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Summary

Geographic Information System (GIS) applications now increasingly make use

of geo-located multimedia data such as images and videos. Furthermore, the

widespread use of smartphones (and increasingly tablets) and the rapid improvement

of hardware has enabled the acquisition of high-de�nition user-generated videos that

are annotated with geo-properties. The sensor meta-data (e.g., GPS and digital

compass values), which associate a continuous stream of location and viewing di-

rection information with the collected videos, are considerably smaller in size than

the visual content and are helpful in e�ectively and e�ciently manage and search

through large repositories of videos.

In this thesis, the properties of these meta-data are studied and utilized them to

manage geo-tagged videos. The �rst part of my work centers on building an index

structure for these meta-data so that the videos can be quickly accessed. A multi-

level grid-based index structure is proposed and a number of related query types,

including typical spatial queries and queries based on a bounded radius and viewing

direction restrictions, are introduced. These two criteria are important in many

video applications and we demonstrate the importance with real-world datasets.

Moreover, experimental results on a large-scale synthetic dataset show that my ap-

proach can provide signi�cant speed improvements of at least 30%, considering a

mix of queries, compared with a multi-dimensional R-tree implementation. How-

ever, a major practical issue is the noisy nature of such sensor data. For example,

due to sensor data inaccuracies the visual coverage described by the meta-data may

not exactly match the actual video scene, which leads to imprecise search results and

positional disagreements on map overlays. Obstructions between the camera and its

captured objects make these situations worse. Therefore, robust error-tolerance is an

essential feature of any geo-tagged video search application. To this end I introduce

a modeling and indexing approach for uncertain geo-tagged videos as my second

work. An uncertainty model for video frames and segments is constructed. Since

i
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the frame-by-frame uncertainty model involves high computational complexity, we

then propose an approximate modeling method based on a video segmentation al-

gorithm which eliminates costly overlap calculations between the query region and

individual frames. Finally, the performance of the proposed method is tested with

both a real-world and a large-scale synthetic dataset. Experimental results show

that the proposed method achieves high recall and good scalability and allows for

the e�cient querying of noisy sensor data. The proposed approach also returns con-

�dence probabilities with the results which can then be bene�cially used in upstream

GIS applications. My third work is the design of a dynamic scheduling algorithm

for video transcoding in the context of Dynamic Adaptive Streaming over HTTP

(referred as DASH) in a cloud environment. In order to support live or near-live

streaming of media content and to provide a satisfactory user experience, the overall

video transcoding completion time should be minimized. We �rst model the estima-

tion of the video transcoding time (referred to as V TT ) with respect to the video

duration based on statistics and probability theory. The scheduler keeps monitoring

the speed of each processor by comparing the estimated V TT and measured V TT .

The scheduler then distributes jobs to free processors when they are not urgent, but

to the fastest processors if video viewing requests are pending. It can dynamically

optimize the video transcoding mode when the number of processors is insu�cient

to support all video viewing requests. The experimental results show that the pro-

posed scheduler can support near-live streaming while balancing the workload and

providing smooth and seamless playback. Finally, the sensor meta-data associated

with videos can be used in displaying the geo-properties of videos to end-users.

ii
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Chapter 1

Introduction

1.1 Background and Motivation

Recent developments in video recording technology have enabled user-generated

video (UGV) production on a daily basis. For example, smartphones (and increas-

ingly tablets), which are carried by users all the time, have become extremely pop-

ular for capturing and sharing online videos due to their convenience, enhanced

quality of images and wireless connectivity. YouTube [YouTube 2013] has indi-

cated that by the end of 2013, over six billion hours of videos were watched each

month and 100 hours of video were uploaded every minute. 40% of global YouTube

views come from mobile devices. According to another study from Cisco Systems,

Inc. [Cisco 2014], the overall mobile data tra�c reached 1.5 Exabytes per month at

the end of 2013, 69.1% of which was by mobile video. It is forecast that mobile

video tra�c will grow at a Compound Annual Growth Rate (CAGR) of 61 percent

between 2013 and 2018 and reach 15.9 Exabytes per month by 2018. The statistics

of the mobile data tra�c in 2013 and the forecast for the following �ve years are

shown in Figure 1.1.

The multimedia community nowadays has increasing interest in GIS applica-

tions, e.g., Flickr1 and Panoramio2 allow users to upload images and videos with

attached geo-locations of the cameras. Furthermore, embedded sensors (e.g., GPS

and compass units) have been cost-e�ciently deployed on mobile devices. Conse-

quently, some very useful meta-data of videos, especially geographical properties of
1http://www.�ickr.com/
2http://www.panoramio.com/
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Figure 1.1: Statistics from Cisco Systems, Inc., of the mobile data tra�c in 2013
and the prediction by 2018 [Cisco 2014].

video scenes, can easily be collected during video capturing. This association of

video scenes and their geographic meta-data has led to interesting research topics

in the multimedia community. For instance, the recorded sensor meta-data can be

utilized to aid in modeling, indexing and searching of geo-tagged videos at the high

semantic level preferred by humans. Figure 1.2 illustrates the overall architecture

of our geo-tagged video management system. Mobile users can collect the associ-

ated sensor meta-data during video recording with special recording apps and then

upload the videos as well as the meta-data to a remote hosting system through a

wireless network. The remote hosting system (e.g., the system can be hosted on

a single server or in a cloud hosting environment), provides di�erent services for

managing geo-tagged videos and hosts a web interface for end-users to access videos

by posing queries through a map application. When streaming to mobile clients, the

Dynamic Adaptive Streaming over HTTP (DASH) standard, which supports adap-

tive streaming and overcomes the disadvantages of progressive download, is used for

high quality streaming of media content based on the network conditions.

Some prior research approaches [Arslan Ay 2008, Liu 2005] have modeled the

coverage region (i.e., �eld of view) of video frames as a pie-shaped geometric area

described by the sensor meta-data, such as the camera location, viewing direction

and visible distance. This approach treats the visual content of a video as a series

2
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Figure 1.2: The overview of the geo-tagged video management system. The topics
discussed in this thesis are shown in bold.

of spatial objects. Compared to visual content, the meta-data occupies much less

space, which makes searching through large quantities of videos practical. Conse-

quently, the challenging video search problem is transformed into a known spatial

data selection problem. The objective is then to index the spatial objects and to

search videos based on their geographic properties. Existing spatial data indexing

methods always treat the spatial data as a point or a small volume object. However,

the geo-coverage region of a video frame is large and hence these methods are not

appropriate. Moreover, the overlap region among consecutive frames is also large,

which drives indexing video segments instead of single frames become a challenging

problem, since too much overlap might deteriorate the query performance due to

duplicate calculation. To this end, we have implemented a multi-level grid-based in-

dex structure to support quick searching among large-scale geo-tagged videos, which

is detailed in Chapter 3.

Utilizing the geo-properties of visual content can improve the e�ectiveness and

e�ciency of searching through geo-tagged videos. However, an important practical

3
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aspect is often neglected in existing solutions: the noisy nature of sensor data. It

has long been known (and many users have had �rst-hand experience) that sen-

sors, especially on consumer-grade electronics, produce sometimes inaccurate and

�uctuating values. The surrounding environment can exacerbate this problem. For

example, tall buildings and narrow passageways in urban areas can lead to very

di�cult conditions for obtaining accurate GPS positions [Martin 2006]. Typically

alignment errors, non-orthogonal errors and magnetic deviations can a�ect the dig-

ital compass heading accuracy. Moreover, obstructions (such as buildings, people

or vehicles passing by) in front of a camera may in parts of a scene result in the

recording of objects far away (e.g., 1,500 m) while only close objects in other parts

within the same frame. The latter e�ects in�uence the captured video scene, but not

the measured sensor data. The above described issues lead to a mismatch between

the viewable scenes of the visual content and the area represented by the sensor

data. Rather than trying to completely avoid or correct such issues (which may be

di�cult or impossible), a well-known approach in the information management com-

munity is to design methods that can handle uncertain data. The uncertainty region

of the FOV model is a�ected by multiple factors (i.e., sensor accuracy, obstacles)

and this makes the uncertain modeling of FOV complex. As stated in the previous

paragraph, current research only deal with small objects but not large geo-coverage

region. Considering the large uncertainty region of the FOV and the overlap among

FOVs, the probability calculation is computational expensive. Therefore, model-

ing the uncertainty region of the FOV and hence video segment, with light-weight

calculation is a challenging problem. In order to overcome the shortcomings of the

existing works, modeling the uncertainty of the sensor meta-data are introduced and

the details are presented in Chapter 4.

Building an index structure and handling uncertain data, which we have imple-

mented in our system, is helpful in managing and searching for geo-tagged videos.

Furthermore, the �nal goal of a geo-tagged video search application is to display

4
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videos to end-users. During the video streaming, both resulting videos and meta-

data are delivered to mobile clients for di�erent purposes, i.e., the meta-data are

used to display the geographical information of each video frame on the map during

video playback. The rapid development of smartphones and 3G/WiFi networks in

recent years has enabled video streaming over wireless networks to account for an

increasing portion of the global data tra�c. However, the unstable conditions of

wireless networks (e.g., connection failures, bandwidth variations, etc.), may result

in an unacceptable user experience and bandwidth waste with conventional media

streaming protocols, such as the Real-time Transport Protocol (RTP) and the Real-

Time Streaming Protocol (RTSP) [Ma 2011]. Dynamic Adaptive Streaming over

HTTP (DASH) is known as a video delivery standard which enables high quality

streaming of media content over HTTP. The visual content is encoded at a variety

of di�erent bitrates and the HTTP-client can automatically select the segment from

the alternatives to download and play back based on the current network conditions.

In our current implementation of a mobile DASH video recorder, the mobile device

partitions the captured video �le into a sequence of playable video segments where

each segment contains a short playback interval of the content data. The task of

transcoding media content to di�erent qualities and bitrates is computationally ex-

pensive, especially in the context of large-scale video hosting systems. Therefore, it

is preferably executed in a powerful cloud environment, rather than on a consumer-

grade computer, due to the heavy workload. In order to support live or near-live

streaming, the video processing latency needs to be minimized. To the best of our

knowledge, there exists research on cloud-based video transcoders that are designed

for processing batch tasks but none of them support live or near-live transcoding,

especially when the video is under a viewing request before the required bitrate is

ready for streaming and hence this video needs to be encoded urgently. To this end,

we have designed a dynamic scheduling algorithm on video transcoding for DASH

in a cloud environment, which is detailed in Chapter 5.

5
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1.2 Overview

As illustrated in Figure 1.2, a geo-tagged video management system covers several

di�erent research topics. Some research has considered video uploading strategies

based on the DASH standard [Seo 2012] or aiming at saving battery life of mobile

devices that upload videos and the associated meta-data [Hao 2011]; while others

have focused on the video and meta-data management from a remote hosting sys-

tem. For example, Zhang et al. [Zhang 2013] proposed a multi-video summarization

methodology based on the sensor meta-data. Wang et al. [Wang 2012] presented an

automatic way to correct GPS data collected during video recording. In this thesis,

three tasks of managing geo-tagged videos in a remote hosting system are presented.

We have analyzed each particular problem and proposed a data model to provide

a solution. Experimental results have shown the e�ectiveness and e�ciency of the

proposed methodologies. The contributions of each work are listed below:

Geo-tagged video index. We transform the video search problem into a spatial

data selection problem. We then propose a multi-level grid-based index structure to

help indexing and quickly search through geo-tagged videos. Moreover, a number

of related query types, including typical spatial queries and queries with a radius

or direction restriction, are introduced. This work has been published in the SIM3

2012 [Ma 2012a] workshop and the GeoInformatica [Ma 2013] journal.

Uncertain geo-tagged video management. To address the mismatch between

the viewable scenes of video content and the area represented by the sensor data, We

have designed an uncertain data model for both individual video frames and video

segments. A video segmentation method is also presented and the parsed segments

are indexed with an extended R-tree. This work has been published in the GIS

2012 [Ma 2012b] conference.

6
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Scheduling on video transcoding on the cloud. In order to support live

or near-live streaming to mobile devices from a remote hosting system, we have

designed a video transcoding scheduling methodology for DASH in a cloud environ-

ment. We �rst model the estimation of the video transcoding time (V TT ) based on

the video duration. Then, the scheduling algorithm is designed based on the V TT

estimation. This work has been published in the MMSys 2014 [Ma 2014] conference.

1.3 Roadmap

The rest of this thesis is organized as follows. Chapter 2 introduces the preliminaries

of my research, the dataset used for all the work and summarizes the related topics.

Chapter 3 details the multi-level grid-based index structure. In Chapter 4, we

demonstrate the uncertain model for both individual frames and video segments.

Chapter 5 presents the scheduling strategies on video transcoding for DASH in

the cloud environment. Finally, Chapter 6 concludes the thesis and proposes the

potential future work.
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Chapter 2

Related Work and Preliminaries

2.1 Related Work

My research on the geo-tagged video management covers three aspects: video storage

and index based on meta-data, uncertain meta-data modeling, and scheduling on

video transcoding for DASH in the cloud environment. Figure 2.1 illustrates the

topics related to my research. In the following paragraphs, the research related to

these three works are presented in detail.

2.1.1 Video Storage and Index

People may capture di�erent places of interest (POI) within the same video but

users may only be interested in the parts of the video that show a speci�c place.

Therefore, parsing the video into segments to extract a speci�c place is essential

for geo-relevant applications. Section 2.1.1.1 introduces the content-based methods

on video segmentation and indexing. Section 2.1.1.2 introduces the research on the

association of sensor information and the visual contents. Section 2.1.1.3 explores

the related works on spatial data management.

2.1.1.1 Content-based Methods on Video Segmentation and Index

The aim of video segmentation is usually achieved using content-based meth-

ods. When a video is uploaded the server, it will be divided into elementary

shots. A shot is de�ned as the consecutive frames from the start to the end

of recording in a camera. It shows a continuous action in an image sequence.
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Figure 2.1: Topics related to my research.

The shot detection approaches are always used for video segmentation. Gao et

al. [Gao 2005] described a technique for video shot boundary detection using

rough fuzzy set. They classi�ed twelve low-level features into �ve di�erent types

and used them to achieve high accuracy for shot boundary detection. Boreczky

and Lynn [Boreczky 1998] proposed a video segmentation method using Hidden

Markov Model (HMM) by considering both the visual and audio factors. Zhai

and Shah [Zhai 2006] utilized Markov Chain Monte Carlo to determine the bound-

aries between video scenes. Cermekova et al. [Cernekova 2006] introduced a method

on the detection of gradual transitions such as dissolves and wipes, which are the

most di�cult to be detected by using graph partitioning. Other research par-

tition video into segments based on the spatio-temporal factors. Sundaram and

Chang [Sundaram 2000] partitioned the video by using both video and audio fea-

tures. Lezama et al. [Lezama 2011] proposed an e�cient spatio-temporal video

segmentation algorithm that incorporates long-range motion cues from both the

past and the future frames, considering clusters of point tracks with coherent mo-

tion. Existing studies [Grundmann 2010, Xu 2012, Budvytis 2011] used di�erent

hierarchical graph-based models to achieve video segmentation targets. The cur-

rent research on video indexing includes high dimensional indexing and semantic

10
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indexing. The high dimensional indexing extracts features from the video segment

and uses these features to process similarity comparison, while semantic indexing

builds up the connection between the visual content and the semantics by video data

mining, classi�cation and annotation [Hu 2011]. The video clustering and indexing

methods used are also based on the visual content. Ngo et al. [Ngo 2003] proposed a

two-level hierarchical clustering structure to organize the content of sport videos: the

top level is clustered by color feature while the bottom level is clustered by motion

feature. The video indexing approaches always use the following key image process-

ing algorithms: camera motion estimation and compensation, object segmentation

and tracking techniques, and line detection. Akrami and Zargari [Akrami 2013] pro-

posed a compressed domain video indexing method. It is based on the position of

the blocks which are used for motion compensation in the coded video.

Summary: The content-based video indexing method is very helpful for under-

standing videos: content and semantics. The queries are always processed by feature

similarity comparison between the input example and that in video database. The

similarity comparison in high dimensional data is always time consuming, due to

the heavy computational workload. Therefore, the content-based method is not ap-

propriate for real-time application, especially geographical based video applications.

2.1.1.2 Associating Sensor Information with Videos

Associating geo-location and camera orientation information for video retrieval

has become an active topic. Research [Zhu 2005, O'Connor 2008, Crandall 2009,

Larson 2011] associating geographic information always help on video and image

applications. Flickr1 and Panoramio2 enable users to upload their photos, associ-

ating the cameras' geo-location, and share with others. Hwang et al. [Hwang 2003]

and Kim et al. [Kim 2003] proposed a mapping between the 3D world and the videos

by linking the objects to the video frames in which they appear. Their work used

1http://www.�ickr.com/groups/geotagging
2http://www.panoramio.com
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GPS location and camera orientation to build links between video frames and world

objects. Ja�e et al. [Ja�e 2006] proposed an automatic organization of digital pho-

tographs with geographic coordinates. They grouped the photos into hierarchies

of location and time-based events. Luo et al. [Luo 2010] used GPS and images to

estimate the camera's pose during capturing. Epshtein et al. [Epshtein 2007] intro-

duced a hierarchical photo organization using geo-relevance. This method takes into

account not only where the photos were taken but also the camera direction and

the �eld of view. Liu et al. [Liu 2005] presented a sensor enhanced video annotation

system (referred to as SEVA) which enables searching videos for the appearance

of particular objects. SEVA serves as a good example to show how a sensor-rich

environment can support interesting applications. However, it does not propose

a broadly applicable approach to geo-spatially annotate videos for e�ective video

search. Other than GPS and compass, sensors such as accelerometer, gyro, iner-

tial sensor can also be used in video management. Pettersen et al. [Pettersen 2014]

tracked the soccer players in Norway soccer league with ZXY system and processed

queries based on player, region in the soccer �led and etc. The ZXY system includes

sensors such as signal-based positioning sensors, accelerometers, gyros, compass,

heart-rate sensor. Rowlands et al. [Rowlands 2012] used inertial sensors to detect

event in sports and to build video indexing.

Navarrete and Blat [Navarrete 2002] utilized geographic information to segment

and index video. Kim et al. [Kim 2010] proposed a vector-based approximation

model to e�ciently index and search videos based on the FOV (short for cam-

era �eld-of-view) model3. It mapped an FOV to two individual points in two 2D

subspaces using a space transformation. This model works well on supporting the

geo-spatial video query features, such as point query with direction and bounded

distance between the query point and camera position. However, it does not in-

3The FOV model is used to represent the camera viewable scene [Arslan Ay 2008]. The FOV
coverage is with a pie-slice shape in 2D space and modeled with four parameters: camera location,
camera viewing direction vector, camera viewable angle, and camera maximum visible distance.
The detail on the FOV model is presented in Section 2.2.1.
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vestigate query optimization issues. Vector model works e�ectively for basic query

types, such as point and range query, however does not support the k-NVS query.

Moreover, there was no consideration in scalability.

Summary: These research build the connection between the visual content and

their corresponding geo-properties. In our geo-tagged video search applications,

the individual frames and video segments are hence treated as spatial data during

storage and indexing.

2.1.1.3 Meta-data Assisted Management

In this section, we explore the existing methodologies on spatial data indexing and

moving objects indexing.

Spatial data indexing. There exist two categories of spatial data indexing meth-

ods: data-driven structures and space-driven structures [Rigaux 2001]. The R-

tree family (including R-tree [Guttman 1984], R+-tree [Roussopoulos 1987], R∗-

tree [Beckmann 1990] and their variations) belongs to the �rst fold and is the most

widely used multidimensional spatial data indexing structure. The space occupied

by the objects are propagated up the hierarchy, with the identities of the objects

being implicit to the presentation. Guttman [Guttman 1984] proposed the R-tree,

which is a dynamic tree data structure, as an extension of the ubiquitous B-tree

in multi-dimensional space, for spatial data indexing. Each node in the R-tree is

represented as a bounding rectangle. To access a node of the indexed collection,

one typically follows a path from the root down to one or several leaves, testing

each bounding rectangle at each level for either containment or overlap. R+-tree

allows partitions to split rectangles then zero overlap among intermediate node en-

tries can be achieved. Both R-tree and R+-tree are nondeterministic in allocating

the entries on the nodes while R∗-tree is on the contrary. R∗-tree utilizes the idea of

`forced-reinsert' by deleting some rectangles from the over�owing node, and reinsert-

ing them. Recently, Beckmann and Seeger [Beckmann 2009] presented the Revised

13
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R∗-tree (RR∗-tree) by redesigning the algorithm ChooseSubtree, so that irrelevant

entries, which are not able to host the new object, are pruned. The variations of

the R-tree family is broadly used among di�erent application areas (e.g., spatio-

temporal databases, multimedia, warehousing and data mining). Nanopoulos et

al. [Nanopoulos 2006] explored di�erent variations of R-tree for di�erent applica-

tions in their book. For example, the Hilbert-R-tree [Kamel 1994, Wang 2013] used

for spatial data indexing is another kind of R-tree that acts as a B+-tree when

objects are inserted. The position of the inserted rectangle is chosen based on the

Hilbert value of the center of the rectangle. GeoTree [Kim 2014] is used to index

the FOV model by building and rotating the minimum bounding rectangle (MBR)

of a series of consecutive FOVs and indexed the MBRs in R-tree. However, their

work is based on the assumption that the camera's orientation does not change

frequently. Besides, there also exist other structures that belong to space-driven

structures, e.g., M-tree [Ciaccia 1997], X-tree [Berchtold 2001], and etc.

Summary: These methods are designed mainly for supporting e�cient query

processing when the construction and the maintenance of the data structure is com-

putationally expensive. Moreover, although these structures can support for special

query types, such as queries with direction restriction or bounded radius, they are

not that e�cient.

The second fold includes methods such as the grid �le [Nievergelt 1984],

quadtree [Finkel 1974], k-d tree [Bentley 1975], octree [Meagher 1982] and Voronoi

diagram [Okabe 2000]. These structures partition the metric space in di�erent re-

gions following speci�c roles. The grid-based method partitions the space from

which the data is drawn into rectangular cells by overlaying it with a grid. The

grid can be with either equal size or the line of the grid be drawn at arbitrary po-

sitions that are dependent on the underlying data. For example, the grid �le uses

the �xed cell size while quadtree and k-d tree merge the spatially adjacent empty

grid cells into larger ones. The original design of quadtree or k-d tree becomes
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impractical when the data volume becomes very large. Thus, the variations (e.g., k-

d-B tree [Robinson 1981], Local Split Decision tree (LSD-tree) [Henrich 1989], hB-

tree [Lomet 1990, Evangelidis 1997]), referred as bucket methods [Samet 2006], were

developed for accessing large scale of data by treating each disk page containing

objects as a leaf node of the tree. The Voronoi diagram divides the space into a

number of regions with respect to a �nite set of points (referred as representative

point), and each region contains one representative point. Every point within a

Voronoi region is closer to its corresponding representative point than others. The

index structure using Vonoroi diagram keeps safety region for each object so as to

quickly process kNN query. The k-d tree are recently widely used in GPU-based

parallel processing [Santos 2012, Liu 2012, Gieseke 2014]. Researches also use ei-

ther the grid structure [Chon 2003], the skip quadtree [Eppstein 2005], Voronoi dia-

gram [Nutanong 2008], or DP-tree [Peng 2012] to process multiple types of queries.

Summary: These data structures consider spatial objects as points or small

rectangles, and none of them are appropriate to index our FOV model. The reason

is that the FOV model has a large coverage region and consecutive FOVs have

large overlap region. This results in the di�culty in partitioning the space while

guaranteeing each FOV only belongs to one cell without cell overlapping.

Moving objects indexing. Besides indexing multi-dimensional spatial objects,

indexing moving objects is another active and important topic on spatial data man-

agement. Ilarri et al. [Ilarri 2010] presented a detailed survey on indexing moving

objects. Indexing moving objects can be divided into three main categories: in-

dexing historical, current and future locations of spatial objects. Several meth-

ods have been proposed to index historical locations of spatial objects and ex-

pected trajectories [Faria 2002, Hadjieleftheriou 2002, Pfoser 2000, Agarwal 2003,

Hadjieleftheriou 2006]. Speci�cations and framework for e�cient indexing in spatio-

temporal databases can be found in [Theodoridis 2002] and [Faria 2002] respec-

tively. In particular, the work in [Pfoser 2000] proposes a B-tree based scheme,
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TB-tree, that strictly preserves trajectories, i.e., leaf nodes in the index contain

segments belonging to one trajectory. More works have focused on indexing tech-

niques that can facilitate queries on current and future positions of points. Some

research are only focus on indexing the current positions of moving objects, for

example, hashing [Song 2001], the LUGrid [Xiong 2006], the RP-tree [Lin 2006],

the RR-tree [Biveinis 2007]. The HTPR∗-tree [Fang 2012] utilized the parameter-

ized R-tree structure and considered the historical property of the moving objects.

Samet et al. [Samet 2013] introduced the moving objects indexing methods by us-

ing the loose quadtree. This work deals with objects with large geographic coverage

instead of point objects. Other structures consider both current and future posi-

tions of the moving objects. The time-parametric tree (TPR-tree) [�altenis 2000]

is an R-tree based index where the location of a moving point is represented by a

reference position and a corresponding velocity vector. The following three algo-

rithms convert the spatial and temporal data into only one dimension and there-

fore build an B+-tree based indexing structure: Jensen et al. [Jensen 2004] use

Bx-tree to e�ciently index moving objects, which is constituted of a B+-tree with

space-�lling curves, i.e., Peano curve (Z-curve) and Hilbert curve (H-curve); Chen et

al. [Chen 2008] introduce the structure and basic query algorithm of the ST 2B-tree.

It introduces a self-tuning framework for tuning the performance of the Bx-tree while

dealing with data skew in space and data change with time. Yiu et al. [Yiu 2008]

proposed the Bdual-tree that converted moving objects into a 2d-dimensional dual

space, which contains d location dimensions and d velocity dimensions. Each do-

main is then ful�lled with Hilbert curve. Finally, the BBx-index [Lin 2005] and

the RPPF -tree [Pelanis 2006] were introduced to index the historical, current, and

future positions of moving objects.

Summary: The ideas in dealing with moving objects are useful for building up

index of video segments based on the consideration of temporal domain. However,

they only consider the spatiotemporal property of the moving objects but nothing
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related to the visibility of the video content, which is the main task of the geo-tagged

video management.

2.1.2 Uncertain Data Modelling

Since the meta-data are used to help indexing and searching for geo-tagged

videos, the uncertainty of the sensor data a�ects the search results. There ex-

ist two categories of techniques for indexing uncertain data with arbitrary prob-

ability density functions (PDF). The �rst type is based on probabilistically con-

strained regions (PCRs) [Chen 2007, Tao 2007, Cheng 2004b, Angiulli 2012]. It

uses a so-called �x-bound� to restrict the probability of a region so that candi-

dates can be pruned when processing probabilistic constrained queries. In par-

ticular, Cheng et al. [Cheng 2004b] cluster the data points with similar degrees

of uncertainty together. Tao et al. [Tao 2007] develope U-tree to minimize the

query (both fuzzy and non-fuzzy queries) overhead. The UP-index [Angiulli 2012]

is a pivot-based index structure supporting distance based range query, which

prunes large percentage of candidates with little time and speeds up the range

query computation. The second type is based on geometry-based index struc-

tures [Cheng 2004a, peter Kriegel 2006, Singh 2007]. More speci�cally, the uncer-

tain region of multidimensional uncertain objects is grouped with an R-tree, where

each data unit is the minimum bounding rectangle (MBR) of a PDF. One popu-

lar model for uncertainty is that, at any point in time, the location of the object is

within a certain distance, d, of its last reported position. The study in [Cheng 2004a]

utilized this model to evaluate the uncertainty of moving objects. Li et al. [Li 2007]

use R-tree as query �ltering schemes, and designed an optimized Gaussian mixture

hierarchy (OGMH) to index objects for both certain and uncertain queries. Böhm et

al. [Böhm 2006] propose a Gauss-Tree to probabilistic feature vectors, which is a R-

tree based structure but stores the parameter space of Gaussian PDF instead of

the spatial objects. Besides using the basic R-tree structure, Kim et al. [Kim 2007]
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attach a secondary index for fast access to the leaf nodes. Zhang et al. [Zhang 2010]

proposed UI-tree, which is a R-tree based inverted index structure, to support vari-

ous queries (e.g., range queries, similarity joins, continuous or discrete queries over

multidimensional uncertain objects). They also proposed the U-Quadtree Struc-

ture [Zhang 2012] that utilize quadtree to index the cells in the space and B+-tree

as a secondary index to entries within the same cell. Emrich et al. [Emrich 2012]

used a diamond shape and the �rst-order Markov Chain model to approximately

present the trajectory between two sampling points. The uncertain spatio-temporal

data are then indexed with UST-tree, which stores the MBR approximation, the

diamond approximation, the linear approximation functions, and the object ID in

the R-tree-based structure.

Summary: To the best of our knowledge, existing works only consider the

uncertainty of the location but none of them is related to any visual contents, which

are inappropriate to solve the problem on the mismatch between the visual contents

and the geographical regions represented by the sensor meta-data. The uncertainty

region of the FOV model is quite complex, so that it is necessary to design the

uncertain model for FOV and hence for video segment.

2.1.3 Video Transcoding Strategies in the Cloud Environment

2.1.3.1 Video Transcoding Services in the Cloud

There exist several cloud services that o�er video transcoding. Amazon released

their Elastic Transcoder [Amazon 2013] in January of 2013. It executes transcod-

ing jobs using Amazon's Elastic Compute Cloud (Amazon EC2)4 and stores the

video content in Amazon's Simple Storage Service (Amazon S3)5. Amazon's Elas-

tic Transcoder manages all aspects of the transcoding process transparently and

automatically. It also enables customers to process multiple �les in parallel and

organize their transcoding work�ow using a feature called transcoding pipelines.

4http://aws.amazon.com/ec2/
5http://aws.amazon.com/s3/
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Zencoder [Zencoder 2010] provides video transcoding services as well. In addition

to providing typical video transcoding services in the cloud, it also supports live

cloud video transcoding. EncoderCloud [EncoderCloud ] also provides the same

web-based �pay-as-you-go� service and helps to build applications on top of other

service providers (e.g., Amazon EC2 and RackSpaceCloud [Rackspace ]), but o�ers

a di�erent pricing policy � charging by the volume of the total amount of source

video transfered in and encoded video transfered out.

Summary: These services provide the capability of video transcoding in the

cloud, but the transcoding scheduling mechanism is transparent to end-users. A

batch of jobs are processed in the elastic cloud but no user interaction is considered,

which is not practical for online video hosting service.

2.1.3.2 Scheduling Strategies

There exist a few widely used scheduling algorithms and many operating systems

use extended or combinations of these algorithms.

• First In First Out (FIFO): FIFO is the simplest scheduling algorithm,

which simply queues the all the waiting jobs and processes them in the order

that they arrive in the queue.

• Shortest Job First (SJF): SJF enables the scheduler to assign the job,

whose estimated processing time is the shortest among all the waiting jobs, to

be processed in the �rst place.

• Round-Robin (RR): RR assigns a �xed processing time for each job in the

queue. If the processor cannot �nish the job in the current cycle, it gives

up and allocates the resource to another job and re-processes the current job

when the next cycle comes.

• Fixed Priority (FP): The priority of each job is pre-de�ned, and the sched-

uler will choose to process the job with highest priority �rst. When a coming
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job's priority is higher than the current processing job, the current processing

job gets interrupted. The processing will resume when the job with higher

priority is �nished.

• Multilevel Queue (MQ): MQ is hybrid scheduling algorithm by dividing

jobs into groups and each group has di�erent scheduling strategies.

For example, Windows NT/XP/Vista uses a multilevel feedback queue, a combina-

tion of �xed priority preemptive scheduling, round-robin, and �rst in �rst out. In

this system, processes can dynamically increase or decrease in priority depending on

if it has been serviced already, or if it has been waiting extensively. Every priority

level is represented by its own queue, with round-robin scheduling amongst the high

priority processes and FIFO among the lower ones. In this sense, response time is

short for most processes, and short but critical system processes get completed very

quickly. Since processes can only use one time unit of the round robin in the highest

priority queue, starvation can be a problem for longer high priority processes.

Cloud computing provides tremendous computing resources for applications but

there is no universal �best� scheduling algorithm. Instead, they are usually optimized

for certain applications. One study [Li 2012] introduces a parameter-tuning frame-

work by combining the bitrate and encoding speed as encoding cost and provides a

cost optimization method for video cloud transcoding. Li et al. [Li 2005] proposed

a parallel video encoding strategy considering a load balance factor. By consider-

ing the granularity of the load partitions and the associated overheads caused, they

utilized the divisible load theory paradigm to distribute the video frames among pro-

cessors. Zaharia et al. [Zaharia 2009] presented a fair job scheduling for Hadoop to

minimize the job response time. Kllapi et al. [Kllapi 2011] presented an optimiza-

tion of scheduling data�ows on these three aspects: minimizing completion time,

minimizing the monetary cost given a deadline, and �nding the trade-o� between

completion time and monetary cost.
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Summary: These approaches investigate neither the speci�c properties of

DASH6 (e.g., correlation between segments, alternative bitrates of uploaded seg-

ments) nor the interaction between the service hosts and the end-users. In order to

fully utilizing these computing resources in the cloud, an appropriate scheduling al-

gorithm for the speci�c application is essential. To the best of our knowledge, there

exists no work on scheduling video DASH transcoding for cloud environments, espe-

cially while untranscoded segments already have pending video watching requests.

2.2 Preliminaries

2.2.1 Modeling of Camera Viewable Scene

Figure 2.2: Illustration of the �eld-of-view (FOV) model in 2D space.

The camera viewable scene is what a camera in geo-space captures. This re-

gion is referred to as camera �eld-of-view (FOV in short) with the shape of a pie-

slice [Arslan Ay 2008]. The FOV coverage in 2D space can be de�ned with four

parameters: the camera location P , the camera viewing direction vector
−→
d , view-

able angle α, and maximum visible distance RV (see Figure 2.2). These geo-spatial

meta-data can be obtained from the embedded sensors during the video recording.

The location P of camera is the < latitude, longitude > coordinate reading from

a positioning device (e.g., GPS and/or Cricket coordinates [Priyantha 2000]). In
6Dynamic Adaptive Streaming over HTTP (DASH) can provide seamless, bitrate adaptive

streaming to clients. It works by breaking the content into a sequence of small HTTP-based �le
segments, and each segment containing a short interval of playback time.
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our current implementation, the value of P is collected from a GPS reader embed-

ded in the smartphones since we only collect outdoor data. The camera viewing

direction vector
−→
d is acquired from a digital compass, which also exists in most of

smartphones. We use θ to represent its value with respect to the North. The camera

viewable angle (α) is calculated based on the camera and lens properties for the cur-

rent zoom level [Graham 1965]. The visible distance RV is the maximum distance

at which a large object within the camera's FOV can be recognized. Then, the cam-

era viewable scene at time t is denoted by the tuple FOV (P ⟨lat, lng⟩ , θ, α,RV , t).

The detailed data acquisition and stream synchronization method is stated in Sec-

tion 2.2.3.1.

2.2.2 DASH Standard

2.2.2.1 HTTP Streaming Fundamentals

With the development of content delivery networks (CDN), Hypertext Transfer Pro-

tocol (HTTP) streaming has emerged as the de-facto streaming standard, replac-

ing the conventional streaming with the Real-Time Transport Protocol (RTP) and

Real-Time Streaming Protocol (RTSP). Existing streaming platforms such as Mi-

crosoft's Smooth Streaming (MSS) [Microsoft Corporation 2012], Apple's HTTP

Live Streaming (HLS) [Pantos 2012], and Adobe's HTTP Dynamic Streaming

(HDS) [Adobe System Inc ], all use HTTP streaming as their underlying delivery

method. The commonalities [Seo 2012] of these techniques are:

• They split an original encoded video �le into small pieces of self-contained

media segments,

• They separate the media description into a single playlist �le,

• They deliver segments over HTTP.

Among each other, these techniques di�er in the following way:
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• MSS is a compact and e�cient method for the real-time delivery of MP4 �les

from Microsoft's IIS web server, using a fragmented, MP4-inspired ISO Base

Media File Format (ISOBMFF),

• HLS uses an MPEG-2 Transport Stream (TS) as its delivery container format

and utilizes a higher segment duration than MSS,

• HDS is based on Adobe's MP4 fragment format (F4F) and its corresponding

XML-based proprietary manifest �le (F4M).

Once an HTTP client sends a request and establishes a connection between the

server and itself, a progressive media download is activated until the streaming is

terminated [Stockhammer 2011]. Disadvantages of a progressive download include:

• Unstable conditions of the network, especially a wireless connection for mobile

clients, may cause bandwidth waste due to reconnection or rebu�ering events,

• It does not support live streaming (e.g., concert or football match),

• It does not support adaptive bitrate streaming.

2.2.2.2 The DASH Standard

Published in April 2012, DASH [DAS 2012] addresses the above weaknesses of sim-

ple, progressive HTTP streaming. Figure 2.3 illustrates a simple streaming scenario

between an HTTP server and a DASH client. The visual content is then encoded

at a variety of di�erent bitrates and the HTTP-client can automatically select the

segment from the alternatives to download and play back based on current network

conditions. In our current implementation of the mobile DASH video recorder, the

mobile device breaks the captured video �le into a sequence of playable video seg-

ments and each segment contains a short interval of playback time of the content.

The client selects the segment with the highest possible bit rate that can be down-

loaded in time for smooth and seamless playback, without causing rebu�ering events.
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DASH standardizes the two most important components: the Media Presentation

Description (MPD) and the segment formats. MPD is a document that contains

metadata (e.g., a manifest of the available content, its various alternatives, their

URL addresses, and other characteristics) required by a DASH client to construct

appropriate HTTP-URLs to access Segments and to provide the streaming service

to the user. The Segment formats specify the formats of the entity body of the

request response when issuing a HTTP GET request or a partial HTTP GET with

the indicated byte range through HTTP/1.1. In order to support use with DASH, a

delivery format should have the property that decoding and playback of any portion

of the media can be achieved using a subset of the media which is only a constant

amount larger than the portion of the media to be played. To implement this func-

tionality, each media segment is assigned a unique URL, an index, and explicit or

implicit start time and duration. Each media segment contains at least one stream

access point, which is a random access or switch-to point in the media stream where

decoding can start using only data from that point forward. Both ISOBMMF and

MPEG-2 TS are supported in DASH.

Segment

Segment

Segment

Segment

HTTP ser ver DASH client

Medi a

player

HTTP client

MPD deliver y

HTTP l.l
Segment

Segment

Segment

Segment

 Media

Presentation

Description
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parser
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Control heuristics

Figure 2.3: Scope of the MPEG-DASH standard (red blocks in the �g-
ure) [Sodagar 2011].
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Table 2.1: The statistics of Dataset1 and Dataset2.

Parameters Values
Dataset1

# of videos 1,200
# of frames 138,774
Overall duration 38.55 hours
Longest video 18.45 minutes
Shortest video 3 seconds
Collecting manners walk or on bus

Dataset2

# of videos 247
# of frames 12,555
Overall duration 209.25 minutes
Longest video 10 minutes
Shortest video 1 seconds
Collecting manners walk

2.2.3 Datasets

All the experiments are processed on four datasets: two small sets of real-world

videos and sensor meta-data, one large synthetic dataset, and one testing video

uploading set. We used the �rst real-world dataset to show the functionality of the

proposed methodologies and the synthetic dataset to demonstrate the scalability

for large-scale applications. The last one is used to test the performance of the

scheduler by generating di�erent video streams.

2.2.3.1 Real-world Dataset

We collected 1200 geo-tagged videos within Singapore (Dataset1 ), and 247 videos

in Chicago (Dataset2 ), recording the event of the NATO Summit 2012 using smart-

phones (Android Devices and iPhone). The videos are collected in Singapore by

people either walking in the open space or taking a bus. Conversely, all the videos

collect in Chicago are by people walking in the street. The statistics on these two

datasets are listed in Table 2.1.
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Data Acquisition. Our group have made great e�ort on collecting the geo-tagged

videos with associated sensor data. Figure 2.4 shows the �rst generation of data

collection tool. The videos are recorded by the HD camera and the meta-data

are collected as the same time using GPS and digital compass. All these three

streams are directly written to the disk on the laptop. With the development of

the integrated hardware on mobile devices, we implement the second generation of

data collection tool on smartphones and tablets (shown in Figure 2.5). All videos

and the meta-data are directly store in the mobile devices, which is much easier

for users to carry than the �rst generation. One important observation is that

the di�erent sampling rates among di�erent devices (i.e., the video clip contains

about 25 or 30 frames per second, the digital compass can collect 40 samples per

second, while the GPS device can only get one location per second). Therefore, we

match the temporally closest location of the camera to the frame based on timecodes

and estimate the location at other timestamps through a positional interpolation

technique.

Pharos iGPS-500 Receiver

OceanServer OS5000-US Compass

JVC JY-HD10U camera

Figure 2.4: The �rst generation of the geo-tagged video collection tool.

26



2.2. PRELIMINARIES

(a) Main menu. (b) Recording menu.

Figure 2.5: The second generation of the geo-tagged video collection tool.

2.2.3.2 Synthetic Dataset

Due to the di�culty of collecting large set of real-world videos associating with

geographical meta-data (i.e., camera location and viewing direction), a synthetic

dataset (Dataset3 ) of moving cameras was used to test the performance of the

grid-based index structure with large-scale data. The dataset for moving camera tra-

jectories was generated with positions inside a 75km×75km region in the geo-space

using the Georeferenced Synthetic Meta-data Generator (GSMG) [Arslan Ay 2010].

The interface of the GSMG is shown in Figure 2.6. Users can set up all the param-

eters through the GUI and the statistics of the generated meta-data are displayed

on the right.

The generated synthetic meta-data exhibit equivalent characteristics to the real

world data. The camera's viewable angle is 60 ◦ and the maximum visible distance

is 250m [Arslan Ay 2008]. In the experiments, we chose 100 randomly-distributed

center points within the area and generate 5, 500 moving cameras around these

center points. Hence each one of the cameras is traced for 1, 000 seconds, with

snapshot of one frame per second, due to the sampling rate of GPS and the compass.

(Note that the digital compass can achieve 30 or 40 readings per second but GPS

can only get one sample per second. Thus, we only collect one snapshot per second.)

Therefore we have a dataset with about 5.4 million video frames. The center points

are randomly distributed in the experiment region, which are used as the initial

positions of the camera location. Subsequently, the cameras start to move inside
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Figure 2.6: The GUI of Georeferenced Synthetic Meta-data Generator.

the region under a maximum speed limit, as well as a viewing direction rotation

limit. The speed of the cameras, and the position of center points, a�ect the �nal

distribution of the frames. Faster movement causes the frames distributed uniformly

throughout the region in contrast to slower movement. To simulate real-world case,

we set the maximum speed of moving cameras as 60km/h, with the average speed

as 20km/h. Besides the speed limit, we also set the camera's maximum rotation

limit as 30 ◦ per second, which guarantees that the camera rotates smoothly and

not jump from one direction to another, the same as what people do when they are

capturing videos. With restriction to these limitations, unexpected data (e.g., the

object's speed is larger than the speed threshold, viewing direction rotates over the

rotation limit and etc.) are removed from the dataset. The parameters used are

summarized in Table 2.2 and the sampling trajectories of 100 moving cameras are

shown in Figure 2.7.
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Table 2.2: Parameters used when generating Dataset3.

Parameter Value
# of Center points 100

Speed Limit 60km/h
Average Speed 20km/h
Rotation Limit 30 ◦/s
# of Cameras 5500

# of Snapshots 1000

# of FOVs 5405051
viewable angle of FOV (α) 60 ◦

visible distance of FOV (RV ) 250m

Figure 2.7: The sampling trajectories generated for experiments.

2.2.3.3 DASH Dataset

To test the performance of the scheduler, two DASH datasets are applied: a synthetic

dataset (Dataset4 ) with generated video uploading traces and a real-world dataset

with video uploading trace (Dataset5 ).

Dataset4 contains 400 videos (collected from Android devices), which consists

of 20, 000 video segments. The number of segments in each individual video varies

from 10 to 197, which means that the video lengths varies from around 30 seconds

to 16 minutes.

Dataset5 includes nine uploaders submitting a total of 259 videos, which consist

of 4, 899 video segments. The length of these video segments varies from 0.1 to
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Table 2.3: The statistics of Dataset4 and Dataset5.

Parameters Values
Dataset4

# of videos 400
# of segments 20,000
Overall duration 23.94 hours
Longest video 16.4 minutes
Shortest video 30 seconds
Longest segment 6.5 seconds
Shortest segment 0.2 second

Dataset5

# of videos 259
# of segments 4,899
Overall duration 6.8 hours
Longest video 16.35 minutes
Shortest video 1 second
Longest segment 10 seconds
Shortest segment 0.1 second

10 seconds and the overall duration of the segments is around 6.8 hours. Most of

the segments are �ve seconds long, while about 2% of the segments have a longer

duration (e.g., 10 seconds), and 4% have a shorter duration. The statistics on

Dataset4 and Dataset5 is listed in Table 2.3.

2.2.4 Notations

All the notations used in this thesis are listed in Table 2.4.

Table 2.4: Notations used in this thesis.

Symbols Meanings

FOV model

P < lat, lng > Camera location with geo-coordinates

α Camera's viewable
−→
d Camera's direction vector

Continued on next page
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Table 2.4 � continued from previous page

Symbols Meanings

θ The angle between
−→
d and the North (0 ◦)

RV Camera's visible distance

t The time stamp of a video frame

Grid-based index structure

Cℓ1(m,n) The mth row and the n column of the �rst-level grid

Cℓ2(f, g) The fth row and the g column of the second-level grid

Cℓ3(β1, β2) The viewing direction of FOV between β1 and β2 of

the third-level grid

δ The grid size (in metres)

s The number of intervals divided in each �rst-level cell

M The row number of �rst-level cells exist in the space

N The column number of �rst-level cells exist in the space

x The value of degree intervals in the third-level cell

ε The value of the error margin when processing

directional queries

Video segment presentation

FOVvj (i) The ith frame from the set of FOV objects for video vj

FOV The set of all FOVs

V Svj (Sfr, Efr) The video segment with the starting frame Sfr and the

ending frame Efr

q The query point

qr The query rectangle

ϕ The overlap threshold between the qr and Cℓ1(m,n)

MINR The minimum bounded radius from the camera location to the

query input

Continued on next page
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Table 2.4 � continued from previous page

Symbols Meanings

MAXR The maximum bounded radius from the camera location to the

query input

The uncertain model of FOV

βε The angle o�set between the camera viewing direction and the

line of |Pq|

θε The value of compass error

d The distance between the camera and the targeted object

σ The Gaussian parameter used in measuring the uncertainty

of obstacles

dε The GPS error range

µ, ρ, σx, σy The Gaussian parameter used in measuring the uncertainty of

camera location

βb The boarder value of the direction domain

distb The boarder value of the distance domain

τ The probability threshold

δb The micro-block size

The scheduler

V TT The video transcoding time

V TJ The video transcoding job

dur(VBk
) The duration of video segment VBk

Terr The normalized error between the calculated V TT and measured V TT

Gk, Gθ The coe�cient of the Gamma distribution

Ls The startup latency of the V TJ

NQS The number of quality switches

NRE The number of rebu�ering events

Continued on next page
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Table 2.4 � continued from previous page

Symbols Meanings

Tmr The mean rebu�ering time

MOS Mean opinion score

LBF Load balance factor

Npro The number of processors in the cloud environment

Tpro(i) The overall processing time of processor i

JobBi
DL The deadline of the VTJ on VBi

Mup The video uploader

V TM The video transcoding manner

λ The mean inter-arrival time

Lva The video available latency

Bitr The targeted video bitrates

Nwr The request arrival rate
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Chapter 3

Multi-level Grid-based Index

3.1 Introduction

In the presence of a huge size video depository such as YouTube1, e�ectively and

e�ciently searching such a repository for meaningful results is still a challenging

problem. Current video search techniques that annotate videos based on the visual

content are struggling to achieve satisfactory results in online user-generated videos

(UGVs), particularly in accuracy and scalability. In this work, we utilized the cam-

era's FOV to convert the visual content into a series of spatial objects. Compared

to visual content, the meta-data occupies much less space, which makes searching

among large scale of videos practical.

For a practical implementation of search engine with a large amount of geo-

tagged videos and their associated geospatial meta-data, there remain some other

critical issues to be resolved. For example, the performance of searching sensor

meta-data should e�ciently handle large video depositories (such as YouTube).

The widely used index structure, i.e., R-tree [Guttman 1984] (and/or its vari-

ance [Roussopoulos 1987, Beckmann 1990]) has been the chosen structure to index

geometric �gures. However, its performance deteriorates as the number of �gures

indexed increases greatly. Assuming all videos in a huge depository are represented

using sensor meta-data, i.e., streams of geospatial objects, a R-tree may su�er sig-

ni�cantly to provide enough search performance due to its increased heights.

Furthermore, from the semantic perspective, in searching videos through their

1http://www.youtube.com
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geographic coverage, distance and direction are two important criteria that can

help to improve query functionality. For example, people are searching for a video

that records a large building (e.g., the Esplanade). Some would like to see the

panoramic view while others prefer to discover a speci�c part of the building. For

example, Figure 3.1 shows a group of images that are taken of the Esplanade at

di�erent distances away. In such application, searching videos based on distance

helps to accelerate the query processing and retrieve meaningful results to end-users.

However, due to the large geographical coverage region of the FOV, indexing FOVs

with a R-tree or its variations can only provide overlap calculation but not prune

any unnecessary search on-the-�y if the query is with distance restriction. Moreover,

searching for videos captured from a speci�c direction is helpful in applications such

as event reviews and video summaries. Another possible application can be to

automatically extract panoramic images of a building from a video and use these

images to construct the 3D model of the building. With the viewing direction

information of the camera, we can select the smallest number of images, which are

with complete coverage but least redundant details, to �nish the target. The R-

tree can support this query functionality by adding one more dimension, but its

performance will deteriorate due to the increasing searching dimension, as well as

the additional coverage computation.

The above drawbacks with the R-tree based structures on searching large-scale

geo-tagged videos raise the question that it is essential to develop a study of high

performance index structure which can e�ectively harness the captured geospatial

meta-data. An important observation is that the geo-space is bounded while the

number of videos is almost un-bounded. Based on this observation, we propose

a new multi-level grid-based index structure for geo-tagged video search by fully

utilizing their geographic properties. Speci�cally, this index structure is created to

allow e�cient access of FOVs based on their distance to the query location and

the cameras viewing direction. Based on these criteria, we introduce a number of
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Figure 3.1: The importance of querying with distance restriction. The images are
taken by people at di�erent distances away from the Esplanade. The images in the
�rst row show the whole theater while those in the second row show a speci�c part
of the Esplanade.

related query types which support better human perception of images in resulting

videos, including typical spatial queries (i.e., point queries, range queries, and kNN

queries) and the queries with bounded radius or direction restriction.

Among these, one of the unique query types proposed in this work is a Nearest

Video Segments query (k-NVS). This query retrieves the k closest video segments

that show a given query point. k-NVS query can signi�cantly enhance human per-

ception and decision in identifying requested video images, especially when search

results return a large number of videos in a highly populated area. Moreover, the

query can additionally specify a bounded radius range to get the closest video seg-

ments that show the query point from a distance within a given radius range. Al-

ternatively, the query may specify a certain viewing direction to speci�cally retrieve

the k closest segments that show the query point from that direction, which is criti-

cal in human perception of objects. An example application that can utilize k-NVS

is automatically building panoramic (360 degree) view of a point-of-interest (i.e., a

query point). The application needs to search for the nearest videos that look at
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the query point from di�erent viewing directions and that are within a certain dis-

tance from it. Similarly, k-NVS can serve as a useful feature for video browsing

applications. For example, on a map-based interface the videos that show impor-

tant landmarks from the users viewing point can be quickly retrieved as the user

navigates by issuing continuous k-NVS queries.

In the remaining sections of this work, we describe our geo-tagged video index-

ing and searching approach, and report on an extensive experimental study with

synthetic dataset. The results we have obtained illustrate that the three-level grid

index structure supports new geospatial video query features. It e�ciently scales

to large datasets and signi�cantly speeds up the query processing (compared to the

R-tree) for �nding the related video segments, especially for queries with direction.

The rest of this work is organized as follows. Section 3.2 details the proposed data

structure. Section 3.3 introduces the new query types and details the query pro-

cessing algorithms. Section 3.4 reports the results on the performance evaluations

of the proposed algorithms. Finally, Section 3.5 summarizes the work.

3.2 Grid Based Indexing of Camera Viewable Scenes

We present our design of the memory-based grid structure for indexing the coverage

area of each camera viewable scene. The proposed structure constructs a three-level

index, where the �rst level indexes the video FOVs according to location, the second

level indexes them based on the distance to the overlapping cell, and the third level

builds an index based on FOV viewing direction. That is, the FOV is indexed by

any �rst level cell if its coverage region overlaps with the cell. If the FOV overlaps

with the �rst-level cell, the distance between the camera location P and the center

of the �rst-level cell is then indexed in the second-level cell by which subcell P

locates. The proposed three-level index structure is illustrated in Figure 3.2. The

collections of cells at the �rst, second, and third level are denoted by Cℓ1, Cℓ2, and

Cℓ3, respectively. Note that, each level of the index structure stores only the ID
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numbers of the FOVs for the e�cient search of the video scenes. The actual FOV

meta-data (i.e., P , θ, α, RV and t values) are stored in a MySQL database where the

meta-data for a particular FOV can be e�ciently retrieved through its ID number.

Figure 3.3 illustrates the index construction with an example of a short video �le.

In Figure 3.3 (c), only the index entries for the example video �le are listed.

Figure 3.2: The three-level grid data structure.

The �rst level organizes the embedding geo-space, which covers all the regions

that geo-tagged videos are recording, as a uniform coarse grid. The space is parti-

tioned into a regular grid of M × N cells, where each grid cell is an δ × δ square

area, and δ is a system parameter that de�nes the cell size of the grid. A speci�c cell

in the �rst-level grid index is denoted by Cℓ1(row, column) (assuming the cells are

ordered from the bottom left corner of the space). The 2D geographical coverages of

the FOVs are indexed in this coarse grid structure. Speci�cally, FOVs are mapped

to the grid cells that overlap with their coverage areas and each grid cell maintains

the IDs of the overlapping FOVs. In Figure 3.3 (c), the set of FOVs that overlap

with the �rst-level cells are listed in the �rst table.

The second-level grid index organizes the overlapping FOVs at each �rst-level cell
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(a) First-level grid. (b) Second-level grid. (c) Index tables.

Figure 3.3: Illustration of grid-based index construction.

based on the distance between the FOV camera locations and the center of the cell.

To construct the second-level grid, each Cℓ1 cell is further divided into s×s subcells

of size
(
δ
s ×

δ
s

)
, where each subcell is denoted by Cℓ2(f, g) (see Figure 3.2). s is a

system parameter and de�nes how �ne the second-level grid index is. For each �rst

level grid cell Cℓ1(m,n), we maintain the range of the second-level subcells, covering

the region in and around Cℓ1(m,n) and containing all the FOVs that overlap with

the cell Cℓ1(m,n). In Figure 3.2, the shaded region at Cℓ2 shows the range of Cℓ2

subcells corresponding to the �rst-level cell Cℓ1(m,n). Note that the FOVs whose

camera locations are at most RV away from cell Cℓ1(m,n), will also be included

in that range. In the example shown in Figure 3.3 (b), the second-level range for

Cℓ1(m,n) includes all subcells Cℓ2(1, 1) through Cℓ2(8, 8). While the �rst-level cells

hold the list of the FOVs whose viewable scene areas overlap with the cell, the

second-level subcells hold the list of FOVs whose camera locations are within those

subcells. For example in Figure 3.3 (c), the second table lists the non-empty second-

level subcells and the set of FOV IDs assigned to them. In order to retrieve the FOVs

closest to a particular query point in the cell Cℓ1(m,n), �rst, the second-level cell

Cℓ2(f, g) where the query point resides is obtained, and then the FOV IDs in and

around subcell Cℓ2(f, g) are retrieved. The second-level index enables the e�cient

retrieval of closest FOVs in the execution of queries with bounded radius restriction,
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e.g., a k-NVS (k Nearest Video Segments) query.

The �rst- and second-level grid cells hold the location and distance information

only, therefore cannot fully utilize the collected sensor meta-data, such as direction.

Direction can be an important cue in retrieving the most relevant video results when

the videos showing the query location from a certain viewpoint are of higher interest.

To support the directional queries we construct a third-level in the index structure

that organizes the FOVs based on the viewing direction. The 360 ◦ angle is divided

into x ◦ intervals in clockwise direction, starting from the North (0 ◦). We assume

an error margin of ±ε◦ around the FOV orientation angle θ◦. Each FOV is assigned

to one or two of the view angle intervals with which its orientation angle margin

(θ◦±ε◦) overlaps. The value of ε can be customized based on the application. In

Figure 3.3 (c), the third table lists the third-level index entries for the example video

for x=45 ◦ and ε=15 ◦.

For a video collection with about 2.95 million FOVs, the index size for the three-

level index structure is measured as 1.9GB. As the dataset size gets larger the index

size grows linearly. For example, for datasets with 3.9 million and 5.4 million FOVs,

the index size is measured as 2.5GB and 3.3 GB, respectively. In our experiments

in Section 3.4, we report the results for a dataset of 5.4 million FOVs. Next we will

describe the query processing for various query types.

3.3 Query Processing

We represent the coverage of a video clip as a series of FOVs where each FOV cor-

responds to a spatial object. Therefore the problem of video search is transformed

into �nding the spatial objects in the database that satisfy the query conditions. In

searching video meta-data, unlike a conventional spatial query (i.e., typical point

queries, range queries and kNN queries), the query may enforce additional appli-

cation speci�c parameters. For example, it may search with a range restriction for

the distance of the camera location from the query point, which is interpreted as
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the query with bounded radius. Or the query may ask only for the videos that show

the query location from a certain viewpoint, then it may restrict the FOV direction

to a certain angle range around the speci�ed viewing direction, which is interpreted

as the query with direction. In this section we introduce several new spatial query

types for searching camera viewable scenes. We will formulate these query types in

Section 3.3.1. All the queries work at the FOV level. In Section 3.3.2 we will provide

the details about the query processing and present the algorithms of the proposed

queries.

3.3.1 Query De�nitions

Let FOVvj = {FOVvj (i), i = 1, 2, ..., n̂j} be the set of FOV objects for video vj

and let FOV={FOVvj , j = 1, 2, ..., m̂} be the set of all FOVs for a collection of m̂

videos. Given FOV, a query q returns a set of video segments
{
V Svj (Sfr, Efr)

}
,

where V Svj (Sfr, Efr)=
{
FOVvj (i), Sfr ≤ i ≤ Efr

}
is a segment of video vj which

includes all the FOVs between FOVvj (Sfr) and FOVvj (Efr), where i stands for

the ith frame, and <Sfr, Efr> denotes the starting and ending frame of a video

segment respectively.

De�nition 1 Point Query with Bounded Radius (PQ-R):

Given a query point q in geo-space and a radius range from MINR to MAXR,

the PQ-R query retrieves all video segments that overlap with q and whose camera

locations are at least MINR and at most MAXR away from q, i.e.,

PQ-R(q, MINR, MAXR) :

q × FOV→
{
V Svj (Sfr, Efr), where ∀j ∀i Sfr ≤ i ≤ Efr such that FOVvj (i) ∩ q ̸= ∅ ,

and MINR ≤ dist(P (FOVvj (i)), q) ≤MAXR

}
,

where P returns the camera location of an FOV and function dist used here

calculates the distance between P and q.
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De�nition 2 Point Query with Direction(PQ-D):

Given a query point q in geo-space and viewing direction β, the PQ-D query retrieves

all FOVs that overlap with q and that were taken when the camera was pointing

towards β with respect to the North. The PQ-D query exploits the camera's bearing

to retrieve the video frames that show the query point from a particular viewing

direction. Since slight variations in the viewing direction does not signi�cantly alter

the human perception, using only a precise direction value β may not be practical

in video search. Therefore a small angle margin ε around the query view direction

is introduced, and the query searches for the video segments whose directions are

between β − ε and β + ε.

PQ-D(q, β):

q × FOV→
{
V Svj (Sfr, Efr), where ∀j ∀i Sfr ≤ i ≤ Efr such that FOVvj (i) ∩ q ̸= ∅ ,

and β − ε ≤ D(FOVvj (i)) ≤ β + ε
}
,

where D returns an FOV's camera direction angle with respect to North.

De�nition 3 Range Query with Bounded Radius (RQ-R):

Given a rectangular region qr in geo-space and a radius range from MINR to

MAXR, the RQ-R query retrieves all video segments that overlap with qr and whose

camera locations are at leastMINR and at mostMAXR away from the border of qr.

RQ-R de�nition is very similar to PQ-R query, therefore we omit further details here.

De�nition 4 Range Query with Direction (RQ-D):

Given a rectangular region qr in geo-space and a viewing direction β, the RQ-D

query retrieves all video segments that overlap with region qr and that show it

with direction interval between β − ε and β + ε. We also omit the details for RQ-D

query, as the de�nition is similar to PQ-D query.

De�nition 5 k-Nearest Video Segments Query (k-NVS):
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Given a query point q in geo-space, the k-NVS query retrieves the closest k video

segments that show the query point q. The returned video segments are ordered

from closest to the farthest based on their distance to q.

k-NVS(q,k):

q × FOV→ {(V Svj (Sfr1, Efr1), .., V Svj (Sfrk, Efrk))

where ∀Sfrt, Efrt (t = 1, .., k),

and ∀j∀i Sfrt ≤ i ≤ Efrt, such that FOVvj (i) ∩ q ̸= ∅

dist(V Svj (Sfrt, Efrt), q) ≤ dist(V Svj (Sfrt+1, Efrt+1), q)
}
,

The function dist used here calculates the minimum distance between the camera

locations of a video segment and the query point.

De�nition 6 k-Nearest Video Segments Query with bounded Radius (k-NVS-R):

The k-NVS-R query is similar to the k-NVS and PQ-R queries. Given a query

point q in geo-space and a radius range from MINR to MAXR, the k-NVS-R

query retrieves the closest k video segments that show the query point q from a

distance between MINR to MAXR. Similar to the k-NVS query, the returned

video segments are ordered from the closest to the farthest based on their distance

to q.

De�nition 7 k-Nearest Video Segments Query with Direction (k-NVS-D):

The k-NVS-D query is also similar to the k-NVS and PQ-D queries. Given a query

point q in geo-space and a viewing direction β, the k-NVS-D query retrieves the

closest k video segments that show the query point q with the direction β.

3.3.2 Algorithm Design

The query processing is performed in two major steps. In the �rst step, the FOVs

(i.e., the video frames) that satisfy the query conditions in the set FOV are retrieved.
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The returned FOVs are grouped according to the video �les that they belong to.

And in the second step, the groups of adjacent FOVs from the same videos are post

processed to retrieve as the video segments in the query results. We argue that,

the length of the resulting video segments should be larger than a certain threshold

length for visual usefulness. For some query types, such as RQ-R and RQ-D queries,

the number of consecutive FOVs that match the query requirements is usually large

enough to form a reasonable length video segment, therefore this post processing

step is straightforward. However, for more restricted queries such as k-NVS query,

often the formed video segments may contain only a few FOVs. Therefore this post

processing step may add additional video frames to the video segments according

to the requirements of the search application.

Next we will further elaborate on these two major steps of the query processing.

In Section 3.3.2.1, we will describe the retrieval of the FOVs that match the query

requirements for each of the proposed query types. In Section 3.3.2.2, we will de-

scribe a simple approach for the post processing of the retrieved FOVs to form the

resulting video segments.

3.3.2.1 Query Processing: Retrieval of Matching FOVs

In this section, we will present the algorithms for processing the proposed query

types on our three-level grid structure. We will describe these query processing

procedures under three groups: Point query (PQ-R and PQ-D), Range query (RQ-

R and RQ-D) and k-NVS query (k-NVS and k-NVS-D). Within each query group,

we will further elaborate on the direction and bounded radius queries.

We retrieve the FOVs that match the query requirements in two steps: a �lter

step followed by a re�nement step. First, in the �lter step, we search the three-level

index structure starting from the �rst level and then moving down to the second and

third level, if needed. The set of FOVs resulting set from the �lter step are referred

as the candidate set. In the re�nement step, an exhaustive method is applied to

45



CHAPTER 3. MULTI-LEVEL GRID-BASED INDEX

check whether an FOV actually satis�es the query conditions.

Point Query The video segments, that show a certain object of interest at a

speci�c location, can be retrieved through the point query. When the object size

is small, it would be preferred to retrieve the close-up views of the object, with a

reasonable size for better visual perception. The PQ-R query searches the video

frames with a certain radius range restriction for the distance of the camera loca-

tions from the query point, according to the required level of details in the video.

Additionally, the camera viewing direction when the query object appears in the

video can be an important factor for the image perception of the observer. For

example, an object's images from a certain viewing direction (e.g., the frontal view,

when the object is viewed from the North) can be of higher importance. The PQ-D

query can exploit the collected camera directions for querying video segments when

the camera is pointing towards the requested direction (e.g., North).

Figure 3.4: Illustration of the function applyRadius.

Algorithm 1 formalizes the query execution for point queries PQ-R and PQ-D.

When processing the point query, we �rst calculate the �rst-level cell ID Cℓ1 where

the query point is located. For a typical point query (PQ), the candidate FOVs

would include all FOVs indexed at the cell Cℓ1. For the Point Query with bounded
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Algorithm 1: Point query with bounded radius (PQ-R) and direction (PQ-D).

Input: query type: q_type (PQ-R, or PQ-D), query point: q⟨lat, lng⟩,
(for PQ-R) min and max radius: MINR, MAXR,
(for PQ-D) viewing direction : β
Output: vector segments ⟨vj , V S(Sfr, Efr)⟩
Cℓ1 = getCellID(q); // First-level cell

/* Point Query with bounded Radius */

if q_type is PQ-R then

Cℓ2 = getSubCellID(q); // Second-level cell

subCellsInR = applyRadius(q, Cℓ2, MINR, MAXR);
candidateFOV s = fetchData(subCellsInR);

/* Point Query with Direction */

if q_type is PQ-D then

Cℓ3 = getDirCellID(Cℓ1,β,ε); // Third-level cell

candidateFOV s = fetchData(Cℓ3);

res = refinementStep(candidateFOV s);
segments = getVideoSeg(res,q_type);
return segments

Radius (PQ-R), we additionally apply the distance condition given by the radius

range (MINR, MAXR). The function applyRadius reduces the search area for the

candidate FOVs in the second-level index by eliminating the subcells outside of

the radius range (see Algorithm 2). In function applyRadius, we �rst retrieve the

Cℓ2 subcell where query point q is located. Then we �nd out all the second-level

subcells around Cℓ2, which are within distance range MINR to MAXR from the

query point. For example, in Figure 3.4, according to the minimum (MINR) and

maximum (MAXR) distance conditions, only the FOVs locating between the two

dot circles will be returned. Since this function works on subcell level, it takes all the

subcells that overlap with the region between two circles (i.e., the shadow region)

into account. In this example, both video frames FOV 1 and FOV 2 overlap with

q. However, since the location of FOV 2 is outside of the shadow region, it won't

be returned by the function applyRadius, and therefore FOV 2 will not be included

in the candidate set. For the Point Query with Direction (PQ-D), we check the

third�level index cell to �nd cells that cover the query angle range given by (β-ε,

β+ε). We return the FOVs indexed in the cells {Cℓ3(h1), ..., Cℓ3(h2)} where β-ε falls
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into the angle range of Cℓ3(h1) and β+ε falls into the angle range of Cℓ3(h2). As an

example, let us assume that the 360 ◦ viewing angle range is divided into x = 45 ◦

intervals in the third-level index. When β = 0 ◦ (i.e., North) and ε = 15 ◦, we would

retrieve the FOVs in the third-level cells Cℓ3(7) and Cℓ3(0) as the candidate FOVs.

Algorithm 2: applyRadius()

Input: query point: q⟨lat, lng⟩,
Minimum and maximum bounded radius: MINR, MAXR,
�rst�level cell: Cℓ1, second�level cell: Cℓ2

Output: set of second-level cells: checkRadius
distClose = compMinDist(q, Cℓ2);
while distClose ≤MAXR do

/* Find out the minimum distance between the q and Cℓ2 */

distFar = compMaxDist(q, Cℓ2);
if distFar ≥MINR then

checkRadius.add(getCellsAtDist(q,distClose));

distClose += GRIDSIZE/s;
return checkRadius

After the candidate FOVs are retrieved, we run the re�nement step (through

the function re�nementStep) to get the actually matching FOVs (See Algorithm. 3).

For each FOV in the candidate set we check whether the FOV overlaps with q. In

the re�nement step of PQ-R query, we also check whether the distance between the

camera location and the query point is within the radius range (MINR, MAXR).

While for PQ-D query, we check whether the viewing direction of the camera falls

into the angle range (β-ε, β+ε). These FOVs, along with their video �le IDs (vj)

are stored in the vector res.

The last step in the point query processing is the generating of resulting video

segments from the retrieved FOVs. The function getSegments organizes the group

of consecutive FOVs from the same video as video segments V Svj (Sfr, Efr). The

details of the getSegments function is explained in Section 3.3.2.2.

Range Query When the search application asks for the videos that show a large

region in geo-space, rather than a point location, it may issue a range query. The
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Algorithm 3: re�nementStep()
Input: query type: q_type (PQ-R, or PQ-D)
FOV candidate set: vector candidateFOV s,
(for PQ-R) min and max radius: MINR, MAXR

Output: vector res ⟨vj , FOV.id⟩
for all the FOV s in the candidateFOV s do

if q_type is PQ-R then

distP2P = dist(q, FOV .P); /* distance between two points */

if distP2P ≥MINR AND distP2P ≤MAXR then

if pointInFOV(q, FOV ) then
res.push( ⟨FOV.vj , FOV.id⟩ );

if q_type is PQ-D then

if FOV.θ ≥ β − ε AND FOV.θ ≤ β + ε then
if pointInFOV(q, FOV ) then

res.push( ⟨FOV.vj , FOV.id⟩ );

queried region is estimated with a bounding rectangle. Similar to the PQ-R query,

the closeness to the query region, therefore the level of details in the video, can be

customized through the RQ-R query. Additionally, the RQ-D query retrieves videos

of the query region from di�erent view points.

In the range query processing, a naive approach is to access only to the �rst-

level index to get the candidate FOVs. Since the �rst-level grid cells are larger, each

FOV appears only in a few Cℓ1 cells. When the overlap area between the Cℓ1 cell

and the query rectangle is large, using the �rst-level index is more e�cient, since

the duplicate FOV IDs in the candidate set is minimized. On the other hand, if

the query rectangle overlaps with a small percentage of the Cℓ1 cell, the retrieved

candidate set will have many false positives due to FOVs covering parts of the Cℓ1

cell but not the query region. Therefore, in our range query processing algorithm, we

use a hybrid approach where we try to cover the query region with a mixture of Cℓ1

and Cℓ2 cells. We try to minimize the uncovered regions in cells (i.e., minimizing

the false positives) and at the same time, we also minimize the duplicate FOV IDs

in the candidate set, by using as many Cℓ1 cells as possible. The goal is to reduce
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Algorithm 4: Range query with bounded radius (RQ-R) and direction (RQ-
D).
Input: query type: q_type (RQ-R, or RQ-D)
query rectangle: qr⟨lat1, lng1; lat2, lng2⟩,
(for RQ-R) min and max radius: MINR, MAXR,
(for RQ-D) viewing direction : β
Output: vector segments ⟨vj , V S(Sfr, Efr)⟩
Cℓ1 = getCellID(qr)
/* Range Query with bounded Radius */

if q_type is RQ-R then

cellsInR = applyRadius(qr, Cℓ1, MINR, MAXR);
for each cell Cℓ1(m,n) in cellsInR do

overlapArea = compOverlap(Cℓ1(m,n),qr); // Compute the

overlap area

if overlapArea ≥ ϕ then

candidateFOV s.append(fetchData(Cℓ1(m,n)));

else

subCellsInR = applyRadius(overlapArea,Cℓ2,MINR,MAXR);
candidateFOV s.append(fetchData(subCellsInR));

/* Range Query with Direction */

if q_type is RQ-D then

for each cell Cℓ1(m,n) in cellsInR do

overlapArea = compOverlap(Cℓ1(m,n),qr);
if overlapArea ≥ ϕ then

Cℓ3 = getDirCellID(Cℓ1(m,n),β,ε);

else

subCells = applyRadius(overlapArea,Cℓ2,0,RV );
Cℓ3 = getDirCellID(subCells,β,ε);

candidateFOV s.append(fetchData(Cℓ3));

res = refinementStep(candidateFOV s);
segments = getVideoSeg(res,q_type);
return segments

the size of the candidate set, so that the time required to process and sort the FOVs

in the re�nement step is minimized.

Algorithm 4 formalizes the query execution for the range queries RQ-R and RQ-

D. In Algorithm 4 we �rst �nd out which cells will be accessed from the �rst-level and

second-level indexes. Among the Cℓ1 cells that overlap with qr, we choose the cells

whose overlap areas are larger than a certain threshold value ϕ (e.g., the overlap
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area is 40% of that of the Cℓ1 cell). If the overlap area is less than ϕ, we cover

the overlap region with the Cℓ2 subcells. Recall that the second-level subcells hold

the list of the FOVs whose camera locations are within those subcells. Therefore,

to retrieve the candidate FOVs from a Cℓ2(m,n) subcell, we need to search for the

neighboring subcells around it, and �nd out the FOVs in those subcells which overlap

with the Cℓ2(m,n). After �nding out the cells and subcells that we would retrieve

the candidate FOVs from, the rest of the query processing is similar to PQ-R and

PQ-D queries.

k-NVS Query Typical kNN queries consider only the distance between a query

point and the objects in the database. In our geo-tagged video search system, we

consider not only the distance between the query point and camera location in the

database, but also the visibility of the query point from the camera location. Here,

we propose the k-Nearest Video Segments query as, �For a given point q in geo-

space, �nd the k nearest video segments that overlap with q.� Taking Figure 3.5 as

an example, the camera locations of the video segment V1 are closer to the query

point q than those of V2. Due to the camera's location and viewing direction, the

FOVs of V1 cannot cover q while the FOVs of V2 can. In typical kNN queries, V1 will

be selected before V2 because V1 is closer to q. However, in the k-NVS query, V2 will

be selected as the nearest neighbor instead of V1 because of the visibility. The k-NVS

query can be utilized in various video search applications to continuously retrieve

the most related videos that show a frequently updated query point. Additional

radius range and viewing direction requirements can be added to the query through

the k-NVS-R and k-NVS-D queries.

Algorithm 5 formulates the k-NVS query processing. We �rst retrieve the Cℓ2

cell where the query point is located and, similar to the PQ-R query, we �nd out the

neighboring subcells around Cℓ2 from which the FOVs can see q. For the k-NVS-R

query, the search range around the Cℓ2 cell is (MINR, MAXR) whereas for the

k-NVS and k-NVS-D queries search range is (0, RV ). For the k-NVS queries, we
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Figure 3.5: Illustration of k-NVS query. Although camera locations of V1 are closer
to the query point q than those of V2, V2 is selected as the nearest video segment,
since V1 cannot capture q.

need to return only the closest k video segments. Therefore, in order to �nd the

candidate FOVs, we gradually search the neighboring subcells in the search range,

starting with the closest subcells. As shown in Algorithm 5, we �rst retrieve the

candidate FOVs in the subcells closest to Cℓ2 (within distance 0 or MINR). And at

each round we increase the search distance by δ/s and retrieve the FOVs in the next

group of cells within the enlarged distance (δ/s is the size of a second-level subcell).

We apply the re�nement step on these candidate FOVs and store them in priority

queue, in which the FOVs are sorted based on their distance to q in ascending order.

The re�nement steps for the k-NVS-R and k-NVS-D queries are similar to PQ-R

and PQ-D queries. After each round of candidate retrieval, the candidate FOVs are

organized as videos segments, i.e., the consecutive FOVs from the same video �le

are grouped together. The search for candidate FOVs ends either when the number

of video segments reaches k or when there are no more subcells that need to be

checked. The output of the algorithm is the list of the retrieved video segments,

ordered from closest to the farthest.

3.3.2.2 Query Processing: Returning Video Segments

As explained in Section 3.3.2.1, in query processing after retrieving the FOVs that

satisfy the query requirements, the groups of adjacent FOVs from the same videos
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Algorithm 5: k-Nearest Video Segments Queries: k-NVS, k-NVS-R, and k-
NVS-D
Input: query point: q⟨lat, lng⟩, number of output video segments: k,
(for k-NVS-R) min and max radius: MINR, MAXR,
(for k-NVS-D) viewing direction : β,
Output: vector segments

⟨
V Svj (st, et)

⟩
Cℓ1 = getCellID(q), Cℓ2 = getSubCellID(q);
priority_queue sortedFOV s ⟨ FOV ID, distance to q ⟩ = ∅;
if q_type is k-NVS-R then

subCellsInR=applyRadius(q,Cℓ2,MINR,MAXR);

else

subCellsInR = applyRadius(q, Cℓ2, 0, RV );

i=0; distClose=δ/s;
while not enough FOV s AND nextSubCells=
getNeighbors(q,subCellsInR,i++) is not empty do

candidateFOV s = fetchData(nextSubCells);
for all the FOV s in the candidateFOV s do

distP2P = dist(q, FOV );
if q_type is k-NVS then

if pointInFOV(q, FOV ) then
sortedFOV s.push(⟨FOV ID, distP2P ⟩);

if q_type is k-NVS-R then
if distP2P ≥MINR AND distP2P ≤MAXR AND
pointInFOV(q, FOV ) then

sortedFOV s.push(< FOV ID, distP2P >);

if q_type is k-NVS-D then

if FOV.θ ≥ β − ε AND FOV.θ ≥ β + ε then
sortedFOV s.push(< FOV ID, distP2P >);

while sortedFOV s.top() ≤ distClose AND numsegments < k do
topFOV = sortedFOV s.pop();
if isNewSegment(topFOV ,res) then

numsegments++;

res.push(topFOV );

i++; distClose+ = δ/s;

segments = getVideoSeg(res,q_type);
return segments

are returned as the resulting video segments. The length of the returned segments

may vary extensively for di�erent query types. For example for the range query,

when the query region expands to a large area, the number of consecutive FOVs
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that overlap with the query region is usually large. However for more selective

queries, such as k-NVS query, the length of an individual segment can be as short as

a few seconds. In Table 3.1, we report the number of FOVs returned from the k-NVS

query and the number of video segments that these FOVs form for di�erent values

of k. The average segment length for k=20 is around 3 seconds, with a maximum

segment length of 20 seconds. As the k value increases, the segment lengths also

get longer. Practically, for visual clarity, the length of the resulting video segments

should be larger than a certain threshold length. Depending on the requirements of

the video search application, the query processing unit should customize the creation

of the returned segments.

Table 3.1: Statistics for k-NVS queries with di�erent k values.

k # of FOVs # of Segments Segment Max Length
20 109,847 35,391 20
50 212,746 56,664 50
100 291,957 72,179 71
150 318,504 77,096 89
200 326,110 78,523 89
300 327,541 78,796 89

In our current implementation, for the point and range queries, the returned

FOVs are post-processed to �nd out the consecutive FOVs that form the segments.

If two separate segments of the same video �le are only a few seconds apart, they are

merged and returned as a single segment. For the k-NVS query, the video segments

are formed simultaneously as the closest FOVs are retrieved. For each video segment

the video ID, the starting and ending FOV IDs and the segments distance to the

query point are maintained, i.e.,
⟨
vj , Sfrt, Efrt, dist

⟩
. When the next closest FOV

is retrieved, if it is adjacent to one of the existing segments it is merged with it,

otherwise a new segment is formed. The Sfrt, Efrt, and dist values are updated

accordingly. For example, in our current con�guration of the experiments, we set

that the returned segments should be at least 20 seconds long. Therefore the short
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segments are expanded to 20 seconds. The segment's starting and ending o�sets are

adjusted so that the dist value for the segment is minimized.

3.4 Experimental Evaluation

In this section, we elaborate on the experiments carried out on Dataset1 and

Dataset3.

3.4.1 Experiments with Dataset1

To show the impact of the bounded radius and direction restriction on the video

searching results, we presented two representative query results on two landmarks:

Q1 targets at the Merlion (a small statue) while Q2 targets the Marina Bay Sands

(a tall and wide building).

3.4.1.1 Importance of Bounded Radius

Figure 3.6 shows the sampling frames from the resulting videos that answering Q1

and Q2 with various distances from the query locations. All the frames shown

in Figure 3.6(a) actually capture Q1 in the scene, but only the �rst one from a

closed position less than 50 meters away from Q1 displays a clear view. Due to the

large distance, although Q1 appears in the other three frames, it is meaningless to

end-users who want to see the the Merlion. The situation is quite di�erent when

processing Q2 (shown in Figure 3.6(b)). The frames captured from closed positions

only show parts of the building, while users can have a panoramic view of the whole

building from far away. Consequently, typical spatial queries on video search might

sometimes not satisfy users' demands, and it is helpful to have spatial queries with

bounded radius. For example, displaying small objects from a closed position, while

displaying large buildings from a far-away location can help to show meaningful

videos to users.
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(a) Sampling frames from Q1.

(b) Sampling frames from Q2.

Figure 3.6: Sampling frames from the video searching results with various distances.
The numbers in blue show the distance between the camera location and the queried
building.

3.4.1.2 Importance of Direction

The sampling frames in Figure 3.7 are extracted from the same video and all of them

capture the Merlion from di�erent directions. The �rst two frames record Q1 from

the best place while the last one records it from the back, which is not desired by

users. Therefore, direction restriction is also an important factor for video searching

on displaying best results.

Figure 3.7: Sampling frames from the video searching results with various directions
on Q1.
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3.4.2 Experiments with Dataset3

In this section, we use Dataset3 to test the performance of the index structure on

a large-scale dataset.

3.4.2.1 Experimental Settings

For all the experiments we constructed a local MySQL database and stored all the

FOV meta-data, as well as the index structure tables. All the experiments were

conducted on a server with two quad core Intel(R) Xeon(R) X5450 3.0GHz CPUs

and 16GB memory running under Linux RedHat 2.6.18. All the comparisons used

in the experiments are based the geo-coordinates (latitude and longitude). The ex-

periment results reported here show the cumulative number of FOVs returned for

10, 000 randomly generated queries within the experiment region. In our experi-

ments, we mainly measure the Processing Time (PT for short) and the number of

Page Access (PA for short). The PT includes the total amount of time for searching

for the candidate set through the index structure in the �lter step and the time

for using the exhaustive method to process overlap calculation in the re�nement

step. We assume that even if the index structure was in memory, when we access

to it, we count the PA as it is on disk. Additionally, we set the page cache size as

one page large. Therefore, when there is no page hit in the cache, the PA will be

increased by one. This also helps to analyze the performance if the index structure

is disk-based instead of memory-based. In our experiments, we try to fully utilize

the space inside each one page by storing as many nodes as possible for both the

grid-based approach and R-tree. The page has empty space only when there exists

no exact match between the page space and the node size.

In the next two experiments, we process the typical queries without any distance

or direction restriction as preliminary experiments to set the basic parameters: the

value of the grid size δ and the overlap threshold ϕ. In the following experiments, if

not specifying, the default value of k is 20, and query rectangle size is 250m×250m.
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When generating the moving objects, the maximum viewable distance (RV ) of the

camera is set as 250m. As shown in Figure 3.8, grid with size equalling to RV /2 or

RV performs better than larger sizes. The performance of grid-based index structure

with size of RV is better in some cases while worse in others compared to that of

RV /2. Since our structure is mainly designed for k-NVS query, we set δ equalling

to RV .

  0 

  1k

  2k

  3k

  4k

  5k

  6k

  7k

  8k

point range k-NVS

pr
oc

es
si

ng
 ti

m
e 

(m
s)

different types of queries

RV/2
RV

2RV
4RV

(a) Processing time.

  0 

100k

200k

300k

400k

500k

point range k-NVS

pa
ge

 a
cc

es
se

s

different types of queries

RV/2
RV

2RV
4RV

(b) Page accesses.

Figure 3.8: E�ect of grid size.

As well as the grid size, the overlap threshold ϕ for range query also a�ects the
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performance of the grid-based index structure. As presented in section 3.2, both the

�rst-(Cℓ1) and second-level(Cℓ2) indices are loaded into memory. To set the value of

ϕ, we ran a series of typical range queries without distance and direction conditions.

As shown in Figure 3.9, the PA of grid-based index structure is smaller than that

of R-tree when ϕ is smaller than 40%. Moreover, the grid approach is faster than

R-tree for most of the cases, and we achieve the fastest performance at value of

30%. Consequently, ϕ is chosen as 30%. The parameters used in the experiment are

summarized in Table 3.2.
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Figure 3.9: E�ect of the overlap threshold ϕ on range query performance.
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Table 3.2: Experiment Parameters and Their Values

Parameter Value
Page Size 4, 096

Cache Size 4, 096

Non-Leaf Node Size(R-tree) 64

Leaf Node Size (R-tree) 36

Non-Leaf Node Size (R-tree with viewing direction as a dimension) 80

Leaf Node Size (R-tree with viewing direction as a dimension) 52

Cℓ1 Node Size 68

Cℓ2 Node Size 36

Cℓ3 Node Size 4

FOV Meta-data Size 32

3.4.2.2 Comparison

The R-tree is one of the basic index structures for spatial data which is widely

used. In our experiments, we insert the Minimum Bounding Rectangle (MBR for

short) of all FOVs into R-tree and process all types of queries based on the R-

tree [Green 2010] implemented by Melinda Green for comparison. To the best of our

knowledge, this implementation achieves the best performance compared to others.

We use Equation 3.1 to calculate the MBR of an FOV with geo-coordinates. The

parameter σx and σy denotes the factor of converting distance to geo-coordinate

di�erence in the x-axis or y-axis directions, respectively. The query procedure is

to search for all the FOVs whose MBRs overlap with the query input in the �lter

step and hence to use the exhaustive method to calculate the actual overlap in the

re�nement step. Consequently, some of the parameters (e.g., value of k for k-NVS

query, distance condition, etc.) have no e�ect on the PA for R-tree.

MBR.left = min(lng, lng ±RV × sin (θ ± α/2)/σx)

MBR.right = max(lng, lng ±RV × sin (θ ± α/2)/σx)

MBR.bottom = min(lat, lat±RV × cos (θ ± α/2)/σy)

MBR.ceil = max(lat, lat±RV × cos (θ ± α/2)/σy)

(3.1)
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E�ect of distance condition We study the e�ect of the distance condition by

varying the radius range from 25m to 250m. For each one of the radius range,

we start from the minimum distance condition MINR equalling to 0m until the

maximum distance condition MAXR reaching 250m. For example, when the radius

range is equal to 25m, the value of the tuple ⟨MINR,MAXR⟩ can be one of the

followings: {⟨0, 25⟩ , ⟨25, 50⟩ , ⟨50, 75⟩ , ... ⟨200, 225⟩ , ⟨225, 250⟩}. While the radius

range is equal to 225m, the value of ⟨MINR,MAXR⟩ can only be either ⟨0, 225⟩ or

⟨25, 250⟩. The results shown in Figure 3.10 are the averages of the di�erent radius

ranges. Since the RV of an FOV is set as 250m when generating the synthetic

data, the last point with radius range of 250m is the result of processing queries

without distance condition. Figures 3.10 (a), (b) and (c) illustrate the PT of PQ-R

query, RQ-R query and k-NVS-R query respectively, while Figures 3.10 (d), (e) and

(f) illustrate the PA for each type of query. In general, the performance of our

grid-based index structure works better than R-tree on both the PT and the PA.

Figures 3.10 (a) and (b) show that the PT for radius range of 250m is a little shorter

than that of 225m. The reason is that all the subcells in the second-level index Cℓ2

needs to be checked for large radius range and this costs extra PT compared to

queries without distance condition. As shown in Figures 3.10 (d), (e) and (f), the

PA using the R-tree remains the same because the R-tree �nds out all the FOVs

whose MBRs overlap with the query in the �lter step, regardless of the radius range.

It cannot prune unnecessary search based on the radius range. The PA of the grid-

based structure grows as the radius range becomes larger but is still smaller than

that of the R-tree even when the radius range reaches the largest number.

E�ect of direction condition We proceed to evaluate the e�ciency of our

grid-based index structure with directional queries. In this experiment, the query

datasets are the same as those used in queries without direction condition, except

the additional viewing direction constraint. As presented in Table 3.2, the angle

margin ε in this experiment is 15◦. The 2D and 3D R-trees used in Figure 3.11
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denote the R-tree for processing queries without direction condition and queries

with direction condition, respectively. Overall, the PT of the grid-based structure

is smaller than that of the R-tree processing the same query types. More specially,

Figure 3.11 (a) shows that, in the processing of PQ-D query and k-NVS-D query, the

PT of the R-tree is almost two times of that without direction condition. The rea-

son is that searching one more dimension in the R-tree slows down the performance

of the R-tree. The situation is di�erent for RQ-D query because of less number of

candidates obtained from the �lter step so that the re�nement step costs less time.

On the contrary, the grid-based approach directly accesses the third-level (Cℓ3) cell

to narrow down the search for a small amount of meta-data within a short time.

Figure 3.11 (b) shows that the PA in R-tree for processing queries with direction is

over eight times larger than the typical ones while the grid-based approach shrinks

to about half. The reason is that the node size of the 3D R-tree is larger than

that of the 2D R-tree, which results in accessing more pages in both the �lter and

re�nement step. Because most of the PA is to memory pages, the di�erence in the

PT which is not that large as the PA. Comparing queries with and without direction

condition between R-tree and the grid-based approach, our algorithm signi�cantly

improves the performance for directional queries.

E�ect of query rectangle size We next study the e�ect of the query rectangle

size to range query. The query rectangle size varies from 125m to 500m, which is

from half to two times of the grid size δ. Larger area contains more number of videos

and thus leads to longer processing time and more number of accesses. As expected,

the result in Figure 3.12 shows that the PT and the PA increases with the query

rectangle size. From Figure 3.12(a), the value of the PT increases slower using the

grid-based approach, which means that our approach performs even faster for large

query area than R-tree. However, Figure 3.12(b) shows that as the query area grows,

the di�erence in number of the PA between these two methods gets larger when the

query rectangle size increases from 125m to 250m, and then becomes smaller after
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Figure 3.11: E�ect of direction condition.

the query rectangle size is larger than 250m, which the maximum visible distance

of the camera. Therefore, when users are interested in what happened at special

places or small regions, e.g., an area with size 500m×500m, our grid-based approach

outperforms better than the R-tree.

E�ect of k value To test the performance of the grid-based approach with dif-

ferent values of k for k-NVS query, we calculate the PT and the PA using the same

query points. The results in this experiment are discrete FOVs (not video segments).
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Figure 3.12: E�ect of rectangle size on range query performance.

Figure 3.13(a) shows the comparison in the PT and Figure 3.13(b) shows the com-

parison in the PA. As k increases, the PT increases for the grid-based index at the

beginning and keeps nearly unchanged when k is larger than 200, which is closed to

the maximum number of FOVs found in typical point query. The PT for R-tree is

almost the same with di�erent k values because all the results are found and sorted

once. When k is larger than 150, the PA for the grid-based approach is almost

the same since the searching radius is enlarged to the maximum according to the
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design of the structure. From the gap in Figures 3.13(a) and (b) between the R-tree

and our approach, we can infer that even if the dataset is large and k is big, the

grid-based index structure performs better than the R-tree.
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Figure 3.13: E�ect of value of k on k-NVS query performance.

3.5 Summary

In this work we proposed a novel multi-level grid-based index structure and a num-

ber of related query types that facilitate application access to such augmented,
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large-scale video repositories. Experiments on a real-world dataset show the impor-

tance of the queries with bounded radius and viewing direction restrictions. The

experimental results with a large-scale synthetic dataset show that this structure

can signi�cantly speed up the query processing, especially for directional queries,

compared to the typical spatial data index structure R-tree. The grid-based ap-

proach successfully supports new geospatial video query types such as queries with

bounded radius or queries with direction restriction. We also demonstrate how to

form the resulting video segments from the video frames retrieved.

The limitation of the this work is the small size of the real-world dataset, al-

though the dataset size keeps growing. In the future, we will keep collecting data.

Moreover, the current work only uses GPS and digital compass to build the FOV

model and ignores the changes in camera parameters (e.g., the zoom level, various

viewable angle). Therefore, a more reasonable model including all the embedded

sensors in smartphones is a potential research direction. Furthermore, the speci�c

query types can be utilized to construct the 3D model of a building from video, and

the index structure can be migrated onto Cloud for parallel processing and video

hosting service with large-scale database.
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Chapter 4

Uncertain Data Management

4.1 Introduction

GIS applications now increasingly make use of geo-located multimedia data such as

images and videos. Furthermore, the wide-spread availablity of smartphones allows

the acquisition of user-generated videos that are annotated with geo-properties. As

stated in previous sections, these sensor data can be utilized to manage geo-tagged

videos, such as building index, searching among large-scale dataset. However, a

major practical issue is the noisy nature of such sensor data. It has long been

known (and many users have had �rst-hand experience) that sensors, especially on

consumer-grade electronics, produce sometimes inaccurate and �uctuating values.

The surrounding environment can exacerbate the problem. For example, tall build-

ings and narrow passageways in urban areas can lead to very di�cult conditions for

obtaining accurate GPS positions. Figure 4.1 illustrates the situation that the GPS

data collected during video recording might be inaccurate. When we collecting the

location information using GPS devices, the raw data include an error range indicat-

ing that the actual location might be within the range away from the GPS reading.

Besides, typically alignment errors, non-orthogonal errors and magnetic deviations

can a�ect the digital compass heading accuracy. Due to sensor data inaccuracies

the visual coverage described by the meta-data may not exactly match the actual

video scene, which leads to imprecise search results and positional disagreements on

map overlays.

Moreover, obstructions (i.e., buildings, people or vehicles passing by) in front
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Figure 4.1: An snapshot from our GeoVid website that shows the collected GPS
data are sometimes inaccurate. The red line is the camera trajectory. The yellow
circle shows the GPS error range, which indicates that the actual camera location
can be any point within the circled area. The pie-slice shape shows the coverage
region of the FOV at that time the snapshot is taken.

of a camera may in parts of scene result in the recording of objects far away while

only close ones in other parts within the same frame. For example, when people are

recording videos in the urban area, some buildings are blocked by others due to the

3D visibility [Shen 2011]. Figure 4.2 shows a few sampling frames extracted from

the videos we collected. The targeted building is blocked or partially blocked by

other buildings, a small cabinet, and a person passing by, respectively. This e�ects

in�uence the captured video scene, but not the measured sensor data.

The above described issues lead to a mismatch between the viewable scenes of

video contents and the area represented by the sensor data. In general, there exist

two typical ways to deal with these inaccurate data. The �rst one is to correct these

inaccurate data. In order to correct the inaccurate sensor data, a set of ground-truth
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Figure 4.2: Sampling frames extracted from videos collected show that obstructions
can also cause a mismatch between the viewable scenes of video contents and the
area represented by the sensor data.

data is necessary, which sometimes is di�cult to obtain. Furthermore, even though

the ground-truth data is available, the subsequential steps, which might involve the

content-based comparison or camera motion detection, are still open and challenging

problems. Rather than trying to completely avoid or correct such issues (which may

be di�cult or impossible), a well-known approach in the information management

community is to design methods that can handle uncertain data.

In this work we propose a novel approach (HUGVid) which has the objective of

modeling the uncertainty of a camera's viewable scene in the presence of noisy, im-

precise sensor data. An approximate method is introduced for an e�cient, but still

e�ective, estimation of the uncertain data model. Based on the approximate model

and geographical properties of a video, a video segmentation method is introduced

which helps to describe the probability of a region being captured by a video seg-

ment. Finally we introduce e�cient methods to perform probabilistic queries. The

HUGVid architecture and data �ow are presented in Figure 4.3. The contribution

of our work can be summarized as follows:

• Uncertain data model for individual geo-tagged video frames. We

model the spatial coverage of an individual video frame with multi-sensor

meta-data and an approximate method for e�ectively calculating the proba-

bility of any place being captured by this model is introduced.

• Video segmentation and uncertain data model for segments. We
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introduce a video segmentation algorithm with the aim that all frames within

the parsed video segment capture a common region. This region is recorded

by all frames with a non-zero probability. At the same time, we extend the

uncertain data model to video segments.

• Video indexing with extended R-tree. For e�ective and e�cient search,

an R-tree based method is proposed to index the parsed video segments with

geo-properties. Additionally, the statistical information of each video segment

is attached to a standard R-tree as a secondary index.

• Distance estimation. When videos are uploaded, a centroid point is used

to represent all the cameras' locations. We then utilize this point to approxi-

mately calculate the distance between the query and the video segment.

The above novel components of HUGVid allow the e�cient processing of proba-

bilistic queries over naturally noisy sensor data. Upstream GIS applications can uti-

lize the results and prioritize their processing by concentrating on the most promising

candidate video segments �rst.

We validate our design through extensive experiments with both real and syn-

thetic datasets. The results show that the proposed approach produces high preci-

sion, and the approximate distances computed match well with the actual values.

The result of a user study shows that our method also satis�es the human per-

spective. Moreover, the performance on the synthetic dataset indicates that our

approach performs e�ciently and e�ectively on large-scale datasets.

The rest of the work is organized as follows. Section 4.2 introduces the uncertain

data model for a video viewable scene. Section 4.3 then presents the uncertain data

model for video segments and demonstrates the geo-tagged video indexing method.

Section 4.4 details the query processing. Section 4.5 reports the results on the

evaluations of the proposed method. Section 4.6 summarizes the work.
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Figure 4.3: Architecture with uncertain data model and the corresponding tasks for
processing queries.

4.2 Uncertain Data Modeling of FOV

There is an increasing awareness of the naturally occurring uncertainty of some spa-

tial data, for example in the GIS and other communities. The uncertainty falls into

two cases: sensor errors (Section 4.2.1.1 and 4.2.1.3) and obstacles (Section 4.2.1.2).

In our geo-tagged video search application, the mismatch between video scenes and

the associated geographical coverage signi�cantly a�ects the �nal results. For ex-

ample, when users desire to search for videos that capture the Marina Bay Sands

(MBS) complex in Singapore, the system may �nd the videos that can theoretically
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capture the MBS according to geometric calculations. However, if an object is lo-

cated between the camera and MBS and blocks the building, or if the meta-data

are inaccurate, the actual video may not capture the hotel complex. Therefore, an

uncertain model for the camera's viewable scene is essential to measure the prob-

ability that a location actually appears in video scenes. When taking videos using

smartphones, the GPS devices are collecting the location information as well as

the accuracy. We manually checked the GPS accuracies and compass readings and

found that most errors are within a certain range. Based on the FOV model pre-

sented in Section 2.2.1, the extended uncertain viewable scene model is introduced in

Section 4.2.1, and �nally Section 4.2.2 presents the simpli�ed, approximate model.

4.2.1 Uncertain Data Model for FOV

As illustrated in Figure 4.4, the solid pie-slice shape is formed from the sensor meta-

data while the dashed shape might be the actual video scene. For a single FOV, it

is commonly assumed that an object has a higher probability of being captured by

a camera if it appears close to the camera's location and in the center of the FOV.

If not otherwise speci�ed, we refer to the probability as the probability of an object

being captured by an FOV or a video segment. Next, we describe the uncertainty of

meta-data that a�ects the probability based on the FOV model in three independent

dimensions: camera viewing direction, visible distance and camera location. Finally

we will combine them together.

4.2.1.1 Uncertainty of Viewing Direction

Due to the inaccuracy of the digital compass, the measured viewing direction does

sometimes not exactly align which the camera direction. The digital compass based

orientation measurement is sensitive to motion and magnetic disturbances. In prac-

tice, the camera orientation can at best reach an accuracy of plus/minus few degrees

with respect to the compass reading 1. A study [Eri�u 2012] showed that the com-
1ACM Multimedia Grand Challenge 2010.

74



4.2. UNCERTAIN DATA MODELING OF FOV

Figure 4.4: Illustration of the uncertainty of a �eld-of-view (FOV). The solid pie-
slice shape is drawn from the sensor meta-data, while the dashed shape might be
the actual FOV.

pass reading on an HTC G1 phone can achieve an overall �ve-degree drift to the

actual orientation without magnetic interference. When the measurement is taken

place in cars, near radio or speakers, near large metal structures, the compass accu-

racy degrades to 20-50 degrees, or even worse. In practice, we used di�erent types

of mobile devices (e.g., iPhone, Android phones with di�erent brands) to capture

videos and collect sensor meta-data. Therefore, the inaccuracy of the digital com-

pass might vary on di�erent devices and di�erent environment as well. Considering

the above literatures, we manually checked the captured video and the associated

compass data, and inferred that the distribution of the compass error satis�es a

Gaussian function with a maximum error value. To calculate the ground-truth, we

manually check the geo-coordinates of a few landmarks, and estimate the pixel lo-

cation of the landmark in the frames. We then select the frames whose associated

GPS accuracy falls within 10 meters. These GPS data of these frames are treated as

the correct ones and used to calculate the camera viewing direction. Based on this

observation, we assume that the maximum compass error is θε (θε < α). Thus, the

camera can de�nitely capture the directions ranging from (θ− α
2 +θε) to (θ+ α

2 −θε),

while probably record other directions. As shown in Figure 4.4, the probability that
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a given location q (i.e., the query input) is covered by an FOV is presented in

Equation 4.1:

Probβε
q = f(βε) =


1 (βε ≤ |α2 − θε|)

e

(
K0·|βε−

α
2 +θε|2

|α2 +θε|2

)
(βε > |α2 − θε|)

(4.1)

where βε denotes the angle o�set between |Pq| and d⃗, and K0 is a constant ensuring

that it is a small probability event that q is covered by the FOV when βε is larger

than α
2 + θε.

4.2.1.2 Uncertainty of Obstacles

Most current smartphones lack an optical zoom and it is di�cult to extract the focal

length information. This leads to di�culties when measuring the distance between

a camera and the objects it records. Moreover, due to obstructions, it is possible

that some objects are hidden by others, or objects at di�erent distances appear

in the same scene. This situation has no e�ects on the sensor data but a�ects

the �nal search results. Taking the scenes extracted from a video as an example

(shown in Figure 4.5), in this case the camera neither moves nor rotates much during

video recording. Due to the bus passing by, the Esplanade building appearing at

time 00:01:20 is hidden for a few seconds, even though it is much larger than the

passing by bus. Our conjecture is that when an object is closer to the camera, the

probability of it being blocked by other objects is lower. Thus, the probability of

the object captured by the camera is higher. A Gaussian function is therefore one

of the possible ways to represent the probability of objects not obstructed by others

(Equation 4.2):

Probdq = g(d) = e

(
K1·|d|

2

|σ|2

)
(d ≤ RV )

(4.2)

where d is the distance between the camera and the object, and K1 and σ are the

parameters to satisfy that it is a small probability event that any object outside of
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RV is captured by the camera.

Figure 4.5: Demonstration of the uncertainty of the visible distance. The Esplanade
building (highlighted) has been hidden by a bus for a few seconds.

Hence, we obtain the uncertainty model for the FOV whose camera location is

at a speci�c position (e.g., with geo-coordinates P (x0, y0)) by combining the above

two uncertainty models. Equation 4.3 shows the probability that q(x, y) is captured

by the FOV when the camera is located at P (x0, y0). All the parameters used here

can be obtained from sensors or the con�guration settings of the cameras.

Prob
P (x0,y0)
q = Probβε

q · Probdq

=



Probdq (βε ≤ (α2 − θε))

e

(
K0·(

π
2 −γ−θ)2

(α2 +θε)2

)
· Probdq (x > x0 ∧ βε > (α2 − θε))

e

(
K0·(−

π
2 −γ−θ)2

(α2 +θε)2

)
· Probdq (x < x0 ∧ βε > (α2 − θε))

(4.3)

Here Probdq = e

(
K1·((x−x0)

2+(y−y0)
2)

σ2

)
, γ = arctan( y−y0

x−x0
), and βε = |γ − θ|.
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4.2.1.3 Uncertainty of Camera Location

When measuring a location with a GPS device, the position reading is accom-

panied by an error range dε. Therefore, the actual position of the camera is lo-

cated within a circle around the GPS reading with a radius of dε (as shown in

Figure 4.4). Due to various reasons (i.e., a tunnel traversal), the GPS locations

are sometimes missing for a while. In this case, we estimate the object location

by applying positional interpolation techniques [Arslan Ay 2008]. A number of re-

search [Sistla 1998, He 2005, Rife 2012, Okuda 1993] has proposed that the object

location follows a Gaussian distribution inside the uncertainty region, as shown in

Equation 4.4:

ProbLq =h(x0, y0)=
e
− 1

2(1−ρ2)
·[(x0−µx)2

σ2
x

−2ρ(x0−µx)(y0−µy)

σxσy
+

(y0−µy)2

σ2
y

]

2πσxσy
√

1−ρ2
(4.4)

where (µx, µy) denotes the GPS reading, ProbLq denotes the probability that the

camera is at location (x0, y0), and σx, σy and ρ are parameters of the probability

density function. Finally, the probability of a location to be covered by an FOV

is the accumulation of di�erent possible camera positions (see Equation 4.5). The

distribution of the probability is illustrated in Figure 4.6 with a series of parameters.

Probq =

dε∑
d=0

ProbLq · ProbP (x0,y0)
q (4.5)

4.2.2 Approximate Uncertain Data Model

As observed from Figure 4.6, the coverage region of the probability in 2D space is

an irregular shape (the solid shape in Figure 4.7). Given such an irregular shape, it

is computationally expensive to calculate exact probabilistic values, especially for a

large set of FOVs. Therefore, we have developed an approximate method to estimate

the probability, which can be carried out with a few calculations. As presented in

Sections 4.2.1.1 and 4.2.1.2, the probability is independent of the direction and the
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Figure 4.6: The probabilistic distribution of an area being captured by an FOV at
a speci�c position.

distance domains. For example, if the distance d between the camera and an object

is larger than a certain value (e.g., 240 m), the probability a�ected by distance is

smaller than a value, e.g., 50%. Hence, according to Equation 4.3, the probability

must be smaller than 50% no matter what value β is. The same situation occurs

for the direction domain. Consequently, we can �nd a border value for each of

the two domains, denoted βb and distb, respectively, below which the probability

is less than a threshold τ . These two border values form a pie-slice shaped region,

ensuring that the probability is smaller than τ outside this region. We then use

this area to estimate the probability instead of the irregular shape. In Figure 4.7,

P is the camera location according to the GPS reading while P ′ is a reference point

for calculating βb and distb. The geo-coordinates of P ′ can be computed by using

RV , dε, α and the location of P . The irregular shapes within the solid lines are

the actual probabilistic regions while the pie-slice shapes within the dashed lines

are the approximate regions. The exact probability falls on the solid line, i.e., the

probability is 50% on the inner solid lines. The regions between the solid lines and

the dashed lines are so-called �false positive" regions. For example, the probability

79



CHAPTER 4. UNCERTAIN DATA MANAGEMENT

of the region between the inner solid shape and the inner dashed lines is actually

less than 50% while it is considered greater than or equal to 50% in the approximate

model.

P

≥50%

≥0%

P’

False

positive

Accurate

curve

Approximate

curve

Figure 4.7: Illustration of the approximate uncertain FOV model in 2D space.

4.3 O�ine Uncertain Data Modeling of Video Segments

The approximate model described in Section 4.2 applies to a single FOV, indicating

that it works for geo-tagged images. Building on this, we represent the coverage of

a video clip as a spatial object through a series of FOVs. Therefore the next step

is to extend our probability model from a single FOV to a sequence, representing a

video segment. This is performed by parsing the video into segments according to

the associated geo-properties of the FOVs. Additionally, to support large-scale geo-

tagged video search applications, we index these spatial objects using an extended

R-tree such that they can be e�ectively and e�ciently retrieved. In Section 4.3.1,

the uncertain data model of a video segment is introduced and a video segmentation

algorithm is presented. Section 4.3.2 provides the details of constructing the index

structure.
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4.3.1 Uncertain Data Model for Video Segments

Based on the introduced uncertain data model for a single FOV, we now develop

the uncertain model of a video segment. One of its bene�ts is that it can retrieve

meaningful results even though there exist sharp jitters among sequential sensor

data, which is an essential feature for a robust system. Treating an entire video

segment as a spatial object is semantically more meaningful compared to dealing

with individual frames. However, treating the whole video as an object may not be

a good choice since some long videos or videos captured at high speed may cover a

large region. Moreover, processing the entire video results in redundant calculations

and increases processing time. Our goal is hence to parse the video into segments

and model the probabilistic distribution of each such segment.

Broadly speaking a video segment is represented by its coverage region. When

recording videos, people generally point the camera at interesting places even if

they are moving along a trajectory. The common, overlapping region among mul-

tiple FOVs can hence be considered a Point of Interest (POI). For this reason we

aim to parse the video such that the FOVs within each parsed segment overlap with

each other. This way the likelyhood is high that there exists at least one local POI

captured by each video segment. A search will return a video segment without any

further processing if users want to search for videos showing a local POI. To parse

the video in this manner, the overlapping area between FOVs needs to be calcu-

lated. Once a geo-tagged video is uploaded to the server, the video parsing process

is activated. It scans the meta-data forward from the beginning and calculates the

overlap among the FOVs until a subsequent FOV is identi�ed which does not inter-

sect with the current overlap region. Then the video is partitioned before this FOV

and a new segment is started. Figure 4.8 shows a video clip captured by a camera

moving along a trajectory. The video is parsed into three segments illustrated in

di�erent line styles. The latticed regions depict the overlap areas, indicating local

POIs within the parsed video segment.
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Figure 4.8: Illustration of the video segmentation algorithm. The video is divided
into three segments and the latticed regions illustrate the common overlap within
each segment.

Next, we introduce the overlap calculation and design the uncertain data model

of a video segment based on the overlap calculation. We de�ne the probability that

an object is captured by a video segment as follows:

De�nition 1. The probability of a position being captured by a video segment is

the probability of it being captured by all frames within this segment (formalized

in Equation 4.6):

Prob(P (x, y), VS(0, n− 1)) = 1−
n−1∏
i=0

(Probcap(i)(x, y)) (4.6)

Here VS denotes the video segment, and Probcap(i)(x, y) is the probability that an

object at location P (x, y) is captured by the ith FOV of the segment. With this

de�nition the probability is high when the query region is close to P and along the

camera's viewing direction d⃗, and when most of the FOVs within the segment point

towards P . We subsequently use this probability to help rank the results.

It is computationally complex to �nd the overlap regions between FOVs with

a pie-sliced shape. The Monte Carlo method [Metropolis 1949] is one approach

for estimating the area of a shape by generating random sampling points. In our

geo-tagged video search application, the maximum visible distance RV is usually

hundreds or thousands of meters. Thus, it is impractical to perform the overlap
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calculation with dense random sampling points. Instead, we divide the MBR of

the segment into micro-blocks of size δb × δb (δb ≪ RV ). The probability within

each micro-block can be treated as constant since δb is much smaller than RV . We

select the center point of each block as the sampling point during the Monte Carlo

procedure. All the other points inside a micro-block are treated equivalently to its

center point, i.e., the whole micro-block is considered as the overlapping area among

FOVs if the center point of this micro-block is covered by all the FOVs. Note that a

smaller δ achieves higher accuracy with this method. The current settings used in

our experiments work for most cases. The only possible di�culty is an overlap at the

border of an FOV, which usually has little or no e�ect on the �nal results and may

be unimportant to users. The tradeo� is that retrieving more accurate results will

cost more processing time and storage space. Since the probability of each micro-

block is only slightly di�erent from its adjacent micro-blocks, it is not necessary to

maintain the exact value for each one. To simplify the calculation, we quantize the

probabilistic range into several levels, which decrease as the probabilistic level falls.

Any location out of the approximate FOV model is assigned zero.

Next, we present the video segmentation algorithm based on the overlap among

micro-blocks. When parsing a video clip, the �rst FOV is selected as a reference.

Initially the probabilities of all micro-blocks within this reference FOV are calculated

and all blocks are stored in the overlap set overlapBlocks. When processing the

next FOV, blocks that fall within both FOVs are retained in overlapBlocks, while

others are moved to the set non−overlapBlocks. The probability of each block is

updated using Equation 4.6. A video segment is completed once overlapBlocks is

empty. Note that if the latest inserted FOV has no overlap with the ones ahead,

an undo procedure is carried out to guarantee that there exists overlap within a

video segment. The detailed process is shown in Algorithm 6. The overlap region

is usually very important to the user. Although this parsing algorithm is based on

a heuristic and may result in missed global POIs, it still mines the local ones. To
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overcome this limitation, a post-processing procedure is carried out when retrieving

the results during querying.

Algorithm 6: VideoSegmentation()
Input: a video clip Vi{FOVi0, FOVi1, ..., FOVim}
Output: video segments V S{Vi0, Vi1, ..., Vin} (m ≥ n)
overlapBlocks{} ← ∅, non−overlapBlocks{} ← ∅
/* FOVi0 stands for the 0th FOV in Video Vi */

for all blocks within FOVi0 do

/* Bj stands for the jth block in space */

overlapBlocks.append(Bj);

videoCount = 0;
for f=1 to m do

for all blocks Bt within FOVif do

if Bj==overlapBlocks.�nd(Bt) then
/* Bj is called a hit block */

Prob(Bj).update();

else
non−overlapBlocks.append(Bt);

move all non-hit blocks from overlapBlocks{} to non−overlapBlocks{};
if overlapBlocks{} is not empty then

V S(videoCount).append(Fif );

else

calculate MBR of the segment;
videoCount+=1;
undo for the last inserted FOV;
V S(videoCount).append(Fif );
reset all sets;
for all blocks Bt within FOVif do

overlapBlocks.append(Bj);

return V S{Vi0, Vi1, ..., Vi(videoCount)};

4.3.2 Video Segment Index Structure

Since we represent the coverage of a video segment as a spatial object we can utilize a

popular spatial index structure such as the R-tree to help e�ectively and e�ciently

search for requested videos. As described in Algorithm 6, the MBR of a video

segment is obtained once the segment is partitioned from the original video. In our

geo-tagged video search application, we construct an extended R-tree that regards

each parsed video segment as an entry. The di�erence from a standard R-tree is that
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the original video ID, the anchor of the starting frame and the segment length are

attached to the leaf nodes. In order to quickly process kNN queries, we also store the

camera location information in the leaf nodes. However, it is usually impractical

and unnecessary to store all the camera locations within a segment. We instead

use a centroid point to represent all the camera positions. The geo-coordinates

of this centroid represent the average of all the camera locations in both latitude

and longitude and we store the micro-block information in which the centroid is

located. This information is utilized to estimate the average distance between the

query and camera locations and is treated as the distance between the query and a

video segment. Additionally, the corresponding probability map of each segment is

attached to the leaf nodes as a secondary index.

The structure of the probability map is quite similar to an image. Thus, an

image compression method might be helpful to save storage space. A discrete co-

sine transform (DCT) is widely used in signal and image processing, especially for

lossy data compression. In our application, there is a tradeo� between storing the

probability map directly and compressing it using DCT. We experimented with com-

pressing the maps to a quarter of their original size and found that the probability

level error rose to at least 10%. Furthermore, a DCT calculation needs to be carried

out for each of candidate maps, which is inappropriate for an online query due to

the increasing processing time. Consequently, we decided to store the probability

map directly on the disk.

4.4 Online Query Processing

Given the o�ine pre-processing calculations described in Section 4.3, the online

query procedure is performed in two major steps. First, the result video segments

(referred to as candidates) are retrieved by searching through the R-tree. In the

second step, the �nal segments are reconstructed by combining candidates to pre-

serve video continuity. Note that our approach can retrieve videos without overlap
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calculations between the query region and the individual video frames. Also, the

probability is updated after recombination. Importantly, when presenting the results

the video segments are sorted according to their probability.

4.4.1 Searching for Segment Candidates

Utilizing the R-tree index we process both typical spatial queries (including point,

range and kNN queries) and queries with a probabilistic threshold to search for

videos in large-scale datasets. Since we use an MBR to represent the video coverage,

all the queries are processed with overlap calculations between query locations and

MBRs. Generally, for all query types, we need to search from the root to the leaf

nodes of the R-tree to �nd the video segments whose MBRs overlap with the query.

Once the candidates are obtained, the corresponding probability maps are fetched.

The basic query procedure is described in the above paragraph, while the di�er-

ences among various types of queries are as follows:

• Point Query: Once the leaf nodes containing candidates are retrieved from

the R-tree, the corresponding probability maps attached to the leaf nodes are

loaded into memory. Then the micro-block is identi�ed in which the query

point is located and the probability of that micro-block is obtained.

• Range Query: The di�erence to the point query is that the query rectan-

gle may cover more than one micro-block. Hence, the maximum probability

among all overlapping micro-blocks is selected as the result.

• kNN Query: The distance between the query and a video segment is de�ned

as the average distance between the query and all its frames. When processing

a kNN query, we approximately calculate the distance between the query point

and the centroid point of the micro-block whose information is stored in the

leaf nodes of the R-tree. Thus, we treat this as the distance between the query

and the video segment and use it to rank the results.
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• Query with Probabilistic Threshold: The basic processing of a query with

a probabilistic threshold is the same as with the above typical queries. The

di�erence lies in �ltering out the candidates whose probabilities are smaller

than the threshold and then reconstruct the candidates.

4.4.2 Candidate Recombination

As presented in Section 4.3.1, the video segmentation algorithm may result in missed

POIs. In that case, frames that capture the same POI may be parsed in two con-

secutive segments, which is not what users expect. Considering the example in

Figure 4.8, the last two FOVs of the �rst segment and the �rst three FOVs of the

second segment cover a common region. When the query is located in these regions,

the segments indexed by the R-tree may not be the optimal representation of the

results. Consequently, when the results include segments that are contiguous in the

original video, a recombination operation needs to be carried out as detailed in Al-

gorithm 7. Consecutive segments in the results are re-combined into new segments.

The procedure terminates when there are no more such segments. During this pro-

cess, the probability is also updated using Equation 4.7. The videos are then ranked

in descending order according to their probabilities. Alternatively, for kNN queries,

the videos are ranked according to their distance from nearest to farthest without

recombination.

Prob(Vij) = 1− (1− Prob(Vi)) · (1− Prob(Vj)) (4.7)

Here Vi and Vj are two consecutive segments and Vij denotes the combination of

these two segments.
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Algorithm 7: Recombination()
Input: Candidate set vSet{V0, V1, ..., Vn}
Output: Results rSet{Vr0, Vr1, ..., Vrm} (m ≤ n)
for all segments Vi in vSet{} do

if Vi.�ndAjacent() == Vj then

Vij = combine(Vi, Vj);
vSet.remove(Vi);
vSet.remove(Vj);
vSet.append(Vij);
prob(Vij).update();

else

vSet.remove(Vi);
rSet.append(Vi);

return rSet{Vr0, Vr1, ..., Vrm};

4.5 Experimental Evaluation

We performed our experiments on from Dataset1 to Dataset3. We used Dataset1

to test the functionality of HUGVid and Dataset3 to demonstrate its scalability

for large-scale applications. For all the experiments we constructed a local MySQL

database in which we stored the FOV meta-data. We inserted the MBRs of all the

parsed video segments and the relevant statistical information into our extended

R-tree and processed all types of queries based on the R-tree [Green 2010] imple-

mention by Melinda Green. We found this implementation to be very mature and

achieve excellent performance. Additionally, we treated each FOV as an object and

indexed it using the same structure to form a baseline method (BM) for comparison.

Table 4.1: The parameters used in the construction of the uncertain data model.

K0 α θε K1 σb dε δ RV

-23.237 60 ◦ 10 ◦ -0.137 300m 10m 20m 2km

In the following experiments, if not otherwise speci�ed, the micro-block size δ

was set to 20 meters, which is small compared to the camera's maximum visible

distance RV . RV may vary due to di�erent devices and resolutions. For example,

many smartphones now can record 1080p HD video. According to existing meth-
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ods [Arslan Ay 2008], the maximum visible distance of, for example, an iPhone 4S

can be estimated as 1470 meters since its CMOS sensor size is 1/3.2 inches and its

focal length is 35 mm. To make our approach robust with videos captured from

di�erent devices, we set the value of RV as 2 km. The angle α may be calculated

with the image sensor size and the camera focal length of the lens [Graham 1965].

However, it is di�cult to obtain the focal length of the camera on a mobile device

and hence to calculate the precise value of α. Due to videos being captured with

di�erent smartphones, α might vary among di�erent devices. Therefore, we use a

large, practical value for α, which is set to 60 ◦. The values of θε and dε are obtained

from real-world data. We manually checked GPS accuracies in our data and found

that over 86% of GPS errors fall within 10 m (the GPS error range can be collected

from GPS raw data), and that over 90% of the compass reading errors are less

than 10 ◦. Other parameters, i.e., K0 and K1 are set to satisfy a small probability

event when constructing the uncertain data model (presented in Section 4.2.1). The

detailed parameters are summarized in Table 4.1.

4.5.1 Experiments with Dataset1 and Dataset2

Since the range and kNN queries are representative among the query types, we

used the collected data to process these queries and demonstrate the functionality

of HUGVid. We selected �ve landmark places in Singapore (the Marina Bay Sands,

the Merlion, the Esplanade, the Singapore Flyer, and the One Marina Boulevard)

and two in Chicago (Chicago City Hall and Bulter Field) for range queries, which we

refer to as Q1 to Q7. Within each query region, one representative point is selected

for the kNN queries. Figure 4.9 shows two samplings of frames in the Marina Bay

Sands region. As shown in Figure 4.9(a), the query area is the solid rectangle

shown on Google Maps and the 3D image extracted from Google Earth illustrates

what the videos are assumed to capture. The ten surrounding images are sampling

snapshots from the result video segments with their respective probabilities, pinned
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to their camera locations. The �gure nicely illustrates how frames with higher

probabilities capture the target landmark well and at close range while the ones

with lower probabilities only capture parts or none of the target, or at a far distance.

Figure 4.9(b) shows a sampling of frames of Q2. Observed from the sampling frames,

only the results with probability larger than 0.6 can display a clear view of the

Merlion. The frames with the probability value of 0.53 and 0.47 are captured from

a relatively closed position but due to obstruction from the other buildings, the

Merlion disappears in the frame. The frames with the probability value less than

0.4 are actually capture the region where the Merlion stands, but it is di�cult to

tell where the Merlion is due to its small size from the frame.

Precision and recall. Next, we studied the accuracy and redundancy of HUGVid.

We manually watched all the videos and recorded the IDs of video frames which

showed the query location. This was considered as the ground-truth (GT for short).

We then compared the video segments retrieved using HUGVid with the GT. The

precision and recall of HUGVid is presented in Table 4.2. The high recall shows

that HUGVid retrieves almost all the video scenes in the GT. Conversely, it also

includes some FOVs not in the GT, which leads to the low value for precision.

The reason is two-fold: �rst, the probabilistic method �nds more possible FOVs

using the uncertain data model, and second, extra FOVs are included during video

segmentation. Although more FOVs are found by HUGVid, it returns only half of

the video segments after segment recombination.

Table 4.2: The precision and recall of HUGVid with di�erent queries.

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7

Precision 0.7675 0.4821 0.6968 0.6973 0.5644 0.6749 0.6518
Recall 0.9976 0.9948 0.9971 0.9967 0.9959 0.9742 0.9655

User study. It is di�cult to �nd an objective method to evaluate the query results

of searching visual content and perform ranking. Therefore, a user study is an ap-

propriate methodology to evaluate how well our approach satis�es the user perspec-
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tive. Our study involved 21 persons (11 females and 10 males). The participants,

which included students and professionals working in di�erent �elds (e.g., computer

science, biological engineering, and public services), were familiar with the query

region. We processed Q1 to Q5 and then selected �ve di�erent video segments

(overall about 30 minutes) according to their probabilities from each query result.

We chose segments of di�erent probabilistic levels, e.g.,one segment with a proba-

bility higher than 0.8, one with a probability higher than 0.6 and lower than 0.8,

and so on. This made it easy for the users to di�erentiate. We ranked these �ve

segments according to their probabilities and scored them in descending order. The

participants were then asked to watch these videos and rank the segments according

to the time duration, the position, and the integrality of the queried place appear-

ing in the scene, while ignoring the video quality, the weather and the time. The

HUGVid ranking was then compared with the user ranking.

Table 4.3 presents the comparison between ranking by the algorithm and ranking

by the users from Q1 to Q5. The �rst row shows the score assigned by HUGVid

while the last two rows are statistics from the user ranking. We then presented all

the �ve query results: Q1 targets a tall and wide landmark, Q2 targets at a small

statue, Q3 targets at a theater, Q4 target at a sky wheel, while Q5 targets at a

tall o�ce building. The ranking between HUGVid and the users for Q1 does not

exactly match, especially for the resulting Video 1, even though Video 1 captures

Q1 from a close location. Even users disagreed on Video 1: some chose it as their

favourite while others disliked it. The reason is that for a large building, some

users desire to watch a panoramic view while others wish to view an up close shot

with details instead. Conversely, for targets that are not so large (e.g., Q2, Q3 ),

HUGVid shows consistent results. The scores given by the users are almost the

same as those by the algorithm. Moreover, the low standard deviation indicates

that most users agree with the manner in which HUGVid ranks videos. Although

Q4 is also very large, the algorithm score still satis�es the users' perspectives at
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the higher score interval (i.e., the score of 4 and 5) but not exactly matches at the

lower score interval. The reason is that the most interesting part of the Singapore

Flyer halls in the air, people prefer video segments captured nearby. It makes not

much di�erence to people when segments are recorded from far away, the score of

which falls into the lower score interval. The score for Q5 from algorithm ranking is

quite di�erent from that from users' evaluations due to the obstructions: there exist

a few buildings in front of the One Marina Boulevard building so that the targeted

building is hidden behind.

Table 4.3: Scores from ranking by the HUGVid algorithm and by the users (1 �
least, 5 � most relevant).

Q1 V1 V2 V3 V4 V5
Algorithm score 5 4 3 2 1
Average score 3.05 4.24 3.33 2.38 2.00

Standard deviation 1.717 1.091 0.966 0.973 1.140
Q2 V1 V2 V3 V4 V5

Algorithm score 5 4 3 2 1
Average score 4.86 4.00 3.00 1.90 1.24

Standard deviation 0.359 0.632 0.447 0.539 0.539
Q3 V1 V2 V3 V4 V5

Algorithm score 5 4 3 2 1
Average score 4.52 4.29 3 1.86 1.33

Standard deviation 0.602 0.561 0.548 0.478 0.913
Q4 V1 V2 V3 V4 V5

Algorithm score 5 4 3 2 1
Average score 4.57 4.10 2.24 2.86 1.23

Standard deviation 0.598 0.768 0.831 0.910 0.539
Q5 V1 V2 V3 V4 V5

Algorithm score 5 4 3 2 1
Average score 3.00 3.71 4.34 2.52 1.43

Standard deviation 1.517 0.845 0.796 1.030 0.746

Approximate distance. We also evaluated HUGVid on its ability to estimate the

distance between the query and the video segments in a kNN query. BM shown in

Figure 4.10 represents the average distance calculated using the geo-coordinates of

the query point and all the camera locations. The resulting 311 video segments are

sorted by ascending distance from BM. Comparing the four approximate distances
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Figure 4.10: Comparison between the distance from BM and HUGVid with di�erent
micro-block sizes.

estimated by HUGVid with di�erent micro-block sizes, the most accurate results

are obtained from HUGVid with the smallest micro-block size. Since we utilized the

position of a local POI to help estimating the distance, the errors are proportional

to the block-size. In order to achieve accurate results, we chose to use 20 m as the

default micro-block size (δb). There exist a few outliers where the distance from

HUGVid signi�cantly di�ers from that of BM when δb is no larger than 50 m. We

manually checked those videos and found that all the segments with outliers are from

the same unparsed video. In that video, the GPS raw data is extremely inaccurate,

jumping from one location to another about 1 km away and then jumping back to

its previous location. This situation is very rare and outside of the common GPS

error range. Moreover, the reason that the outliers with di�erent micro-block sizes

appear in di�erent segments is that di�erent micro-block sizes lead to di�erent video

segmentation in some situations.

4.5.2 Experiments with Dataset3

All the experiments are conducted on a server with two quad core IntelR⃝ XeonR⃝

X5450 3.0 GHz CPUs and 32 GB memory running Linux 2.6.18. Among all the
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Figure 4.11: Comparison of the index sizes between BM and HUGVid with di�erent
micro-block sizes.

query types that our approach supports, the system workload for range queries is

the heaviest. Therefore, we use range queries to present the performance of HUGVid

on the large-scale dataset. In this experiment, the page and cache sizes are set to 4

kB, and we store one R-tree node per page. We generated 10,000 range queries of

500 m × 500 m rectangles within the 75 km × 75 km test region and counted the

cumulative processing time and the overall number of page accesses for answering

10,000 queries.

We conducted experiments with di�erent video lengths. Figure 4.11 shows the

in-memory index size of di�erent methods with di�erent test sets. The index size

of all the methods grows linearly, but the rate for HUGVid is much smaller than

for BM. Although the video segmentation is carried out using the Monte Carlo

method with di�erent micro-block sizes, the segmentation is still mostly related

to the spatial properties of the video itself. Hence the in-memory index sizes of

HUGVid with di�erent micro-block sizes are almost the same. The main di�erence

is in the storage of the secondary index: it occupies more disk space when the

micro-block size is smaller. However, as stated in Section 4.5.1, one extra bene�t

is that it achieves more accurate results. As shown in Figure 4.12, HUGVid with
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di�erent micro-block sizes performs faster and accesses fewer pages than BM. Even

when HUGVid involves video recombination and video ranking, it still answers the

queries quickly, with an execution time of only about 12% of BM. We conclude from

these experiments that HUGVid performs well on this large-scale dataset. Moreover,

it is bene�cial to select a relatively small micro-block size while the exact value may

depend on di�erent applications.
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Figure 4.12: Comparison of processing time and page accesses between BM and
HUGVid with di�erent micro-block sizes.
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4.6 Summary

We explored the challenge introduced by naturally noisy data from GPS and compass

sensors, as well as the possible obstacles appearing in the video scenes, which can

result in inaccurate geo-descriptions of video scenes. This, in turn, may lead to

undesirable query results for geo-tagged video searches. To address this issue, we

proposed an uncertain data model to represent individual and sequences of �eld-of-

views and �nally constructed a light-weight approximate model for video segments

based on sensor meta-data. With this architecture, probabilistic queries can be

executed and upstream GIS tasks prioritized based on the most promising results.

Experiments show that HUGVid achieves high recall and can be deployed in large-

scale applications.

Compared from the user study results, a drawback of this work is that the ranked

query results did not exactly match users' preference when querying large volume

building. Therefore, we plan to improve the video ranking algorithm so as to satisfy

users' perspective. Moreover, It is still di�cult to evaluate the probability when

obstacles appear. As a result, another possible future work is to detect obstacles

utilizing content-based method.

98



Chapter 5

Scheduling of Video Transcoding

for DASH in a Cloud Environment

5.1 Introduction

Recently, Over-The-Top (OTT) streaming, i.e., delivering video and audio content

through the public Internet infrastructure rather than proprietary infrastructures

such as cable networks, has become an active topic in the broadcasting and content

delivery communities. OTT in particular refers to content that arrives from a third

party, such as Net�ix 1 and Hulu 2, and is delivered to an end-user device, leaving the

Internet provider responsible only for transporting packets. The �nal link to end-

users is usually handled with HTTP streaming, or other proprietary technologies.

Consumers can access OTT content through various Internet-connected devices such

as desktops, laptops, tablets, smartphones, TVs and gaming consoles (e.g., Xbox

360, PlayStation, Wii). The variety of devices requires the video hosting services to

provide di�erent bitrates of the original videos.

Moreover, the wide-spread availability of smartphones (and increasingly tablets)

and the rapid improvement of wireless networks (3G/4G, or WiFi) have enabled the

feasibility of frequent video streaming through mobile devices. An important con-

sideration is that the bandwidth for mobile devices varies depending on location and

time. The changes in bandwidth in�uence the quality of video streaming. For exam-

1http://www.net�ix.com/
2http://www.hulu.com/
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ple, assume that all available bandwidth of a mobile client is used to watch a video.

When the bandwidth increases, it has the capacity to watch a higher quality video.

Conversely, when the bandwidth decreases, the playback would be interrupted due

to insu�cient bandwidth for the current bitrate. Therefore, to guarantee smooth

playback and enable streaming of the highest possible quality, it is essential that

media streaming can adapt to the current network bandwidth and conditions. Dy-

namic Adaptive Streaming over HTTP (DASH) is designed to provide high quality

streaming of media content over the Internet delivered from conventional HTTP

web servers. Figure 5.1 illustrates the architecture of DASH. Media content is en-

capsulated into a parallel sequence of segments with a number of di�erent bitrates

so that an MPEG DASH client can automatically and seamlessly select the next

segment to download and play back based on current network conditions.

The popularity of video streaming has highlighted video transcoding as a chal-

lenging problem. In recent years, cloud computing has become an e�ective paradigm

for many applications. It is a technology aimed at sharing resources and providing

various computing and storage services �exibly over the Internet. For multimedia

applications and services, there are strong demands for cloud hosting because of

the signi�cant amount of computation required for serving millions of Internet and

mobile users simultaneously [Zhu 2011]. The complex nature of video transcoding

(e.g., CPU-intensity) and the high demand requirements of streaming have enabled

cloud computing to be uniquely suitable for video transcoding, especially in the

context of large-scale video hosting systems. Therefore, transcoding is preferably

executed in a powerful cloud environment, rather than on the source computer

(which may be a mobile device with limited memory, CPU speed and battery life).

In order to support live streaming of media events and to provide a satisfactory

user experience, the overall video transcoding completion time should be minimized.

In the rest of the chapter we refer to this simply as the video completion time or

the completion time. Minimizing the video completion time is desirable for sev-
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Figure 5.1: A general architecture of DASH.

eral reasons. Obviously it is crucial not to exceed the waiting tolerance of clients.

Because of the high computational complexity, scheduling video transcoding jobs

in a cloud environment to minimize the processing latency and satisfy users' ex-

pectations is a challenging problem. Furthermore, it is important to balance the

workloads among all the processing nodes in the cloud. In this work we propose a

dynamic scheduling algorithm for DASH video transcoding designed for cloud envi-

ronments. The scheduler makes use of the estimation of the video transcoding time

(V TT ). Jobs are distributed to free processors when they are not urgent, but to

the fastest processors if video watching requests are pending. Experimental results

show that the scheduler performs very well in executing video transcoding jobs and

balancing the workload among all the processors. The main contributions of our
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method are summarized as follows:

• We introduce a video transcoding time (V TT ) estimation, with respect to

video segment duration and targeted bitrates, that is modeled based on mea-

sured statistics and probabilistic theory.

• We incorportate a job distrmechanism among processors that achieves load

balancing among the processing resources.

• The scheduler includes workload and status monitoring for each processor,

and dynamically selects the fastest processors to run high-priority jobs when

videos have pending viewing requests.

• The scheduler dynamically optimizes the video transcoding mode (V TM)

when the number of processors is insu�cient to support all video watching

requests, so that the processors prioritize transcoding of the requested bitrates

and leave other bitrates to be processed later.

The rest of this work is organized as follows. Section 5.2 models the V TT esti-

mation methodology considering the video duration. The scheduling algorithm and

evaluation metrics are detailed in Section 5.3. Section 5.4 presents the experimental

results and analysis. Finally, Section 5.5 summarizes this work.

5.2 Transcoding Time Estimation

We �rst introduce our approach of estimating the video transcoding time (V TT )

from the original stream to other qualities, i.e., di�erent bitrates. For DASH, the

server needs to prepare multiple bitrates and multiple formats of the originally

uploaded videos. Since the time for the video transformatting jobs is only a few

milliseconds, we focus on scheduling the video transcoding jobs in this work. With-

out loss of generality, we consider two reduced quality streams, namely encoding the

original video segments at a medium bitrate (768 kbps with resolution of 480×360)

and low bitrate (256 kbps with resolution 360×240), respectively. The scheduling
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algorithm is also applicable to a larger number of targeted bitrates. The scheduler

will hence distribute video transcoding jobs (V TJ) based on the estimation of V TT .

The V TT includes the sum of the following two parts: the time for the �le transfer

between the storage repository and the processing nodes and the time for the actual

transcoding procedure. In order to model the estimation of V TT given the video

duration, we measure the actual V TT (denoted as V TTmea) for statistics on a set

of video segments in the cloud environment.

5.2.1 Con�guration of the Cloud Environment and Description of

the Testing Dataset

To test the performance of the scheduler in di�erent environments, we set up two

di�erent cloud environments: Cloud1 and Cloud2. Cloud1 is a shared cloud envi-

ronment where the used processors could also be accessed by other users and used

to run other CPU or memory intensive jobs. It includes one master node and 25

processing nodes. All the nodes are running CentOS 5.5 and can access a shared

storage system. The master node is used to run the scheduler with two quad core

Intel R⃝ Xeon R⃝ E5440 2.83 GHz CPUs and 16 GB of memory. The processor nodes

used to run V TJs consist of two quad core IntelR⃝ Xeon R⃝ E5620 2.4 GHz CPUs

and 24 GB memory.

Cloud2 is a private cloud environment where all the computing resources can

be fully utilized by the scheduler. It includes ten commodity PCs connected with

a high speed gigabit network, where one PC was the master node and the others

are the processing nodes. Each PC contains an IntelR⃝ Quad Core R⃝ 2.66GHZ CPU,

4GB memory and is running under CentOS Linux 5.6.

The testing dataset used to measure the parameter of the cloud environment

includes 11, 194 video segments from 339 videos which we collected with Android

phones and are coded in MPEG-4 with resolution 720x480. These videos are seg-

mented at the mobile clients and uploaded to remote servers [Seo 2012]. For smooth
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and seamless rendering of the segments, each contains an integral number of Group-

Of-Pictures (GOP). In the con�guration of the mobile application, the segment

durations were chosen as 3, 4 or 5 seconds, and the duration of the last segment

of each video varies from about 0.2 second to 6.5 seconds. On the remote servers,

all the segments are transcoded and transformatted with the open source software

FFmpeg [�m ].

5.2.2 VTT Estimation Methodology

To calculate the V TT of encoding individual segment to di�erent bitrates in dif-

ferent cloud environment, the V TJs are processed in both Cloud1 and Cloud2. In

order to avoid the e�ect of caching on the V TJs, we deployed the V TJ for low

and medium bitrates on di�erent processors, which could be fully utilized without

being occupied by other jobs. To minimize the runtime bias (e.g., the variability of

the connection speed between processors and the storage repository, and individual

processing time) on V TJs, we ran these jobs 10 times across di�erent processors

and calculated the mean values of V TT . Figure 5.2 presents the measured V TT to

low and medium bitrates, respectively, as well as the corresponding �tting curves

(denoted as V TTcal), with respect to the video segment duration. We use MatlabR⃝

to apply the curve �tting procedure. We tried di�erent types of �tting curves and

found that the standard deviation on the V TT between the estimated value from

the power �tting curve and the measured one from statistics is minimum, compared

to other �tting curves. Therefore, we choose the power �tting curve to estimate the

V TT with respect to the video duration. The �tting curves can be calculated as

formulated in Equation 5.1.

V TTcal (dur(VBk
)) = a · (dur(VBk

))b (5.1)

where dur(VBk
) indicates the video duration, and a and b are the �tting coe�-

cients. In the current con�guration of Cloud1, the values of a and b are shown in
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Equation 5.2:

[a b] =

 [0.798 0.621] (low)

[1.152 0.700] (medium)
(5.2)
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Figure 5.2: V TT statistics and the �tting curves to di�erent bitrates with respect
to video duration in Cloud1.

As shown in Figure 5.2, the actual V TT s are always di�erent from the value

calculated by the �tting curve for most of the time. In order to match the V TT

estimation with the measurements, we calculate the bias of the measured V TT with

respect to the calculated V TT . The normalized error for each V TT is calculated as

shown in Equation 5.3:

Terr =
V TTmea − V TTcal

V TTcal
(5.3)

The distributions of the value of Terr follow a Gamma distribution (shown in Equa-

tion 5.4):

Prob(T̃err) ∼
1

GGk
θ

· 1

Γ(Gk)
· T̃err

Gk−1
· e−

T̃err
Gθ (5.4)
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where T̃err = round(Terr · 100). Overall, we calculate Prob(T̃err) over the whole

dataset for each individual V TT and compute the value of Gk and Gθ, which are

the coe�cients of the Gamma distribution (Table 5.1):

Table 5.1: The coe�cients of Gamma distribution in Cloud1.

Gk Gθ

Low bitrate 8 2.4
Medium bitrate 5.8 3.4

Based on this, the estimated V TT can be calculated as:

V TTest = V TTcal + V TTerr = V TTcal(1 + Terr) (5.5)

Figures 5.3(a) and 5.3(b) illustrate the distribution of T̃err to low and medium

bitrates, respectively.

Ideally, when a processor is not running other jobs, the V TT of a given segment

follows the calculation in Equation 5.5. However, due to various reasons (e.g., shared

usage of CPU and/or memory, as well as the congestion of the network), the actual

V TT might be signi�cantly di�erent from the estimated value. Since the scheduler

works based on the V TT estimation, this situation would a�ect the performance of

the scheduler, especially when processing videos with viewing requests. Practically,

the scheduler compares the actual V TT with the estimated value and treats the

di�erence between these two values as the feedback from the processor that ran the

V TJ . This feedback helps to re�ect the current working status (e.g., indicating

the transcoding speed and the workload of that processor) of that processor. For

example, if the actual V TT is twice of the estimated V TT , it is considered as that

only half of the computing resources from that processor can be utilized to run the

V TJ . The scheduler will thus distribute V TJs, also considering the feedback from

each of the processors until a new feedback is obtained.

We also follow the same method introduced above to calculate the V TT of
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Figure 5.3: The distribution of T̃err in Cloud1.

encoding individual segment to di�erent bitrates in Cloud2. The coe�cients of the

�tting curves and the Gamma distributions of Cloud2 are summarized in Table 5.2,

and the V TT statistics and �tting curves to di�erent bitrates are shown in Figure 5.4
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Table 5.2: The coe�cients of the �tting curves and the Gamma distributions used
in Cloud2.

low bitrate medium bitrate
a 0.3068 0.4523
b 0.5655 0.518
Gk 7.8 2.5
Gθ 5.5 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6  7

V
id

eo
 tr

an
sc

od
in

g 
tim

e 
(s

)

Video duration (s)

low bitrate
medium bitrate

low bitrate fitting curve
medium bitrate fitting curve

Figure 5.4: V TT statistics and the �tting curves to di�erent bitrates with respect
to video duration in Cloud2.

5.3 Scheduling Algorithm

This section introduces the dynamic scheduling algorithm for video transcoding

with DASH in a cloud environment. Figure 5.5 shows the overall architecture of

the framework. On the master node, the job scheduler maintains two queues: one

queue keeps all the normally uploaded jobs (referred as NQueue), while the other

one maintains the jobs with high-priority (referred as PQueue). When a video is

uploaded to the front-end web interface (referred to as a job), a video transcoding
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request is generated by the web interface and forwarded to the master node. This job

is then inserted into NQueue. At the same time, the uploaded video is stored in the

video storage repository. The job scheduler assigns jobs once any of the processors

is available according to its scheduling strategy. When the processor gets V TJ

from the job scheduler, it loads the targeted segment from the storage repository

and saves the encoded segments back after �nishing the V TJ . When a mobile

client sends the video retrieval request (i.e., for viewing) to the web interface, the

web interface checks whether the required video segment is available for viewing.

If so, an HTTP connection is set up between the mobile client and the storage

repository for streaming. Otherwise, the request is converted to a high-priority job

for the targeted video and this job will be inserted into PQueue. Note that the

job scheduler keeps monitoring the transcoding speed of each processor according

to the feedback. It will then assign enough number of processors, which are the

fastest among the ones run V TJs from NQueue, to process V TJs from PQueue.

The calculation on the number of processors needed to satisfy the job migration

from NQueue to PQueue is detailed in Section 5.3.2.

5.3.1 Evaluation Metrics

To evaluate the performance of the scheduler, the following evaluation metrics are

considered.

Startup latency (Ls): This metric measures the time interval from when the

video segment is started to be transcoded until the video is available for playback.

Number of quality switches (NQS): The playback will switch to other bi-

trates if the subsequent segment of the current bitrate is not available, or the network

conditions change.

Number of rebu�ering events (NRE): The video client has to pause the

playback of both audio and video during rebu�ering if there exists no lower bitrate
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to switch to.

Mean rebu�ering time (Tmr): During rebu�ering, the video is paused until

the video can be restarted. The duration of the rebu�ering period varies. The longer

the rebu�ering period is, the worse the video streaming performs.

Mean Opinion Score (MOS): We apply the calculation from Mok et

al. [Mok 2011] to express users' quality of experience (QoE). The metric is based on

a regression analysis to acquire the relationship between QoE and the application

quality of service (QoS). The MOS can be calculated as shown in Equation 5.6:

MOS = 4.23− 0.0672Ls − 0.742(NQS +NRE)− 0.106Tmr (5.6)

Load Balance Factor (LBF): This measures the balance among di�erent

processors. We use the standard deviation of the overall V TT of all the processors

normalized by the average total V TT to estimate the load balance factor.

LBF =

√√√√√ 1

Npro

Npro−1∑
i=0

Tpro(i) −
1

Npro

Npro−1∑
i=0

Tpro(i)

2

/

 1

Npro

Npro−1∑
i=0

Tpro(i)


(5.7)

where Npro denotes the number of processors in the cloud environment and Tpro(i)

indicates the overall running time of processer i.

5.3.2 Scheduler

As stated in Section 5.3, the job scheduler on the master node maintains two queues:

NQueue and PQueue. All jobs are initially inserted into NQueue, and jobs are mi-

grated to PQueue only if the corresponding videos are requested for watching. Fig-

ure 5.6 illustrates the switching of jobs between NQueue and PQueue. Figure 5.6(a)

shows an example of the initial state of NQueue and PQueue at time t. Initially,

Videos A to D are uploaded to the server and are waiting to be transcoded. Utilizing
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the methods introduced in Section 5.2, jobs in NQueue are sorted according to their

estimated V TT ascendingly (shown in Algorithm 8). Once new video segments are

uploaded to the server, the scheduler calculates the estimated job completion time

and inserts the related job into NQueue at the correct location. In our current ap-

proach, we publish the video to be available for watching when the beginning Lva

seconds of a video are transcoded. As shown in the example of Figure 5.6, once

Segment VB1 is under request, all of its subsequential segments from Video B (VB)

are assigned to be high-priority and transferred to PQueue (shown in Figure 5.6(b)

and lines 10-14 of Algorithm 9). Note that the jobs in PQueue are sorted by the

their deadlines ascendingly. When one of the subsequent segments (e.g., VBm+1) is

required by another client, itself and the subsequent jobs are reinserted into PQueue

according to the updated deadlines (shown in Figure 5.6(c) and lines 15-18 of Algo-

rithm 9).

(a) Initial state.

(b) VB1 is under request.

(c) Another video retrieval request on VBm+1

Figure 5.6: Illustration of inserting jobs into the NQueue and PQueue.

De�nition 1 The deadline of a job.

When a video segment is requested to be watched by end-users, its corresponding and
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subsequent jobs are selected as a high-priority jobs. To guarantee smooth playback

for video streaming, the V TJ needs to be accomplished before its previous segment

is played to the end. The predicted time for its previous segment to be played to

the end is de�ned as the deadline of a job (referred as JobDL). As presented in the

above paragraph, we publish a video as available for watching after the beginning Lva

seconds of the video are transcoded. Therefore, JobDL equals the cumulative video

duration of all its previous segments. Considering the example of Figure 5.6(b),

Equation 5.8 shows the calculation of JobDL given a required job on video segment

VB1 and all its subsequent segments.

JobBi
DL =

i−1∑
k=1

(dur(VBk
) (i > 1) (5.8)

where dur(VBk
) is the duration of VBk

.

Algorithm 8: videoUpload()
Input: An uploaded video segment VI j

JID = assignID(VI j); // assign job ID to VI j

test = timeEst(duration of VI j); // transcoding time estimation

insert2NQ(JID, test); // insert into NQueue according to time by SJF

Algorithm 10 presents the proposed scheduling strategy. The basic idea is to

transcode the jobs in both NQueue and PQueue simultaneously, guaranteeing the

smooth playback for videos under request. A segment can be transcoded with �ve

di�erent modes (denoted as V TM): trancoding to low and medium bitrates simul-

taneously (0); transcoding to low bitrate �rst and then medium (1); transcoding to

medium bitrate �rst followed by low (2); only transcoding to low bitrate (3); and

only transcoding to medium bitrate (4). If there exist no video viewing requests,

then all the processors are assigned to run jobs of NQueue. Jobs in NQueue are

transcoded with V TM setting 0. The number of processors necessary to run a high-

priority job needs to satisfy the following condition: the V TT of the next segment

should be smaller or equal to the playback time (i.e., video duration) of its previ-
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Algorithm 9: videoUnderRequest()
Input: Video segment VI j is under request,
The request bitrate is Breq

for j ≤ ĵ ≤ m do

JID = getID(VI ĵ); // get the job ID

if JID is accomplished then

send the link to the HTTP-client;

else if JID is being processed then

wait until JID is accomplished;
send the link to the HTTP-client;

else if JID is in NQueue then
tdl = calDL(JID); // calculate the deadline of JID
insert2PQ(JID, Breq, tdl); // move JID to PQueue

removeNQ(JID); // remove JID from NQueue

else

/* JID is in PQueue */

tdl = calDL(JID);
updatePQ(JID, Breq, tdl); // reinsert JID into PQueue and

remove the old entry

ous segment. To minimize the bias on V TT estimation, we assign one additional

processor to run each high-priority job. For example, when one video VB1 is un-

der request, the scheduler calculates the number of processors (referred to as Npr)

needed in order to ensure smooth playback (shown in Equation 5.9) and decides

to follow V TM (chosen from 1 or 2) according to which bitrate of video is under

request. Only when not enough processors are available to run high-priority jobs

will the scheduler switch the V TM (1 → 3, 2 → 4 accordingly) to minimize the

V TM , prepare for the required bitrate �rst and leave the other bitrates afterwards

when the system is under a lighter workload.

Npr =
⌈
timeEst(dur(VBk

))

dur(VBk−1
)

⌉
+ 1 (k > 1) (5.9)

The scheduler will then assign this number of processors to run jobs in PQueue

when they are available. The scheduler keeps monitoring the work status of all the

processors, as well as the jobs in NQueue and PQueue, and adjusts the processors
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to run jobs in either NQueue or PQueue according to the current workload. For

practical purposes, the scheduler also monitors the system load (e.g., CPU and

memory usage) of each processor and �nds the fastest processor to run jobs in

PQueue.

Algorithm 10: scheduler()
Input: Processor lists: ListPQ{}, ListNQ{}
job queues: NQueue{}, PQueue{}
for all available processors do

ListNQ.insert(PID); // assign all processors to run jobs in

NQueue

num_job = # of requested jobs;
num_pro = cal_pro(num_job, V TM); // calculate the number of

processors reserved to run high-priority jobs for smoothly

playback

i = 0;
/* reserve num_pro processors to run high-priority jobs */

while i ≤ num_pro do
�nd the fastest PID;
if PID in NQueue is available then

ListPQ.insert(PID);
ListNQ.delete(PID);

i++;

if not enough number of PID then

switch V TM according to the required bitrate;
num_pro = cal_pro(num_job, V TM);

while !NQueue.isEmpty() || !PQueue.isEmpty() do
if ∃PID in ListNQ is available then

assign(PID, NQueue.pop());

if ∃PID in ListPQ is available then
assign(PID, PQueue.pop());

5.4 Experimental Evaluation

To test the performance of the scheduler in di�erent environments, both Dataset4

and Dataset5 are used.
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5.4.1 Experiment with Dataset4

We report on the performance of the scheduler with respect to segment completion

time, MOS, load balance and playback smoothness with Dataset4.

5.4.1.1 Experiment Con�guration

To test the functionality whether the scheduler can dynamically identify the fastest

processor to run high-priority jobs, all the experiments were conducted in Cloud1.

The used processors could also be accessed by other users and used to run other CPU

or memory intensive jobs. The con�guration of Cloud1 were earlier presented in

Section 5.2.1. We used Dataset4 to test the performance of the proposed scheduling

algorithm.

5.4.1.2 Performance Evaluation

In the following experiments, we use two scenarios which commonly happen among

video hosting services: (1) the videos (e.g., historical videos) are only uploaded

to the server and none of them is being watched before all alternative bitrates

are transcoded; and (2) the videos (usually news clips and live sports events) are

watched shortly after being uploaded and not all required bitrates are prepared yet.

Table 5.3 summarizes the parameters used in the experiments.

Scenario 1: No video watching requests. In this scenario, we tested the

performance of the scheduler on the process of the videos being uploaded to the cloud

and none of them being requested for watching by end-users. Since no video watch-

ing requests arrived, all the segments are transcoded to medium and low bitrates

simultaneously, which means that each segment needs to be transferred between

the storage repository and the processors once. The video uploading streams are

generated by Mi video uploaders and each of them submits one segment every ∆t

seconds until all the segments are uploaded to the server. The arrival time of the

�rst uploaded segment from each uploader follows a Poisson distribution with mean
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Table 5.3: Parameters used in the experiments to analyze the system capacity in
Cloud1 with Dataset4.

Parameters Con�gurations
Stream 1 (uploading) MPEG-4 video, AAC audio
Number of uploaders (Mup1) 6
Uploading frequecy (∆t) 1 segment per second

Stream 2 (uploading) MPEG-4 video, AAC audio
Number of uploaders (Mup2) 7
Uploading frequecy (∆t) 1 segment per second

Stream 3 (uploading) MPEG-4 video, AAC audio
Number of uploaders (Mup3) 8
Uploading frequecy (∆t) 1 segment per second

Mean inter-arrival time (λ) 50 seconds
0: low and medium bitrates together
1: �rst low then medium bitrate

Video Trans. Manner (V TM) 2: �rst medium then low bitrate
3: only low bitrate
4: only medium bitrate

Video available latency (Lva) 5, 10, 15 seconds
Targeted video bitrates (Bitr)
Medium bitrate 480×360, 768 kbps
Low bitrate 360×240, 256 kbps

Request arrival rate (Nwr) 5 per second

inter-arrival time of λ = 50 seconds.

We �rst analyze the system capacity by comparing the latencies of uploading

Streams 1 to 3. Figures 5.7(a), 5.7(c), and 5.7(e) show the number of segments

received at the server side per second, and for each stream, the server works at the

maximum workload for a period of time. Figures 5.7(b), 5.7(d), and 5.7(f) show

the latency (both the queueing time and the completion time) of each uploaded

segment for Streams 1 to 3, respectively. When the maximum arrival rate of seg-

ments is 6 (Figure 5.7(b)), the queueing time of each segment is fairly small and

the completion time also remains less than 10 seconds during the �rst 50 minutes.

We can conclude that receiving six segments per second is within the capacity of

the current system, and the scheduler can support near-live streaming because of

the small segment completion latency. Figure 5.7(d) shows that when the maximum
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arrival rate increase to 7, both the queuing time and the completion time for the

segments grow. This indicates that the workload in Stream 2 exceeds the system

capacity. The uploaded segments start to queue up and the queue size grows as

time elapses. Compared with the latency when the arrival rate is 7, Stream 3 (Fig-

ure 5.7(f)) overloads the system more as the growth rate of the latency is larger than

that of Stream 2. The latency decreases as soon as the workload is smaller than

7. One important observation is that there exist two situations of completion time

increase: (a) the completion time increases with the same pattern as the queueing

time (shown in Figures 5.7(d) and 5.7(f)), and (b) the completion time increases

while the queueing time remains a small and relatively constant value (illustrated

in the last minutes of Figures 5.7(b), 5.7(d), and 5.7(f)). Situation (a) is due to the

growing queue size as the segment uploading rate is larger than the system capacity

and hence it represents an accumulation of the previous transcoded segments. On

the other hand, situation (b) is due to the long duration of V TT for speci�c seg-

ments. For all these three streams, V TT of the last segments are almost the same.

Consequently, the system capacity is sensitive to the V TT of each segment. The

scheduler needs to be smart enough to �nd the fastest processors to run urgent jobs.

Table 5.4: Statistics on LBF for each stream in Cloud1 with Dataset4.

Stream LBF
Stream 1 0.0199
Stream 2 0.0036
Stream 3 0.0132

We next present the load balancing results of the system. Table 5.5 illustrates

the statistics of all processors to transcode videos in Stream 2 as an example. From

the table, we observe that although the number of jobs completed by each processor

varies from 550 to 946, the overall V TT for each processor only di�ers little. Some

processors execute more jobs and transcode a higher duration of videos than others.

The same situation occurs when uploading Stream 1 and Stream 3. We can conclude
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that the scheduler performs well with respect to load balancing. Table 5.4 summa-

rizes the value of LBF for processing Streams 1 to 3. When comparing the LBF of

these three streams, the scheduler achieves the best load balance when transcoding

Stream 2. It is inferred that the scheduler works well when the system reaches its

full capacity, and the performance decreases by a small percentage when the system

is less or more loaded.

Table 5.5: Statistics on each processor for Stream 2. The similarity of the overall
V TT shows that the workloads among processors are well balanced, while the nor-
malized V TT and the overall duration di�erentiate the processing capacity of each
individual processor in Cloud1 with Dataset4.

Overall Mean Median Overall
Node ID # of jobs V TT (s) normalized normalized duration (s)

V TT (s) V TT (s)
1 810 2963.9 0.889 0.811 3628.2
2 832 2965.2 0.857 0.788 3737.4
3 718 2973.4 1.016 0.913 3183.2
4 860 2957.9 0.832 0.745 3874.6
5 946 2954.4 0.745 0.682 4278.3
6 797 2968.1 0.927 0.823 3543.2
7 777 2967.5 0.917 0.830 3498.9
8 921 2951.6 0.797 0.701 4110.8
9 725 2958.0 0.993 0.898 3234.5
10 714 2957.7 1.003 0.910 3163.8
11 727 2964.9 1.005 0.894 3238.7
12 604 2973.3 1.181 1.101 2708.9
13 863 2948.2 0.819 0.739 3909.2
14 854 2944.4 0.815 0.753 3842.5
15 657 2965.7 1.078 0.980 2938.4.
16 809 2950.8 0.887 0.798 3629.4
17 846 2945.6 0.835 0.773 3801.3
18 898 2948.9 0.797 0.720 4020.1
19 926 2948.7 0.794 0.703 4121.2
20 886 2958.2 0.810 0.731 3973.2
21 887 2952.1 0.812 0.728 3936.9
22 648 2971.3 1.106 1.028 2907.8
23 550 2988.2 1.283 1.193 2483.7
24 833 2960.3 0.845 0.777 3782.1
25 912 2943.9 0.775 0.701 4085.6

Scenario 2: Videos are requested for watching while they are being
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uploaded to the server. In this scenario, we study the performance of the sched-

uler while some of the videos are requested for watching before all the segments are

transcoded. One assumption is that the clients do not interact with the videos dur-

ing playback, such as pausing and forward/backward seeking. This means that each

video is watched from the beginning to the end. Note that the processors in Scenario

2 are working under di�erent workloads during the experiments, indicating that the

V TT for the same video segment might vary on di�erent processors. Therefore,

the scheduler needs to search for the fastest processors to transcode videos that are

being watched.

Table 5.6: Measured values for the evaluation metrics on varying Lva in Cloud1
with Dataset4.

Client ID Lva Ls NQS NRE Tmr MOS
5 4.26 1 1 3.54 2.08

1 10 8.51 0 0 0 3.66
15 13.11 0 0 0 3.35
5 4.78 1 8 3.14 -3.10

2 10 9.05 1 3 2.05 0.44
15 16.08 1 2 3.41 0.56
5 6.96 1 3 1.24 0.66

3 10 11.44 1 1 2.6 1.70
15 14.99 1 1 2.17 1.51
5 7.15 1 1 3.16 1.93

4 10 10.69 1 0 0 2.77
15 14.32 0 0 0 3.27
5 6.82 0 0 0 3.77

5 10 8.47 0 0 0 3.66
15 13.15 0 0 0 3.35

We �rst tested the extreme condition that videos are requested to be watched

as soon as they are available. In this case, we used Stream 2 to upload videos and

generated �ve clients to send video watching requests when the system reached its

maximum capacity. The requests are sent to the server as soon as the initial Lva

seconds of video are transcoded, and we keep Bitr as the medium bitrate. The

value of Bitr changes to the low bitrate only when the required medium rate is not
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available and it will never change back again. Table 5.6 summarizes the values of

the evaluation metrics of each client when Lva changes. Figure 5.8 shows the V TT

normalized by segment duration for all the clients and the average among processors

running jobs in NQueue at the time interval since Stream 2 starts to upload videos.

When comparing Clients 1 to 5, a small Lva always causes quality switches during

the playback for the subsequent segments. The other outlier is for Client 5 whose

requests are received last. The reason is the scheduling algorithm carried out by the

server. Since the scheduler always searches for the fastest CPU and reserves enough

processors to run jobs in PQueue, the processing speed of processors that transcode

for Clients 1 to 4 are faster than or at least equal to that for Client 5. Therefore,

transcoding segments for Client 5 on any processors causes no quality switch. On

the other hand, when segments requested by other clients are transcoded by the

processors joined due to Client 5 sending a video watching request, the playback

might be interrupted due to the slower speed of the these processors. For example,

there exist jitters with the normalized V TT for Clients 2 to 4, which indicates

that the video transcoding speed varies signi�cantly during the playback. This

situation hence causes quality switches and rebu�ering events on Clients 2 to 4.

When comparing the values of MOS, there are no best parameters. Small values of

Lva enable end-users to access the video shortly after it is uploaded, while a large

Lva supports smooth playback better. Consequently, we need to consider the trade-

o� among these parameters and adjust them based on the target application. In the

following experiments, we set Lva to 10 seconds as it neither delays the playback

too long nor causes too many interrupts.

We next show that the proposed scheduler distributes urgent jobs to the fastest

processors. Figure 5.8 compares the normalized V TT among processors transcoding

segments for clients and those for normally uploaded segments. For most of the time,

the normalized V TT is smaller for Clients 1 to 5 than that for NQueue, indicating

that the fastest processors are used to transcode video segments for the watching
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Figure 5.8: Comparison of the normalized video transcoding time V TT (Lva = 10
seconds) in Cloud1 with Dataset4.

clients. On the other hand, the average V TT for NQueue increases when the server

receives video watching requests. The reason is that only the slowest processors are

assigned to run jobs in NQueue.

Finally, we illustrate the bene�ts of the automatic VTM switching functional-

ity. Figure 5.9 shows the comparison between the deadline and completion time of

transcoding. At the beginning, after the server receives the video watching request

from Client 2, the time di�erence between the two curves increases since faster

processors transcoding for Client 1 can serve Client 2. After Clients 3 to 5 join,

some slower processors also serve Client 2. The sharp V TT changes on Client 2

and the increasing V TT result in a quality switch when Segment #38 is �nished

transcoding. After the quality switch, Client 2 changes its request from medium

to low bitrate and the scheduler only changes V TM from 2 to 1. This strategy

shortens the completion time for the required bitrate for a single transcoding job

but does not help subsequentially in transcoding since the overall V TT on the pro-

cessor remains the same. The next three rebu�ering events also happen for the same

reason. Conversely, when the scheduler switches V TM after encountering the �rst

rebu�ering event, the transcoding completion time is shortened signi�cantly. This
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can improve the performance of the scheduler and the system throughput, as well

as improve end-users' experiences. However, the drawback of automatic V TM is

that the system might su�er from frequent changing of the required bitrates, which

seldom happens.

5.4.2 Experiment with Dataset5

We compare the proposed scheduling algorithm with the FIFO policy in Cloud2 with

Dataset5 where all the computing resources can be fully utilized by the scheduler.

5.4.2.1 Performance Evaluation

We study the e�ciency of the proposed algorithm compared with standard FIFO

policy with a real-world video uploading stream set. In this experiment, there exist

only video uploading streams but no video viewing requests. Therefore, the video

segments are transcoded to both low bitrate and medium bitrate simultaneously

(VTM = 0). Figure 5.10(a) shows the number of segments received at the server

side per second, which during some periods of time exceeds the maximum capacity

of the system. Figures 5.10(b) and 5.10(c) present the comparison of the cumulative
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segment queueing time (CSQT for short) and completion time (CSCT) between the

proposed algorithm and the FIFO algorithm, respectively. Overall, the di�erences

between CSQT and CSCT for both of the algorithms are not signi�cant. The pro-

posed algorithm presents a slight improvement on both the CSQT and CSCT. The

reason is that we only have a small uploading dataset with a light workload and most

of the video segments are of the same length. The transcoding sequences for both

algorithms are almost the same. When the workload exceeds the system capacity,

the scheduler starts to distribute the predicted faster jobs to other processors and

hence the CSQT and CSCT decrease. Moreover, since a processing node can �nish

most VTJs with around 1.5 to 2 seconds, the di�erence on the CSQT is always

small.

At the beginning of the uploading procedure (i.e., for the �rst 200 segments),

the workload never reaches the maximum capacity of the system. The cumulative

segment queueing time is almost zero and there exists no di�erence between the two

algorithms. When the workload starts to exceed the system capacity (e.g., at the

240th segment) and the queue grows, the values of CSQT and CSCT increase and a

small gap begins to exist between the two algorithms. While the system works under

overload (i.e., uploading segments with IDs around 2,500 to 4,000), the CSQT has

a larger increasing rate and both the gaps in CSQT and CSCT increase. From the

above analysis, it can be inferred that the proposed scheduler can improve the video

transcoding performance, especially when the system is overloaded with a heavy

workload.

5.5 Summary

In this work we proposed a dynamic scheduling algorithm for video transcoding

jobs designed to support Dynamic Adaptive Streaming over HTTP in a cloud en-

vironment. We �rst modeled the video transcoding time V TT estimation based

on statistics from video segment durations and the targeted bitrate. The sched-
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uler then dynamically distributes video transcoding jobs V TJ according to V TT

estimation and the system workload. Overall, the proposed scheduler can support

near-live streaming while balancing the workload and provide smooth and seamless

playback. Most importantly it can dynamically serve requests and adjust the video

transcoding mode V TM accordingly. Experimental results show that the sched-

uler can distribute urgent jobs to the fastest processors and shorten the transcoding

completion time by using V TM switching. Multiple con�gurations of the scheduler

allow it to be adjusted according to the needs of di�erent applications.

The limitation of this work lies in that the VTT estimation methodology relies

on the experimental environment, which might change all the time. In this case, we

plan to design a self-tuning algorithm to adjust the VTT estimation algorithm and

parameters while the workload in the cloud environment changes. Besides, more

alternative bitrates and comparison algorithms will be included in future work.

Furthermore, we plan to investigate a cost model for the scheduler, which would

be helpful for administrators to select appropriate cloud services while considering

multiple parameters based on the user's preference.
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Figure 5.10: Comparison on the segment queueing time and completion between
the proposed algorithm and FIFO algorithm in Cloud2 with Dataset5.
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Chapter 6

Conclusions and Future Work

In conclusion, my research aims at improving the performance of geo-tagged video

search framework by considering the storage, queries and streaming methodologies.

We have studied the important role that sensor meta-data associated with visual

content play in geo-tagged video management.

In the �rst work, we have built a multi-level grid-based index structure for e�ec-

tively and e�ciently searching for geo-tagged videos for both typical spatial queries

and queries with radius and direction restriction. The proposed index structure

manages video segments, neither the entire video clip nor a single frame, as the

results. Experiments on the real-world dataset show the importance of the queries

with bounded radius and viewing direction restriction. The experimental results

with large-scale synthetic dataset show that the proposed structure outperforms

well for both types of queries, and speed up the query procedure compared with

typical R-tree index structure. In the future, we will keep collecting data so that

the dataset can be widely used. In addition, the parameters used in the FOV model

(e.g., camera zoom information) could be collected and used in the future research

so that the query results can be improved. Furthermore, since the queries with

bounded radius and direction restriction can provide speci�c geo-properties of a

place or building, the 3D building construction from video is considered as one of

the potential research topics. As the growth of the dataset and increasing concurrent

video streaming requests, a grid-based index structure in the Cloud for geo-tagged

videos can be developed for parallel processing queries e�ciently.

In order to deal with the uncertainty of the sensor meta-data collected from
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mobile devices, we have also designed the uncertain data model for individual frames

and video segments. The proposed data model overcomes the noisy nature of the

sensor data, as well as obstacles in front of a camera. The video segmentation

method based on the geo-properties of videos is also provided. We constructed a

light-weight approximate model for video segments based on the sensor meta-data.

With this architecture, probabilistic queries can be executed and upstream GIS

takes prioritized based on the most promising results. The work related to storage

and index are mainly dealt with meta-data. Regarding to the current work, the

point-of-interest (POI) detection can also be processed with the current techniques.

In the future research, we plan to set up the ground-truth dataset of digital compass

error distribution, by comparing the embedded compass readings with that obtained

from more accurate sensors and other information. Moreover, one of the possible

directions is to identify the most aesthetical representative frame or image of a query

(e.g., a building or landmark), considering both the meta-data of the videos and the

information of the target. Based on this, a new video ranking algorithm can be

designed to satisfy users' preference and this algorithm could be used to provide the

best video summarization. In addition, detecting obstacles utilizing content-based

method could be a complementary method.

In the third work, we investigated the streaming methodology and proposed the

scheduling strategy on video transcoding for DASH in the cloud environment. The

statistical VTT estimation method is designed with respect to the video duration.

The scheduler dynamically distributed high-priority V TJs to fastest processors and

normally uploaded V TJs to free processors to shorten the transcoding completion

time by using V TM switching, as well as balancing the workloads among di�er-

ent processors. Multiple con�gurations of the scheduler allow it to be adjusted

according to the needs of di�erent applications. The short latency between the

video uploaded time and transcoding completion time indicates that the scheduler

can support near-live DASH streaming. As a follow-up step, we plan to provide
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updated scheduling algorithm based on the current version, which would support

transcoding to more alternative bitrates of videos in a smart way, where the situa-

tion during video transcoding is more complex. Moreover, a scheduling algorithm in

elastic cloud would also be interesting. In addition, the VTT estimation algorithm

can be improved in a self-tuning way, so that it can adjust the parameters when

the cloud environment periodically changes. Last but not least, a cost model can

be added to the scheduler, the scheduler could then carry out di�erent strategies

according to user's preference.
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