163 research outputs found

    Geo-Tagged Video Management: Storage, Queries and Streaming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    User-Centric Traffic Engineering in Software Defined Networks

    Get PDF
    Software defined networking (SDN) is a relatively new paradigm that decouples individual network elements from the control logic, offering real-time network programmability, translating high level policy abstractions into low level device configurations. The framework comprises of the data (forwarding) plane incorporating network devices, while the control logic and network services reside in the control and application planes respectively. Operators can optimize the network fabric to yield performance gains for individual applications and services utilizing flow metering and application-awareness, the default traffic management method in SDN. Existing approaches to traffic optimization, however, do not explicitly consider user application trends. Recent SDN traffic engineering designs either offer improvements for typical time-critical applications or focus on devising monitoring solutions aimed at measuring performance metrics of the respective services. The performance caveats of isolated service differentiation on the end users may be substantial considering the growth in Internet and network applications on offer and the resulting diversity in user activities. Application-level flow metering schemes therefore, fall short of fully exploiting the real-time network provisioning capability offered by SDN instead relying on rather static traffic control primitives frequent in legacy networking. For individual users, SDN may lead to substantial improvements if the framework allows operators to allocate resources while accounting for a user-centric mix of applications. This thesis explores the user traffic application trends in different network environments and proposes a novel user traffic profiling framework to aid the SDN control plane (controller) in accurately configuring network elements for a broad spectrum of users without impeding specific application requirements. This thesis starts with a critical review of existing traffic engineering solutions in SDN and highlights recent and ongoing work in network optimization studies. Predominant existing segregated application policy based controls in SDN do not consider the cost of isolated application gains on parallel SDN services and resulting consequence for users having varying application usage. Therefore, attention is given to investigating techniques which may capture the user behaviour for possible integration in SDN traffic controls. To this end, profiling of user application traffic trends is identified as a technique which may offer insight into the inherent diversity in user activities and offer possible incorporation in SDN based traffic engineering. A series of subsequent user traffic profiling studies are carried out in this regard employing network flow statistics collected from residential and enterprise network environments. Utilizing machine learning techniques including the prominent unsupervised k-means cluster analysis, user generated traffic flows are cluster analysed and the derived profiles in each networking environment are benchmarked for stability before integration in SDN control solutions. In parallel, a novel flow-based traffic classifier is designed to yield high accuracy in identifying user application flows and the traffic profiling mechanism is automated. The core functions of the novel user-centric traffic engineering solution are validated by the implementation of traffic profiling based SDN network control applications in residential, data center and campus based SDN environments. A series of simulations highlighting varying traffic conditions and profile based policy controls are designed and evaluated in each network setting using the traffic profiles derived from realistic environments to demonstrate the effectiveness of the traffic management solution. The overall network performance metrics per profile show substantive gains, proportional to operator defined user profile prioritization policies despite high traffic load conditions. The proposed user-centric SDN traffic engineering framework therefore, dynamically provisions data plane resources among different user traffic classes (profiles), capturing user behaviour to define and implement network policy controls, going beyond isolated application management

    Multicloud Resource Allocation:Cooperation, Optimization and Sharing

    Get PDF
    Nowadays our daily life is not only powered by water, electricity, gas and telephony but by "cloud" as well. Big cloud vendors such as Amazon, Microsoft and Google have built large-scale centralized data centers to achieve economies of scale, on-demand resource provisioning, high resource availability and elasticity. However, those massive data centers also bring about many other problems, e.g., bandwidth bottlenecks, privacy, security, huge energy consumption, legal and physical vulnerabilities. One of the possible solutions for those problems is to employ multicloud architectures. In this thesis, our work provides research contributions to multicloud resource allocation from three perspectives of cooperation, optimization and data sharing. We address the following problems in the multicloud: how resource providers cooperate in a multicloud, how to reduce information leakage in a multicloud storage system and how to share the big data in a cost-effective way. More specifically, we make the following contributions: Cooperation in the decentralized cloud. We propose a decentralized cloud model in which a group of SDCs can cooperate with each other to improve performance. Moreover, we design a general strategy function for SDCs to evaluate the performance of cooperation based on different dimensions of resource sharing. Through extensive simulations using a realistic data center model, we show that the strategies based on reciprocity are more effective than other strategies, e.g., those using prediction based on historical data. Our results show that the reciprocity-based strategy can thrive in a heterogeneous environment with competing strategies. Multicloud optimization on information leakage. In this work, we firstly study an important information leakage problem caused by unplanned data distribution in multicloud storage services. Then, we present StoreSim, an information leakage aware storage system in multicloud. StoreSim aims to store syntactically similar data on the same cloud, thereby minimizing the user's information leakage across multiple clouds. We design an approximate algorithm to efficiently generate similarity-preserving signatures for data chunks based on MinHash and Bloom filter, and also design a function to compute the information leakage based on these signatures. Next, we present an effective storage plan generation algorithm based on clustering for distributing data chunks with minimal information leakage across multiple clouds. Finally, we evaluate our scheme using two real datasets from Wikipedia and GitHub. We show that our scheme can reduce the information leakage by up to 60% compared to unplanned placement. Furthermore, our analysis in terms of system attackability demonstrates that our scheme makes attacks on information much more complex. Smart data sharing. Moving large amounts of distributed data into the cloud or from one cloud to another can incur high costs in both time and bandwidth. The optimization on data sharing in the multicloud can be conducted from two different angles: inter-cloud scheduling and intra-cloud optimization. We first present CoShare, a P2P inspired decentralized cost effective sharing system for data replication to optimize network transfer among small data centers. Then we propose a data summarization method to reduce the total size of dataset, thereby reducing network transfer

    Crowd-powered systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 217-237).Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor computation could support alone. Unfortunately, crowd work is error-prone and slow, making it difficult to incorporate crowds as first-order building blocks in software systems. I introduce computational techniques that decompose complex tasks into simpler, verifiable steps to improve quality, and optimize work to return results in seconds. These techniques develop crowdsourcing as a platform so that it is reliable and responsive enough to be used in interactive systems. This thesis develops these ideas through a series of crowd-powered systems. The first, Soylent, is a word processor that uses paid micro-contributions to aid writing tasks such as text shortening and proofreading. Using Soylent is like having access to an entire editorial staff as you write. The second system, Adrenaline, is a camera that uses crowds to help amateur photographers capture the exact right moment for a photo. It finds the best smile and catches subjects in mid-air jumps, all in realtime. Moving beyond generic knowledge and paid crowds, I introduce techniques to motivate a social network that has specific expertise, and techniques to data mine crowd activity traces in support of a large number of uncommon user goals. These systems point to a future where social and crowd intelligence are central elements of interaction, software, and computation.by Michael Scott Bernstein.Ph.D

    Culture of Communication in The Space of Co-Working Newsrooom of Online Media

    Get PDF
    Technology has driven a change in the mainstream media editorial room towards the digital newsroom. Media that develops models of editorial space integrated with digital platforms has been widely practiced. Including, designing a newsroom work place to support the performance needed by media companies that are adaptive to change. The newsroom or editorial room no longer uses a cubical arrangement, but rather a shared work space. This research uses a constructionist paradigm according to a qualitative research approach with a phenomenological method. The results showed that the co-working space newsroom accelerated the coordination for the production of �breaking news�. Communication in the newsroom becomes without bureaucracy, consequently it becomes free of structure and a cross levels. The implication is that the newsroom culture of the co-working space becomes more flexible and fast in collaboration with fellow journalists and writers to raise the latest news issues. Another implication is that the newsroom supports the creative ideas of media actors

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities
    corecore