguly, Debasis, Leveling, Johannes, and Jones, Gareth J.F. United we fall,
divided we stand: A study of query segmentation and PRF for patent prior art
search. In Proceedings of the 4th Workshop on Patent Information Retrieval
(New York, NY, USA, 2011), PaIR ’11, ACM, pp. 13–18.

[38] Ganguly, Debasis, Leveling, Johannes, Magdy, Walid, and Jones, Gareth J.F.
Patent query reduction using pseudo relevance feedback. In Proceedings of the
20th ACM International Conference on Information and Knowledge Manage-
ment (New York, NY, USA, 2011), CIKM ’11, ACM, pp. 1953–1956.

[39] Garey, Michael R., and Johnson, David S. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

130

[40] Gobeill, Julien, Teodoro, Douglas, Pasche, Emilie, and Ruch, Patrick. Report
on the TREC 2009 experiments: Chemical IR track. In Proceedings of the
Eighteenth Text Retrieval Conference (2009), TREC-18.

[41] Hasan, Mohammad Al, Parikh, Nish, Singh, Gyanit, and Sundaresan, Neel.
Query suggestion for e-commerce sites. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining (New York, NY,
USA, 2011), WSDM ’11, ACM, pp. 765–774.

[42] He, Ben, and Ounis, Iadh. Inferring query performance using pre-retrieval pre-
dictors. In In Proc. Symposium on String Processing and Information Retrieval
(2004), Springer Verlag, pp. 43–54.

[43] He, Jing, Nie, Jian-Yun, Lu, Yang, and Zhao, Wayne Xin. Position-aligned
translation model for citation recommendation. In Proceedings of the 19th In-
ternational Conference on String Processing and Information Retrieval (Berlin,
Heidelberg, 2012), SPIRE’12, Springer-Verlag, pp. 251–263.

[44] He, Qi, Pei, Jian, Kifer, Daniel, Mitra, Prasenjit, and Giles, Lee. Context-aware
citation recommendation. In Proceedings of the 19th International Conference
on World Wide Web (New York, NY, USA, 2010), WWW ’10, ACM, pp. 421–
430.

[45] Hearst, Marti A. Texttiling: Segmenting text into multi-paragraph subtopic
passages. Comput. Linguist. 23, 1 (Mar. 1997), 33–64.

[46] Hersh, William, Buckley, Chris, Leone, T. J., and Hickam, David. Ohsumed:
An interactive retrieval evaluation and new large test collection for research.
In Proceedings of the 17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (New York, NY, USA,
1994), SIGIR ’94, Springer-Verlag New York, Inc., pp. 192–201.

[47] Huang, Xiangji, Huang, Yan Rui, Wen, Miao, An, Aijun, Liu, Yang, and Poon,
J. Applying data mining to pseudo-relevance feedback for high performance text
retrieval. In Data Mining, 2006. ICDM ’06. Sixth International Conference on
(Dec 2006), pp. 295–306.

[48] Iwayama, Makoto, Fujii, Atsushi, Kando, Noriko, and Marukawa, Yuzo. An
empirical study on retrieval models for different document genres: Patents and
newspaper articles. In Proceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in Informaion Retrieval (New
York, NY, USA, 2003), SIGIR ’03, ACM, pp. 251–258.

[49] Järvelin, Kalervo, and Kekäläinen, Jaana. Cumulated gain-based evaluation of
IR techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446.

131

[50] Järvelin, Kalervo, Price, Susan L., Delcambre, Lois M. L., and Nielsen, Mar-
ianne Lykke. Discounted cumulated gain based evaluation of multiple-query
IR sessions. In Proceedings of the IR Research, 30th European Conference on
Advances in Information Retrieval (2008), ECIR’08, Springer-Verlag, pp. 4–15.

[51] Joachims, Thorsten. Optimizing search engines using clickthrough data. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (New York, NY, USA, 2002), KDD ’02, ACM,
pp. 133–142.

[52] Joachims, Thorsten. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (New York, NY, USA, 2006), KDD ’06, ACM, pp. 217–226.

[53] Joho, Hideo, Azzopardi, Leif A., and Vanderbauwhede, Wim. A survey of patent
users: An analysis of tasks, behavior, search functionality and system require-
ments. In Proceedings of the Third Symposium on Information Interaction in
Context (New York, NY, USA, 2010), IIiX ’10, ACM, pp. 13–24.

[54] Jones, Rosie, Rey, Benjamin, Madani, Omid, and Greiner, Wiley. Generating
query substitutions. In Proceedings of the 15th International Conference on
World Wide Web (New York, NY, USA, 2006), WWW ’06, ACM, pp. 387–396.

[55] Kando, Noriko. Overview of the sixth NTCIR workshop. In Proceedings of
NTCIR-6 Workshop Meeting (May 2007), NTCIR-6, pp. 1 – 9.

[56] Kharitonov, Eugene, Macdonald, Craig, Serdyukov, Pavel, and Ounis, Iadh.
User model-based metrics for offline query suggestion evaluation. In Proceed-
ings of the 36th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (New York, NY, USA, 2013), SIGIR ’13,
ACM, pp. 633–642.

[57] Kim, Youngho, and Croft, W. Bruce. Diversifying query suggestions based on
query documents. In Submission (2014).

[58] Kim, Youngho, Seo, Jangwon, and Croft, W. Bruce. Automatic Boolean query
suggestion for professional search. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval (New
York, NY, USA, 2011), SIGIR ’11, ACM, pp. 825–834.

[59] Kim, Youngho, Seo, Jangwon, Croft, W. Bruce, and Smith, David A. Auto-
matic suggestion of phrasal-concept queries for literature search. Information
Processing & Management (2014), (in press).

[60] Krovetz, Robert. Viewing morphology as an inference process. In Proceedings
of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (New York, NY, USA, 1993), SIGIR ’93,
ACM, pp. 191–202.

132

[61] Kumaran, Giridhar, and Allan, James. Effective and efficient user interaction
for long queries. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2008), SIGIR ’08, ACM, pp. 11–18.

[62] Kumaran, Giridhar, and Carvalho, Vitor R. Reducing long queries using query
quality predictors. In Proceedings of the 32nd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (New York, NY,
USA, 2009), SIGIR ’09, ACM, pp. 564–571.

[63] Lavrenko, Victor, and Croft, W. Bruce. Relevance based language models.
In Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (New York, NY, USA,
2001), SIGIR ’01, ACM, pp. 120 – 127.

[64] Lavrenko, Victor, and Croft, W.Bruce. Relevance models in information re-
trieval. Language Modeling for Information Retrieval 13 (2003), 11 – 56.

[65] Lawrie, Dawn, Croft, W. Bruce, and Rosenberg, Arnold. Finding topic words
for hierarchical summarization. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2001), SIGIR ’01, ACM, pp. 349–357.

[66] Lawrie, Dawn J., and Croft, W. Bruce. Generating hierarchical summaries for
web searches. In Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informaion Retrieval (New York,
NY, USA, 2003), SIGIR ’03, ACM, pp. 457–458.

[67] Lee, Chia-Jung, and Croft, W. Bruce. Generating queries from user-selected
text. In Proceedings of the 4th Information Interaction in Context Symposium
(New York, NY, USA, 2012), IIIX ’12, ACM, pp. 100 – 109.

[68] Lopez, Patrice, and Romary, Laurent. Patatras: Retrieval model combination
and regression models for prior art search. In Proceedings of the 10th Cross-
language Evaluation Forum Conference on Multilingual Information Access
Evaluation: Text Retrieval Experiments (Berlin, Heidelberg, 2009), CLEF’09,
Springer-Verlag, pp. 430–437.

[69] Lopez, Patrice, and Romary, Laurent. Patatras: Retrieval model combination
and regression models for prior art search. Multilingual Information Access
Evaluation I. Text Retrieval Experiments 6241 (2010), 430–437.

[70] Luo, Gang, Tang, Chunqiang, Yang, Hao, and Wei, Xing. Medsearch: A spe-
cialized search engine for medical information retrieval. In Proceedings of the
17th ACM Conference on Information and Knowledge Management (New York,
NY, USA, 2008), CIKM ’08, ACM, pp. 143–152.

133

[71] Lupu, Mihai, Piroi, Florina, jimmy Huang, Zhu, Jianhan, and Tait, John.
Overview of the TREC 2009 chemical IR track. In Proceedings of the Eigh-
teenth Text Retrieval Conference (2009), TREC-18.

[72] Lv, Yuanhua, and Zhai, ChengXiang. A comparative study of methods for
estimating query language models with pseudo feedback. In Proceedings of the
18th ACM Conference on Information and Knowledge Management (New York,
NY, USA, 2009), CIKM ’09, ACM, pp. 1895–1898.

[73] Ma, Hao, Lyu, Michael R., and King, Irwin. Diversifying query suggestion
results. In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(2010), AAAI ’10, AAAI Press.

[74] Magdy, Walid, and Jones, Gareth J.F. Pres: A score metric for evaluating
recall-oriented information retrieval applications. In Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (New York, NY, USA, 2010), SIGIR ’10, ACM, pp. 611–618.

[75] Mahdabi, Parvaz, Andersson, Linda, Keikha, Mostafa, and Crestani, Fabio.
Automatic refinement of patent queries using concept importance predictors.
In Proceedings of the 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval (New York, NY, USA, 2012), SIGIR
’12, ACM, pp. 505–514.

[76] Mahdabi, Parvaz, Gerani, Shima, Huang, Jimmy Xiangji, and Crestani, Fabio.
Leveraging conceptual lexicon: Query disambiguation using proximity informa-
tion for patent retrieval. In Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2013), SIGIR ’13, ACM, pp. 113–122.

[77] Mase, Hisao, Matsubayashi, Tadataka, Ogawa, Yuichi, Iwayama, Makoto, and
Oshio, Tadaaki. Proposal of two-stage patent retrieval method considering the
claim structure. ACM Transactions on Asian Language Information Processing
(TALIP) 4, 2 (June 2005), 190–206.

[78] Mei, Qiaozhu, Zhou, Dengyong, and Church, Kenneth. Query suggestion us-
ing hitting time. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management (New York, NY, USA, 2008), CIKM ’08, ACM,
pp. 469–478.

[79] Metzler, Donald, and Croft, W. Bruce. A Markov random field model for term
dependencies. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2005), SIGIR ’05, ACM, pp. 472–479.

[80] Metzler, Donald, and Croft, W. Bruce. Latent concept expansion using Markov
random fields. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2007), SIGIR ’07, ACM, pp. 311–318.

134

[81] Metzler, Donald, Strohman, Trevor, Turtle, Howard, and Croft, W. Bruce.
Indri at TREC 2004: Terabyte track. In Proceedings of the 13th Text Retrieval
Conference (2004), TREC-13.

[82] Mitra, Mandar, Singhal, Amit, and Buckley, Chris. Improving automatic query
expansion. In Proceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (New York, NY,
USA, 1998), SIGIR ’98, ACM, pp. 206–214.

[83] Ozertem, Umut, Velipasaoglu, Emre, and Lai, Larry. Suggestion set utility
maximization using session logs. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (New York, NY, USA,
2011), CIKM ’11, ACM, pp. 105–114.

[84] Ponte, Jay M., and Croft, W. Bruce. A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 1998), SIGIR ’98, ACM, pp. 275–281.

[85] Qiu, Yonggang, and Frei, Hans-Peter. Concept based query expansion. In Pro-
ceedings of the 16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (New York, NY, USA, 1993), SIGIR
’93, ACM, pp. 160–169.

[86] Radlinski, Filip, Szummer, Martin, and Craswell, Nick. Inferring query intent
from reformulations and clicks. In Proceedings of the 19th International Con-
ference on World Wide Web (New York, NY, USA, 2010), WWW ’10, ACM,
pp. 1171–1172.

[87] Rafiei, Davood, Bharat, Krishna, and Shukla, Anand. Diversifying web search
results. In Proceedings of the 19th International Conference on World Wide
Web (New York, NY, USA, 2010), WWW ’10, ACM, pp. 781–790.

[88] Ritchie, Anna, Teufel, Simone, and Robertson, Stephen. Creating a test collec-
tion for citation-based IR experiments. In Proceedings of the Main Conference
on Human Language Technology Conference of the North American Chapter of
the Association of Computational Linguistics (Stroudsburg, PA, USA, 2006),
HLT-NAACL ’06, Association for Computational Linguistics, pp. 391–398.

[89] Robertson, Stephen, and Zaragoza, Hugo. The probabilistic relevance frame-
work: BM25 and beyond. Found. Trends Inf. Retr. 3, 4 (Apr. 2009), 333–389.

[90] Rocchio, J. J. Relevance feedback in information retrieval. In The Smart
retrieval system - experiments in automatic document processing (1971),
G. Salton, Ed., Englewood Cliffs, NJ: Prentice-Hall, pp. 313–323.

[91] Russell, Stuart J., Norvig, Peter, Candy, John F., Malik, Jitendra M., and
Edwards, Douglas D. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

135

[92] Santos, Rodrygo L.T., Macdonald, Craig, and Ounis, Iadh. Exploiting query
reformulations for web search result diversification. In Proceedings of the 19th
International Conference on World Wide Web (New York, NY, USA, 2010),
WWW ’10, ACM, pp. 881–890.

[93] Smucker, Mark D., and Allan, James. Find-similar: Similarity browsing as
a search tool. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2006), SIGIR ’06, ACM, pp. 461–468.

[94] Song, Yang, Zhou, Dengyong, and He, Li-wei. Post-ranking query suggestion by
diversifying search results. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2011), SIGIR ’11, ACM, pp. 815–824.

[95] Song, Yang, Zhou, Dengyong, and He, Li-wei. Query suggestion by constructing
term-transition graphs. In Proceedings of the Fifth ACM International Confer-
ence on Web Search and Data Mining (New York, NY, USA, 2012), WSDM
’12, ACM, pp. 353–362.

[96] Strohman, Trevor, Croft, W. Bruce, and Jensen, David. Recommending ci-
tations for academic papers. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2007), SIGIR ’07, ACM, pp. 705–706.

[97] Strohman, Trevor, Metzler, Donald, Turtle, Howard, and Croft, W. Bruce.
Indri: A language-model based search engine for complex queries (extended
version). Tech. rep., CIIR, University of Massachusetts Amherst, 2005.

[98] Tseng, Yuen-Hsien, and Wu, Yi-Jen. A study of search tactics for patentabil-
ity search: a case study on patent engineers. In Proceedings of the 1st ACM
workshop on Patent information retrieval (2008), ACM, pp. 33–36.

[99] Turtle, Howard. Natural language vs. Boolean query evaluation: A comparison
of retrieval performance. In Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (New
York, NY, USA, 1994), SIGIR ’94, Springer-Verlag New York, Inc., pp. 212–220.

[100] Turtle, Howard, and Croft, W. Bruce. Evaluation of an inference network-based
retrieval model. ACM Trans. Inf. Syst. 9, 3 (July 1991), 187–222.

[101] von Luxburg, Ulrike. A tutorial on spectral clustering. Statistics and Computing
17, 4 (2007), 395–416.

[102] Wang, Jun, and Zhu, Jianhan. Portfolio theory of information retrieval. In
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (New York, NY, USA, 2009), SIGIR ’09,
ACM, pp. 115–122.

136

[103] Weng, Linkai, Li, Zhiwei, Cai, Rui, Zhang, Yaoxue, Zhou, Yuezhi, Yang, Lau-
rence T., and Zhang, Lei. Query by document via a decomposition-based two-
level retrieval approach. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 2011), SIGIR ’11, ACM, pp. 505–514.

[104] Xu, Jinxi, and Croft, W. Bruce. Query expansion using local and global doc-
ument analysis. In Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (New York,
NY, USA, 1996), SIGIR ’96, ACM, pp. 4–11.

[105] Xu, Jun, and Li, Hang. Adarank: A boosting algorithm for information re-
trieval. In Proceedings of the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (New York, NY,
USA, 2007), SIGIR ’07, ACM, pp. 391–398.

[106] Xue, Xiaobing, and Croft, W. Bruce. Automatic query generation for patent
search. In Proceedings of the 18th ACM Conference on Information and Knowl-
edge Management (New York, NY, USA, 2009), CIKM ’09, ACM, pp. 2037–
2040.

[107] Xue, Xiaobing, and Croft, W. Bruce. Transforming patents into prior-art
queries. In Proceedings of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (New York, NY, USA,
2009), SIGIR ’09, ACM, pp. 808–809.

[108] Yang, Yin, Bansal, Nilesh, Dakka, Wisam, Ipeirotis, Panagiotis, Koudas, Nick,
and Papadias, Dimitris. Query by document. In Proceedings of the Second
ACM International Conference on Web Search and Data Mining (New York,
NY, USA, 2009), WSDM ’09, ACM, pp. 34–43.

[109] Zhai, ChengXiang, Cohen, William W., and Lafferty, John. Beyond indepen-
dent relevance: Methods and evaluation metrics for subtopic retrieval. In Pro-
ceedings of the 26th Annual International ACM SIGIR Conference on Research
and Development in Informaion Retrieval (New York, NY, USA, 2003), SIGIR
’03, ACM, pp. 10–17.

[110] Zhai, ChengXiang, and Lafferty, John. A study of smoothing methods for lan-
guage models applied to ad hoc information retrieval. In Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (New York, NY, USA, 2001), SIGIR ’01, ACM,
pp. 334–342.

[111] Zhang, Junte, and Kamps, Jaap. Search log analysis of user stereotypes, in-
formation seeking behavior, and contextual evaluation. In Proceedings of the
Third Symposium on Information Interaction in Context (New York, NY, USA,
2010), IIiX’10, ACM, pp. 245 – 254.

137

[112] Zhao, Le, and Callan, Jamie. Automatic term mismatch diagnosis for selective
query expansion. In Proceedings of the 35th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (New York, NY,
USA, 2012), SIGIR ’12, ACM, pp. 515–524.

[113] Zhao, Ying, Scholer, Falk, and Tsegay, Yohannes. Effective pre-retrieval query
performance prediction using similarity and variability evidence. In Proceedings
of the IR Research, 30th European Conference on Advances in Information
Retrieval (2008), ECIR’08, Springer-Verlag, pp. 52–64.

[114] Zhu, Xiaojin, and Ghahramani, Zoubin. Learning from labeled and unlabeled
data with label propagation. Tech. rep., CMU-CALD-02-107, Carnegie Mellon
University, 2002.

138

	SEARCHING BASED ON QUERY DOCUMENTS
	Recommended Citation

	tmp.1412947323.pdf.S2Jp4

