511,199 research outputs found

    Style Separation and Synthesis via Generative Adversarial Networks

    Full text link
    Style synthesis attracts great interests recently, while few works focus on its dual problem "style separation". In this paper, we propose the Style Separation and Synthesis Generative Adversarial Network (S3-GAN) to simultaneously implement style separation and style synthesis on object photographs of specific categories. Based on the assumption that the object photographs lie on a manifold, and the contents and styles are independent, we employ S3-GAN to build mappings between the manifold and a latent vector space for separating and synthesizing the contents and styles. The S3-GAN consists of an encoder network, a generator network, and an adversarial network. The encoder network performs style separation by mapping an object photograph to a latent vector. Two halves of the latent vector represent the content and style, respectively. The generator network performs style synthesis by taking a concatenated vector as input. The concatenated vector contains the style half vector of the style target image and the content half vector of the content target image. Once obtaining the images from the generator network, an adversarial network is imposed to generate more photo-realistic images. Experiments on CelebA and UT Zappos 50K datasets demonstrate that the S3-GAN has the capacity of style separation and synthesis simultaneously, and could capture various styles in a single model

    Laplacian-Steered Neural Style Transfer

    Full text link
    Neural Style Transfer based on Convolutional Neural Networks (CNN) aims to synthesize a new image that retains the high-level structure of a content image, rendered in the low-level texture of a style image. This is achieved by constraining the new image to have high-level CNN features similar to the content image, and lower-level CNN features similar to the style image. However in the traditional optimization objective, low-level features of the content image are absent, and the low-level features of the style image dominate the low-level detail structures of the new image. Hence in the synthesized image, many details of the content image are lost, and a lot of inconsistent and unpleasing artifacts appear. As a remedy, we propose to steer image synthesis with a novel loss function: the Laplacian loss. The Laplacian matrix ("Laplacian" in short), produced by a Laplacian operator, is widely used in computer vision to detect edges and contours. The Laplacian loss measures the difference of the Laplacians, and correspondingly the difference of the detail structures, between the content image and a new image. It is flexible and compatible with the traditional style transfer constraints. By incorporating the Laplacian loss, we obtain a new optimization objective for neural style transfer named Lapstyle. Minimizing this objective will produce a stylized image that better preserves the detail structures of the content image and eliminates the artifacts. Experiments show that Lapstyle produces more appealing stylized images with less artifacts, without compromising their "stylishness".Comment: Accepted by the ACM Multimedia Conference (MM) 2017. 9 pages, 65 figure

    PARASOL: Parametric Style Control for Diffusion Image Synthesis

    Full text link
    We propose PARASOL, a multi-modal synthesis model that enables disentangled, parametric control of the visual style of the image by jointly conditioning synthesis on both content and a fine-grained visual style embedding. We train a latent diffusion model (LDM) using specific losses for each modality and adapt the classifier-free guidance for encouraging disentangled control over independent content and style modalities at inference time. We leverage auxiliary semantic and style-based search to create training triplets for supervision of the LDM, ensuring complementarity of content and style cues. PARASOL shows promise for enabling nuanced control over visual style in diffusion models for image creation and stylization, as well as generative search where text-based search results may be adapted to more closely match user intent by interpolating both content and style descriptors.Comment: Added Appendi

    WordStylist: Styled Verbatim Handwritten Text Generation with Latent Diffusion Models

    Full text link
    Text-to-Image synthesis is the task of generating an image according to a specific text description. Generative Adversarial Networks have been considered the standard method for image synthesis virtually since their introduction; today, Denoising Diffusion Probabilistic Models are recently setting a new baseline, with remarkable results in Text-to-Image synthesis, among other fields. Aside its usefulness per se, it can also be particularly relevant as a tool for data augmentation to aid training models for other document image processing tasks. In this work, we present a latent diffusion-based method for styled text-to-text-content-image generation on word-level. Our proposed method manages to generate realistic word image samples from different writer styles, by using class index styles and text content prompts without the need of adversarial training, writer recognition, or text recognition. We gauge system performance with Frechet Inception Distance, writer recognition accuracy, and writer retrieval. We show that the proposed model produces samples that are aesthetically pleasing, help boosting text recognition performance, and gets similar writer retrieval score as real data

    Content-Based Image Retrieval of Skin Lesions by Evolutionary Feature Synthesis

    Get PDF
    Abstract. This paper gives an example of evolved features that improve image retrieval performance. A content-based image retrieval system for skin lesion images is presented. The aim is to support decision making by retrieving and displaying relevant past cases visually similar to the one under examination. Skin lesions of five common classes, including two non-melanoma cancer types, are used. Colour and texture features are extracted from lesions. Evolutionary algorithms are used to create composite features that optimise a similarity matching function. Experiments on our database of 533 images are performed and results are compared to those obtained using simple features. The use of the evolved composite features improves the precision by about 7%.
    corecore