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Since the introduction of digital imaging sensors such as used in digital (video)
cameras and medical imaging devices, digital image processing has been - and still
is - a fascinating topic for many researchers around the world. One specific topic
which is the focus of this thesis is image editing, where the content of a digital
image is manipulated resulting in a different digital image. More specifically, we
are interested in editing objects in the image. The word editing in this context
is very broad, for example removing a person from a digital picture, replacing
apples in a scene with pears or attenuating ribs in a CT image of the lungs to
make lung nodules better visible. Nowadays, these operations can be performed
using fast computers and much human interaction, but no automatic computer
algorithm exists that can perform such tasks. The main reason is that most image
processing algorithms are based on direct manipulation of the pixel data, while
the pixel representation of an image is not suitable for tasks at an object level. In
this thesis a framework is presented based on a different representation of images
that is better suitable for editing images on object level, which is one more step
towards object-based image editing.

Scale is an essential parameter in computer vision, since it is an immediate
consequence of the integration process of the measurements. Observations are
always done by integrating some physical property with a measurement device,
for example integration (over a spatial area and a time frame) of reflected light
intensity of an object with a CCD sensor in a digital camera, or a photoreceptor
in our eye. The range of possibilities to observe certain sizes of objects is bounded
on two sides: there is a minimal size, about the size of the smallest aperture, and
there is a maximal size, about the size of the whole detector array. The front-end
of the human visual system (the very first few layers of the visual system) is able
to “detect” at different apertures. A good example for this necessity is an image
mosaic as is shown in figure 1.1. To see the details of each patch we use a small
aperture, which prevents us to see the global structure. At a large aperture we
are able to see the global structure, but not the details of each patch. Objects
are only detected at a certain scale.

Since one can not know a priori at which scales objects are present in a scene,
it is necessary to detect at multiple scales simultaneously. Scale space theory is
the theory of apertures, through which we and machines observe the world. For
computer vision systems, the notion of aperture can be introduced as blurring
the high resolution image with a kernel of a certain width. In 1962, Taizo Iijima
derived the Gaussian kernel for this purpose from a set of basic axioms in a
Japanese paper [61]. Later, papers about linear or Gaussian scale space followed
from various other authors, including Witkin [141] and Koenderink [80] in the
eighties. A more recent introduction to scale space can be found in the monograph
by ter Haar Romeny [56].

Scale space theory makes it possible to look at (spatial) derivatives of the image
in a mathematically well posed way. It is shown that the human front end visual
system takes derivatives up to at least 4th order at various scales. It seems that
the differential structure of an image is important to detect objects, for humans as
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Figure 1.1: Image mosaic of Daniëlle. Seen from a close distance the image shows a
collection of small pictures, but seen from a distance of 2-3 meters a picture of Daniëlle
appears. The perceived image content depends on the scale of observation.
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well as for machines. In the scale space of an image, several types of special scale
space interest points can be identified, which are defined by the spatial derivatives
in those points. Figure 1.2 shows and example of the scale space of an image and
a 3D plot of top points, one of the types of scale space interest points used in this
thesis. It is shown that such scale space interest points contain much information
of the image, they can be used for image matching [111, 120, 119] and for image
reconstruction [115, 93, 73]. The goal of this project was to further investigate the
image information content in scale space interest points and to use these interest
points for object-based image editing using image reconstruction from scale space
interest points.

Figure 1.2: Scale space of an image. The left image shows an MR image of the brain
(256× 256 pixels), in the center the corresponding scale space is shown and on the right
special points in the scale space, top points are shown (the third dimension represents
scale).

This thesis is structured as follows. In chapter 2 α-scale spaces are introduced,
a more general class of scale spaces of which the well known Gaussian scale space is
a special case. A tool is introduced that is able to calculate and visualize interest
points in such a scale space of an image. In chapter 3 an improved reconstruction
scheme is introduced for image reconstruction from scale space interest points,
which is compared to two other reconstruction algorithms for image reconstruc-
tion. For an objective comparison of the reconstruction results, objective image
error measures are necessary. In chapter 4 a number of image quality measures
found in literature are compared with each other with respect to image recon-
struction. A novel scale space error measure is introduced and compared with
the other quality measures. In chapter 5 we compare the information content of
10 types of scale space interest points by means of image reconstruction on two
different databases of images. The results are evaluated using some of the image
quality measures of chapter 4. We also introduce a novel method for combining
different types of scale space interest points. In chapter 6 a feasibility study is
presented using scale space interest points for object-based image editing. Finally,
a summary and recommendations for further research are given in chapter 7.



2Exploring Scale Space

This chapter is based on:

α-Scale Space Kernels in Practice.
F.M.W. Kanters, L.M.J. Florack, R. Duits, and B. Platel.
Pattern recognition and Image Analysis, Volume 15, Number 1, pp 208–211, March 2005.



6 2.1 Introduction

2.1 Introduction

A scale space of a 2D image is a 3D volume with the scale s as the third dimension. In
practice however, a scale space is often seen as a stack of images, sequentially blurred by
convolution with a kernel. Figure 2.1 shows an example of a scale space of an image. For
the well known Gaussian scale space the convolution kernel is a Gaussian bell-shaped
kernel. Since a convolution in the spatial domain is equivalent to a multiplication in
the Fourier domain, a scale space can also be built in the Fourier domain. For the
Gaussian scale space this means multiplying the Fourier transformed image with the
Fourier transformed Gaussian kernel followed by an inverse Fourier transform of the
result. In theory these two methods are equivalent but in practice one might prefer one
method over the other depending on several factors (described by Florack [41], see also
the implementation notes “Spatial vs Fourier” on page 8).

It is shown that using reasonable axioms, a complete α-parameterized class of kernels
exists resulting in so-called α-scale spaces [39, 118, 30]. The Gaussian scale space is one
specific case (α = 1). This chapter will focus on this broader class of scale spaces. In
section 2.2 the concept of the α-scale spaces is described and the problem using their
kernels in the spatial domain is introduced. Next an approximation of the α-kernel in the
spatial domain is described in section 2.3. Because they have been hardly investigated
and to explore possible applications, we decided to build an interactive visualization tool
for α-scale spaces, named ScaleSpaceViz [72, 74], useful for visualizing α-scale spaces
and special points within these scale spaces. Section 2.4 shows some results of different
scale spaces visualized in ScaleSpaceViz. Finally conclusions and recommendations for
future research are given in section 2.5.

2.2 α-Scale Spaces

In a Gaussian scale space the image is blurred according to the following evolution
process: {

∂
∂s
u = ∆u

lim
s↓0

u(·, s) = f(·) (2.1)

with s the scale, f the image, ∆ the Laplacian and u the resulting scale space. This
evolution process leads to convolution of the image with a Gaussian kernel. The α-scale
spaces are created using a different evolution process:{

∂
∂s
u = −(−∆)αu

lim
s↓0

u(·, s) = f(·) in L2(Rd)-sense α ∈ (0, 1] (2.2)

Which leads to convolution with a so called α-kernel. Note that for α = 1 we indeed
obtain the evolution process of the Gaussian scale space. For α = 1

2
we obtain the

evolution process of the Poisson scale space, which has some special properties and can
be extended to a monogenic scale space as described by Felsberg [37]. Figure 2.2 shows
an example of an image blurred with three different α-kernels.

Recall that the solution of the evolution process in (2.2) is given by:

u(α)(x, s) =
(
k(α)

s ∗ f
)

(x) (2.3)
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Figure 2.1: A scale space of a 2D image as a continuous 3D volume (left) and the same
scale space as a stack of sequentially blurred images (right).

Figure 2.2: MR brain slice image (128x128) blurred by different kernels at various scales.
Top row: α = 1 (Gaussian scale space), center row: α = 3

4
, bottom row: α = 1

2

(Poisson scale space). Grey-values have been mapped to full range for the sake of
clarity. Note that details maintain longest in the Poisson scale space. Also note that the
scales among the different α-scale spaces cannot be directly compared; scale parameter
synchronization is necessary which is performed here by hand.



8 2.2 α-Scale Spaces

Implementation Notes

Spatial vs Fourier

Convolution in the spatial domain is equal to multiplication in the Fourier
domain. In practice however there is a difference between these two in terms of
speed and accuracy. Given an image ofN×N pixels and a convolution kernel of
k×k pixels, convolution needs k2 multiplications and additions for every pixel
in the image (boundaries not taken into account for simplicity) and thus has a
complexity of O(k2N2). To perform this operation in the Fourier domain one
needs to calculate the Fourier transform of the image, which has a complexity
of O(N2logN) using FFT, followed by N2 multiplications and finally perform
an inverse Fourier transform. Thus for large kernels the operation in the
Fourier domain will be faster while for small kernels convolution will be faster.
However, with respect to the accuracy it is the opposite: small kernels (e.g.
Gaussians with a small standard deviation) in the spatial domain will introduce
large errors (since only a few samples are used to model the kernel) and wide
kernels (e.g. Gaussians with a large standard deviation) will be small in the
Fourier domain and thus introduce similarly large errors. For high accuracy,
Fourier methods should be used for small kernels, while convolution should be
used for large kernels. In practice, one should make a trade-off between speed
and accuracy, dependent on the width of the kernel. A more rigorous approach
can be found in the work of Florack [41]. Note that there are several more
optimized algorithms available both for spatial and Fourier implementations,
but the general idea still holds.

which is called an α-scale space1, with the α -kernel k
(α)
s : R2 → R given in the Fourier

domain by:

F(k(α)
s )(ω) = e−s||ω||2α

(2.4)

with 0 < α ≤ 1. Note that for α = 1 one obtains the well known Gaussian kernel and for
α = 1

2
the Poisson kernel. These so called α-kernels (with 0 < α ≤ 1) are simple in the

Fourier domain, but unfortunately for general α there is no closed-form representation
in the spatial domain. In the case of a Gaussian or Poisson kernel, one easily can apply
an inverse Fourier transform to obtain the kernel in the spatial domain, but for general
α this is not possible. For any fixed α however, an expression can be found for the kernel
in the spatial domain using the Hankel transform of the kernel in polar coordinates.
Using:

x = (r cos φ, r sin φ) (2.5)

ω = (ρ cos ϕ, ρ sin ϕ) (2.6)

1also known as α-stable Lévy processes in probability theory.
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Implementation Notes

Separability

An important feature of the Gaussian kernel is separability. This means that
a convolution with a N -D Gaussian kernel can be performed by N 1D con-
volutions. This can be shown in the Fourier domain using the general N -D
Gaussian kernel:

us(x) = F−1{F(f(x))(ω) · e−s||ω||2}
with us(x) the blurred N -D image at scale s and f(x) the original N -D image.
Using N 1D convolutions one obtains:

us(x) = F−1{F(f(x))(ω) ·
N∏

i=1

e−sω2
i }

which can be rewritten to:

us(x) = F−1{F(f(x))(ω) · e−s(
∑N

i=1 ω2
i )}

Since the squared norm of a vector of length N is given by: ||x||2 =
∑N

i=1 xi
2

a convolution with an N -D Gaussian kernel is equal to N times a convolution
with a 1D Gaussian kernel. In practice this means that the implementation of
a convolution with a N -D kernel of size kN on an N -D image of size MN can
be performed with complexity of O(NkMN ) instead of O(kNMN ). However,
this does not hold in general for the α-kernel. Consider blurring with a N -D
α-kernel:

us(x) = F−1{F(f(x))(ω) · e−s||ω||2α

}
Using N convolutions with a 1D α-kernel one obtains:

us(x) = F−1{F(f(x))(ω) · e−s(
∑N

i=1 ω2α
i )}

But ||ω||2α = (
√∑N

i=1 ω
2
i )2α 6=

∑N
i=1 ω

2α
i for i 6= 1.

the kernel in polar coordinates becomes:

F(k(α)
s )(ω) = e−s ρ2α

, ρ = ||ω|| (2.7)

Any 2D function f ∈ L2(R2) in polar coordinates can be decomposed as follows:

f(r, φ) =

∞∑
m=0

fm(r) e−imφ (2.8)

The Fourier transform of a product of a radial function with a harmonic function can
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Implementation Notes

Sampling a Gauss kernel

The integral of a Gaussian kernel
∫∞
−∞

1√
πsN e

−s||x||2
s = 1. When sampling a

Gaussian kernel, one should always make sure that the sum of elements of the
kernel is exactly equal to 1. Straightforward sampling can introduce kernels
with a sum smaller or larger than 1 due to quantization effects. This should be
corrected, for example by adding a small amount to all or some of the kernel
elements to obtain a sum of exactly 1. The importance can be shown with
a simple example: Performing convolution with a kernel that has a sum of
0.98 on a constant image with greyscale 255 yields an image with a constant
greyscale of less than 250. In theory the image should have been unchanged.
Performing multiple convolutions (for example using separability) will amplify
this effect.

be written in terms of the Hankel transform [36]:

F(f)(ρ, ϕ) =

∞∑
m=0

eimϕHm(fm)(ρ) (2.9)

with F(f)(ρ, ϕ) the Fourier transform of f and Hm(fm)(ρ) the Hankel transform of fm

defined by:

Hm(f)(ρ) = im
∫ ∞

0

f(r) rJm(r ρ)dr (2.10)

with Jν(z) the Bessel function defined by:

Jν(z) =
(z

2

)ν
∞∑

k=0

(−1)k

k! Γ(k + ν + 1)

(z
2

)2k

(2.11)

Since our kernel is independent of ϕ we have:

(H0(r 7→ k(α)
s (x)))(ρ) = F(k(α)

s )(ω) = e−s ρ2α

(2.12)

The Hankel transformation equals its inverse transformation (for functions independent
of φ), hence the inverse Fourier transform of our kernel becomes the Hankel transform
of the kernel in the Fourier domain:

k(α)
s (r) = H0[ρ 7→ (F(k(α)

s ))(ω)](r) , r = ||x||, ρ = ||ω|| (2.13)

Using the Hankel transformation it is possible to obtain an expression for the α -kernel
in the spatial domain for a fixed α only. For α = 1

2
one obtains the Poisson kernel

and for α = 1 one obtains the well known Gaussian kernel, but for some values of
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α the expression can become quite complicated, involving hypergeometric functions2. In
practice these can be hard to implement and therefore an approximation of the α -kernel
in the spatial domain is presented.

2.3 Approximation of the α-kernel in the spatial domain

An approximation of the α -kernel for 1
2
≤ α ≤ 1 is proposed using a linear combination

of one Gaussian kernel and one Poisson kernel. This is motivated by the fact that the
α-scale space for 1

2
≤ α ≤ 1 gives a smooth transition between the Poisson scale space

(α = 1
2
) and the Gaussian scale space (α = 1). In the Fourier domain the approximation

becomes:

e−s ||ω||2α

≈ a(α)e−sg(α)||ω||2 + b(α)e−sp(α)||ω|| (2.14)

Note that a,b,sg (Gauss scale) and sp (Poisson scale) are positive constants, which may
depend on α. In order to get a correct amplitude for ω = 0 we must have a + b = 1,
which results in:

e−s ||ω||2α

≈ a(α)e−sg(α)||ω||2 + (1− a(α))e−sp(α)||ω|| (2.15)

For dimensionality reasons, it is natural to assume:

s = tα, and sg = c1(α)t, and sp = c2(α)
√
t (2.16)

An exact result is desired for α = 1 and α = 1/2, which results in the following con-
straints:

c1(1) = 1 and c2(1/2) = 1 (2.17)

which results in:

sg(α) = c1(α)t = c1(α)s
1
α

sp(α) = c2(α)
√
t = c2(α)s

1
2α (2.18)

Using the dimensionless frequency ||
√
t ω|| = ρ, equation (2.15) can be rewritten to:

e−ρ2α

≈ a(α)e−c1(α)ρ2
+ (1− a(α))e−c2(α)ρ (2.19)

Note that for all relevant frequencies we can assume (roughly) that ρ ≤ 1 (since fre-
quencies above ω ≈ 1√

t
should be suppressed by the blurring, these values in the kernel

should be close to zero). Using a Taylor expansion up to order N around ρ = 0 we
obtain:

e−ρ2α

≈
N∑

n=0

(−1)n ρ2αn

n!
≈ a(α)

N∑
n=0

(−1)n cn1 (α)ρ2n

n!
(1− a(α))

N∑
n=0

(−1)n cn2 (α)ρn

n!
(2.20)

To obtain an expression for a(α), (2.20) may be integrated over all relevant frequencies
(0 ≤ ρ ≤ 1):

2Expressions are typically half a page long. To save space, no example is given here.
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∫ 1

0

N∑
n=0

(−1)n ρ2αn

n!
dρ ≈

∫ 1

0

a(α)

N∑
n=0

(−1)n cn1 (α)ρ2n

n!
+ (1− a(α))

N∑
n=0

(−1)n cn2 (α)ρn

n!
dρ (2.21)

The left side of this equation is a function only depending on α, while the right hand side
only depends on a, c1 and c2. For a first order Taylor expansion (N = 1), the solution
of a(α) in (2.21) can be expressed in α, c1 and c2:

a(α) =
3(−2 + (1 + 2α)c2(α))

(1 + 2α)(−2c1(α) + 3c2(α))
(2.22)

To find an expression for c1(α) and c2(α), the amplitude of the α-kernel in the spatial
domain at the origin is calculated using the Hankel transform (2.13):

k(α)
s (0) = H0[ρ 7→ (F(k(α)

s ))(ω)](0) =
Γ
(
1 + 1

α

)
4πs

1
α

(2.23)

with Γ(z) the Euler gamma function given by:

Γ(z) ≡
∫ ∞

0

tz−1e−tdt (2.24)

The amplitudes at the origin for the Gaussian and Poisson kernel in two dimensions are
given by:

G(0) =
1

4πsg
(2.25)

and:

P (0) =
1

2πs2p
(2.26)

This results in the equation:

Γ
(
1 + 1

α

)
4πs

1
α

=
a(α)

4πc1(α)s
1
α

+
1− a(α)

2πc22(α)s
1
α

(2.27)

In order to solve this equation for c1 and c2, an extra equation is needed. If c22 = 2c1
is chosen as an extra constraint, the amplitude for the α-kernel at the origin is not
dependent on a(α) and we may readily solve for c1 and thus c2:

c1(α) =
1

Γ
(
1 + 1

α

)
c2(α) =

√
2

Γ
(
1 + 1

α

) (2.28)

Note that now the unknown parameters a(α), b(α), sg(α) and sp(α) of (2.14) are ex-
pressed in terms of α while obeying the constraints of (2.16) and (2.17). The final result
can be found by substituting (2.28) in (2.18) and using this with (2.22) in equation
(2.15).
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Figure 2.3: 1D Cross-section of the α-kernel (solid) and the approximated kernel
(dashed) in the spatial domain for α = 0.75 and s = 3.

2.3.1 Evaluation of the approximated kernel

The approximation presented in the previous section still contains the Gamma function,
which may be computationally undesirable. Since we limit ourselves for the approxima-
tion to 1

2
≤ α ≤ 1, only a small, very smooth part of the Gamma function is actually

used in our expressions. With Mathematica [142] a good numerical approximation can be
found for this part of the Gamma function. Experiments were done using the following
numerical approximations for c1(α), c2(α) and a(α):

c1(α) =
−1.5374 + 5.0722α

1 + 1.4548α+ 1.0800α2

c2(α) =

√
−3.0748 + 10.1444α

1 + 1.4548α+ 1.0800α2

a(α) =
3(−2 + (1 + 2α)c2)

(1 + 2α)(−2c1 + 3c2)
(2.29)

Using (2.15) and (2.29) simple approximations of the α-kernel in the spatial domain can
be made. Figure 2.3 shows the 1D cross section of the α-kernel and the approximation
for α = 0.75 and s = 3.

The approximation is of course exact for r = 0 (due to the constraints) and for
r = ∞. The maximum relative error between the α-kernel and the approximated kernel
can be defined as:

Maximum relative error =
||k(α)

s − g
(α)
s ||∞

||k(α)
s ||∞

(2.30)

with k
(α)
s the α-kernel and g

(α)
s the approximated kernel. Figure 2.4 shows the maximum

relative error between the α-kernel and the proposed approximation for various α and s.
Note that the maximum relative error should be independent of scale, which is also found
experimentally. The worst maximum relative error of 2.36% is found approximately at
α = 0.65.



14 2.3 Approximation of the α-kernel in the spatial domain

Figure 2.4: Maximum relative error between α-kernel and approximation for various α
with scale fixed at s=3 (top) and for various s with α fixed at α = 0.7 (bottom).
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2.3.2 Spatial derivatives of the approximated kernel

In order to take derivatives of an image at a certain scale, one can do a convolution of
the image with a derivative of the kernel. In this section we show how our approximation
of the α-kernel performs if derivatives are taken. For simplicity we will only show the
results for the Laplacian. The Laplacian of a function f in polar coordinates is defined
by:

L(r, φ) =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂φ2
(2.31)

Which can be simplified if f is only dependent on r (which is the case for our kernels):

L(r) =
∂2f

∂r2
+

1

r

∂f

∂r
(2.32)

Using (2.32) on (2.15) one can find an approximation of the Laplacian kernel. How-
ever, the parameters are still optimized for the zeroth order kernel, hence the error may
be non minimal. Figure 2.5 shows the resulting Laplacian kernel and the maximum
relative error for the zeroth order optimization. To improve the approximation of the
Laplacian kernel, the steps of equation (2.23) until (2.28) are repeated for the Laplacian
kernel. First the amplitude of the kernel at the origin is again calculated:

k(α)
s (0) = H0[ρ 7→ (F(−ω2k(α)

s ))(ω)](0) = −
Γ
(
1 + 2

α

)
8πs

2
α

(2.33)

The amplitude at the origin for the approximated kernel in two dimensions is given by:

k̂(α)
s (0) =

− a(α)

c21(α)
+ 12(a(α)−1)

c42(α)

4πs
2
α

(2.34)

Combined with (2.33) this results in the equation:

−
Γ
(
1 + 2

α

)
8πs

2
α

=
− a(α)

c21(α)
+ 12(a(α)−1)

c42(α)

4πs
2
α

(2.35)

If c42 = 12c21 is chosen as an extra constraint, the amplitude for the α-kernel at origin is
not dependent on a(α) and we may readily solve for c1 and thus c2:

c1(α) =

√
2

Γ
(
1 + 2

α

)
c2(α) = 4

√
24

Γ
(
1 + 2

α

) (2.36)

Figure 2.6 shows the resulting kernel with the parameters optimized for the Laplacian
kernel and the maximum relative error. Note that the results are indeed much improved.
In a similar fashion, the parameters can be optimized for other derivatives of the kernel.

2.4 ScaleSpaceViz

The presented approximation is implemented in a software package named ScaleSpaceViz
[47, 74]. It is designed for research purposes, to learn more about the intrinsic structure of
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Figure 2.5: Top: Example of the Laplacian of the α-kernel (solid line) and the Laplacian
of the approximated kernel (dashed line) for the zeroth order optimization (α = 0.7,
s = 3). Bottom: Maximum relative error between the Laplacian of the α-kernel and
approximation for various α with scale fixed at s=3.
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Figure 2.6: Top: Example of the Laplacian of the α-kernel (solid line) and the Lapla-
cian of the approximated kernel (dashed line) optimized for the Laplacian (α = 0.7,
s = 3). Bottom: Maximum relative error between the Laplacian of the α-kernel and
approximation for various α with scale fixed at s=3.



18 2.4 ScaleSpaceViz

α-scale spaces and the deep structure of images [80]. ScaleSpaceViz provides a graphical
user interface for calculating α-scale spaces of bitmap images with which we can visually
inspect what happens in the deep structure. The calculation of a scale space can be
done in the Fourier domain using the exact α-kernel and in the spatial domain using
the approximated kernel. For Gaussian scale spaces both the spatial and the Fourier
method are further optimized.

The α-scale spaces may be interesting for many applications. In this thesis we will
focus on special points in scale space, so called interest points and their properties. In
chapter 5 a number of commonly used interest points are presented and evaluated for the
purpose of image reconstruction (see chapter 3). ScaleSpaceViz can be used to visualize
(and calculate some of) these interest points. In this section a number of examples is
presented using interest points called top points and scale space saddles. Some of the
properties of these points are shown using the visualization tools of ScaleSpaceViz.

Implementation Notes

ScaleSpaceViz

ScaleSpaceViz is programmed in C++ using the Visualization Toolkit (VTK)
[77]. As input it can take volume data from Mathematica [142] which already
contains a scale space or it can calculate an α-scale space from a bitmap image,
using a Fourier method, a convolution method or a combination of both.
From this volume data, level-crossing surfaces can be calculated using the
marching cubes algorithm [102]. In practice, zero-crossings will be the most
useful level-crossings. Intersections of these zero-crossing surfaces of two dif-
ferent volumes (e.g. x-derivative scale space and y-derivative scale space) lead
to 3D lines (e.g. critical paths). Intersecting these lines with another zero-
crossings surface leads to isolated points.
One limitation of this method to calculate interest points is that all three
surfaces must be in memory, which makes it only useful for small volumes
(smaller than 128× 128× 128). This is solved by only taking two subsequent
scale levels into account and sweep the volume through scale. Critical paths
have to be back-tracked since loops can occur. Both implementations are
available in ScaleSpaceViz.
Besides calculating interest points and scale spaces, ScaleSpaceViz is pri-
marily designed to do interactive visualization. It is possible to “fly”
through the scale space and look around. Multiple scale spaces of dif-
ferent images can be put in one scene for comparison. It is also possi-
ble to change color and opacity for all objects in the scene, put bounding
boxes in the scene and change the background. ScaleSpaceViz has been
demonstrated at the ECCV [72] and is publicly available on the internet
at www.bmi2.bmt.tue.nl/image-analysis/people/FKanters/ in the software
section.
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Figure 2.7: Left: Simple 2D image with some Gaussian blobs. Right: Zero crossings of
x- and y-derivative surfaces (z axis is scale) and their intersections (critical paths).

2.4.1 Interest points

The program can calculate and visualize special interest points in scale space by calcu-
lating zerocrossings in 3D volumes. Consider for example spatial critical points defined
by:

Definition 1. Spatial critical points are points where the spatial gradient is zero. For
2D images these points are maxima, minima or saddles.

If these points are tracked through scale, so called critical paths are obtained. These
paths are the intersections of the zerocrossings of the x- and y-derivative of the scale
space of a 2D image. Figure 2.7 shows the critical paths of a simple blob image plus the
zerocrossing surfaces of the x- and y-derivative. In the diffusion process extrema can
annihilate with saddles or extrema-saddle pairs can be created. This happens at the so
called top points, which are defined by:

Definition 2. Top points are spatial critical points where the Hessian degenerates
(detH = 0). For generic 2D images, these points are annihilations or creations of
saddles with maxima or minima.

The Hessian of a 2D image f is given by:

H(f) = 5 5T f =

(
∂2

xf ∂x∂yf
∂y∂xf ∂2

yf

)
(2.37)

These points are the intersections of the zerocrossings of the determinant of the Hessian
with the critical paths. Other points of interest are for example scale space saddles, which
are spatial critical points, with a zero scale derivative (which by definition equals a zero
Laplacian in a Gaussian scale space). These points are intersections of the zerocrossings
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of the Laplacian with the critical paths. Figure 2.8 shows again the simple blob image,
with the critical paths, top points and scale space saddles. In figure 2.9 some examples
of critical paths and top points with creation-annihilation pairs are shown.

2.4.2 Approximated α-scale space kernel

Critical paths and top points can be calculated for any α-scale space. The paths of
different α-scale spaces will not be the same for an image and even topological differences
will occur. Figure 2.10 shows the critical paths and the top points of the same image
for three different α’s. To validate the quality of the approximated kernels as described
previously, the program can calculate critical paths and top points for α-scale spaces
both using convolution in the spatial domain and multiplication in the Fourier domain.
Figure 2.11 shows the critical paths and the top points of an image, using the Fourier
and the spatial convolution method.

2.4.3 Stability of scale space interest points

For any practical application of scale space interest points it is crucial to have information
about the stability of those points under small perturbations. For example critical
points depend on the position of maxima, minima and saddles in the image. In almost
homogeneous areas in the image, the extrema merely depend on noise. These points will
thus be very unstable under small perturbations and not very useful for applications.
Figure 2.12 shows the critical paths and top points of different noise realizations of
an image. Note that indeed there is a difference between stable top points in regions
with much structure and unstable top points in regions with little structure. Lifshitz
and Pizer[92] looked at the stability regarding creations in scale space. Platel et al.
presented a stability measure for top points based on the total variation norm [120]
which could also be used for other critical points. Balmachnova et al. presented a more
elaborate stability measure for top points which also takes directions into account [3].
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Figure 2.8: Critical paths of the blob image from Figure 2.7. The light dots show the
top points and the dark dots show the scale space saddles. Note that not all paths have
scale space saddles and there can be more saddles on one critical path. There is however
at least one top point in each critical path (with the remaining path having a top point
in infinity).
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Figure 2.9: Examples of creation-annihilation pairs of extrema and saddles. Top and
center: two artificial test images with dumbbell examples. Bottom: Part of an MR brain
image with creation-annihilation pairs.
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Figure 2.10: Critical paths from scale spaces of an MR image with α = 0.5 (white),
α = 0.75 (light grey) and with α = 1.0 (dark grey). Note that there are topological
differences in the large paths in the center between the different α-scale spaces.
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Figure 2.11: Experiments to validate the approximation of the α-kernel in the spatial
domain. Top: Scale space calculated in the Fourier domain with original kernel (α =
0.65). Center: The same scale space calculated with the approximated kernel in the
spatial domain. Bottom: The two methods projected on top of each other; the Fourier
method in white, the convolution method in grey.
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Figure 2.12: Critical paths and top points of three different noise realizations of a CT
brain image (in white, light grey and dark grey). Note that there is no clear relation
between the position of top points of the three noise realizations in the dark image area
at the bottom; in this almost homogeneous part of the image, the critical paths and the
top points are dominated by noise and are thus unstable. In areas with more structure
(top part) one can see a clear relation between the critical paths and top points of the
different noise realizations. The top points are very stable perpendicular to the elongated
structure and less stable along the elongated structure. Note that the critical paths can
be very different in stable areas, while the positions of the top points are almost the
same.
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2.5 Conclusion and discussion

Using α-scale spaces in practice can be a problem, since the corresponding kernels are
only known in closed form in the Fourier domain for 0 < α < 1. Some applications
however can make advantage of a spatial representation of an α-kernel. We solve this
problem by approximating a 2D α-kernel in the spatial domain for 1

2
< α < 1 with a lin-

ear combination of one Gaussian kernel and one Poisson kernel. The maximum relative
error between the α-kernel and the approximation is low (less than 2.4%) and indepen-
dent of scale. With the presented parameters, the error propagates in the derivatives
of the kernel resulting in a maximum relative error of approximately 12% for a second
order derivative of the kernel. This is solved by adding constraints for derivatives to
calculate the parameters in a similar way as we have done for the zeroth order case,
resulting in a maximum relative error of less than 5.4%.

The presented approximation is implemented in a software tool named ScaleSpace-
Viz. This tool has proven to be useful in exploring the deep structure of images and
constructing applications involving scale space interest points, such as reconstruction
and matching. Future research should include calculation of more types of interest
points (such as described in chapter 5). Also memory usage of the program should be
optimized. Calculation of top points still consumes much memory, since all scale spaces
necessary are kept in memory to calculate the intersections. More research should be
performed on the differences between different α-scale spaces, only a few examples are
calculated using different α on a limited number of images. The question which α should
be used for which application still remains unanswered since for the remainder of this
thesis, we limit ourselves to the Gaussian scale space (α = 1) due to time limitations.
In the next chapters, scale space interest points such as the top points introduced here,
will be used for image reconstruction (chapter 3 and 5) and image editing (chapter 6).
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3.1 Introduction

There are several types of special interest points that can be calculated from a scale
space of an image. Chapter 5 describes a number of commonly used interest points
and their properties. In chapter 2 we have presented software to visualize these special
points and to calculate some of these interest points from a 2D image. To use such
interest points as a good representation of the image, one needs to know how much
image information is present in these points. One method to make the information
content of these points explicit is image reconstruction. In this chapter we will present
reconstruction algorithms that can be used to evaluate the information content of scale
space interest points.

Nielsen, Lillholm and Griffin presented a linear minimal variance reconstruction
scheme to reconstruct an image given a set of scale space interest points and the lo-
cal N-jet in those points [115, 93]. Based on that reconstruction algorithm, Kanters et
al. [73] presented a closed form solution for the Gram matrix of that linear framework.
The prior used in these linear frameworks is however not sufficient to create visually
attractive reconstructions if not enough constraints are used. To overcome this problem
Nielsen and Lillholm proposed a prior based on natural image statistics, the Brownian
reconstruction [115, 93]. Recently a generalization of the linear reconstruction frame-
work is proposed by Janssen et al. which — in a different way — also tries to overcome
this problem while maintaining linearity [63, 64]. This framework is also used in the
context of motion extraction [65, 46].

In section 3.2 three reconstruction algorithms are described: The standard linear
reconstruction as proposed by Nielsen and Lillholm [115, 93] (using the closed form so-
lution of Kanters et al. [73]), the Brownian reconstruction algorithm proposed by Nielsen
and Lillholm [115, 93] and the Sobolev type inner product reconstruction proposed by
Janssen et al. [63]. In section 3.3 the algorithms are evaluated using some test images
and finally some conclusions are given in section 3.4.

3.2 Image reconstruction algorithms

Given a set of points and some local “features” in those points, the goal of the proposed
image reconstruction algorithms is to create an image that is visually close to the origi-
nal image and has the same points and features as the original image. Points and local
features in this context are localized filter responses, which will be defined more rigor-
ously in the next sections. In general for sparse point sets different images could have
exactly the same points and features, different images can be equivalent seen through the
set of filters. All images having the same filter responses are elements of the so called
metameric class. Figure 3.1 shows this schematically. The presented reconstruction
algorithms differ in the sense that each minimizes a different prior to select a different
instance from the same metameric class.

3.2.1 Standard linear reconstruction

Consider a filter response ci localized at a certain point i that is defined as an L2 inner
product between a given filter φi and the original image f :
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Figure 3.1: The metameric class V contains all images of L2(R2) that have the same
filter responses. These images are equivalent seen through these filters. The original
image f is always a member of the metameric class. Images f1 through f3 are different
instances of the metameric class V and thus sharing the same filter responses. Note that
these images do not necessarily have to look similar to the original image.
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ci = 〈φi|f〉L2 =

∫
Ω

φi(x)f(x)dx (3.1)

All images in the metameric class V will have exactly the same filter responses ci for all
i ∈ {1, ..., N}. The goal of the reconstruction algorithm is to find an image g ∈ L2(R2)
such that:

〈φi|g〉L2 = ci (3.2)

for all i ∈ {1, ..., N}. When the number of filters N is relatively low, many images g
with the constraints of (3.2) will exist. The standard linear reconstruction selects the
candidate g that minimizes the L2-norm, which results in the image of the metameric
class V that is closest to the zero image in L2-sense. Nielsen and Lillholm [115, 93] used
a variational approach resulting in the following functional that should be minimized:

S[g] =
1

2
〈g|g〉L2 +

∑
i

λi〈f − g|φi〉L2 (3.3)

Implementation Notes

Minimal variance reconstruction

The standard linear reconstruction selects the image from the metameric class
V that is closest to the zero image in L2-sense. One could also replace f
with f − f (where f represents the mean of the image f) before calculating
the features ci. The resulting reconstruction g = PV f + f will then select the
image from the metameric class that is closest to the mean value of the original
image instead of the zero image, again in L2-sense. Nielsen and Lillholm refer
to this as minimal variance reconstruction [115, 93].

The first part of equation (3.3) minimizes the L2-norm while the second part, for properly
chosen λi, makes sure that the constraints of (3.2) are met. Another approach to find
the solution of (3.3) is by an orthogonal projection of the original image f on the linear
space spanned by the filters ci:

g = PV f = 〈φi|f〉L2φi (3.4)

where we have defined φi def
= G−1

ij φi with G the Gram matrix with elements:

Gij = 〈φi|φj〉L2 (3.5)

Note that Einstein’s summation convention applies whenever two equal indices are used,
e.g. ϕiψi =

∑
i ϕiψi. The orthogonal projection ensures a solution closest to the origin

(zero image) while still obeying the constraints. Figure 3.2 shows this schematically.
More details on the implementation can be found in the implementation notes “Standard
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L2(R
2)

O

V

f

PV f

Figure 3.2: The metameric class V contains all images of L2(R2) that have the same
filter responses. The orthogonal projection PV f is the element of V that is closest to
the origin, the zero image. This can be easily seen by applying the rule of Pythagoras.

linear reconstruction” on page 32, while a more rigorous mathematical analysis can be
found in the work by Duits [29].

3.2.2 Brownian reconstruction

The first term of equation (3.3) represents the prior model of the reconstructed image.
The general form of the functional to minimize can be written as:

S[g] = Ψ[g] +
∑

i

λi〈f − g|φi〉L2 (3.9)

where Ψ is some prior that should be minimized and the other terms are again the
constraints. For the Brownian reconstruction a prior known as the Tikhonov regularizer
[130] is used which results in:
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Implementation Notes

Standard linear reconstruction

Consider the 2D Gaussian kernel ϕs of scale s:

ϕs(x, y) =
1

4πs
e−

x2+y2
4s (3.6)

For the remainder of this thesis we will use derivatives of the shifted Gaussian
kernel as filters for our reconstruction. We define φi as:

φi(x, y) =
∂m+nϕs(x− ξ, y − η)

∂xm∂yn
(3.7)

with i
def
= (m,n, ξ, η, s) ∈ N2

0×R2×R+. The algorithm for the standard linear
reconstruction now becomes:

Algorithm 3.1: Standard linear reconstruction

1. Calculate the feature vector c. (For all N points

calculate ci of equation 3.1).

2. Calculate the Gram matrix G. (For all i, j calculate

Gij of equation 3.5).

3. Calculate the normalization matrix S with elements
1√
Gij

on the diagonal and 0 otherwise.

4. Solve the linear system (SGS)x = Sc using Singular

Value Decomposition or other method.

5. Build reconstruction function g(x, y) =
∑

i xiSiiφi(x, y).

6. Sample the reconstruction function g(x, y).

Note that for step 2 one can use:

〈φ(mi,ni,ξi,ηi,si)|φ(mj ,nj ,ξj ,ηj ,sj)〉L2 = (−1)mj+njφ(mi+mj ,ni+nj ,ξi−ξj ,ηi−ηj ,si+sj)

(3.8)

S[g] =

∫
Ω

|∇g|2dx+
∑

i

λi〈f − g|φi〉L2 (3.10)

This prior is based on a Brownian motion image model and therefore the reconstruction
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is referred to as Brownian reconstruction. The solution g of this minimization problem
is implemented using an iterative algorithm, cf. Lillholm and Nielsen [93]. First the
standard linear reconstruction is performed, as described in section 3.2.1. Using steepest
descent a step is taken that decreases the functional of (3.10). Note that this solution
is not necessarily an element of the metameric class V and thus a back projection to V
is performed. These steps are repeated until convergence has been reached. Figure 3.3
shows this schematically. More details on the implementation can be found in the
implementation notes “Brownian reconstruction” on page 33.

Implementation Notes

Brownian reconstruction

The Brownian reconstruction starts with the standard linear reconstruction
and then iteratively tries to minimize the functional of (3.10). The filters used
are the ones of equation (3.7). The algorithm for the Brownian reconstruction
is as follows:

Algorithm 3.2: Brownian reconstruction

1. Calculate the initial gi=0 using algorithm 3.1.

Do until convergence:

2. g′i+1 = gi + δt δS
δg
, in which δt is the time step and

δS
δg

the functional derivative of 3.10. Note that

in general g′i+1 is not an element of V .

3. Perform back projection into V : gi+1 = PV g
′
i+1.

End Do

3.2.3 Sobolev type inner product reconstruction

For the Sobolev type inner product reconstruction the definition of the inner product is
generalized. For a positive, symmetric operator A we can define the A-inner product:

〈f |g〉A = 〈f |g〉L2 + 〈Af |Ag〉L2 = 〈f |(I +A†A)g〉L2 = 〈(I +A†A)f |g〉L2 (3.11)

The filter responses ci of equation 3.1 can be rewritten in terms of the A-inner product:

ci = 〈φi|f〉L2 = 〈ψi|f〉A (3.12)

where ψi is given by:
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Figure 3.3: The metameric class V contains all images of L2(R2) that have the same filter
responses. The standard linear reconstruction performs an orthogonal projection PV f
that results in the element of V that is closest to the origin in L2-sense, the zero image.
The Brownian reconstruction starts with this reconstruction and then iteratively tries
to minimize

∫
Ω
|∇fB |2dx, while back projecting to V in order to obey the constraints.
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ψi = (I +A†A)−1φi (3.13)

This can be shown by applying equation 3.11:

〈ψi|f〉A = 〈(I +A†A)−1φi|f〉A = 〈(I +A†A)(I +A†A)−1φi|f〉)L2 = 〈φi|f〉L2 (3.14)

Given the filters ψi one can minimize the A-norm ||.||A in a similar fashion as minimizing
the L2-norm for the given filters φi of equation 3.3. In this case the functional to minimize
becomes:

S[g] =
1

2
〈g|g〉A +

∑
i

λi〈f − g|ψi〉A (3.15)

For the remainder of this thesis, the definition of A proposed by Janssen et al. [63, 64]
and Duits [29] is used 1:

A = −γ
√
−∆ (3.16)

Using this definition of A, a Sobolev type inner product is used in the reconstruction
rather than the standard L2 inner product. Using (3.11) and (3.16) the functional of
(3.15) becomes:

S[g] =
1

2

∫
Ω

g2dx+
1

2
γ2

∫
Ω

|∇g|2dx+
∑

i

λi〈f − g|φi〉L2 (3.17)

In which again a Tikhonov regularizer can be identified, among with another term in
the prior. Note that there is a free parameter γ which has an optimum value dependent
on the image and the number of constraints [63, 64]. The solution g of this linear
minimization problem boils down to an orthogonal projection on the intersection of
the measurement filters, similar to the standard linear reconstruction cf. Janssen et al.
[63, 64]. Note that for γ = 0 this boils down to the normal orthogonal projection in L2.
For γ > 0 this is a skew projection in L2 and an orthogonal projection in the Sobolev
space. Figure 3.4 shows this schematically. More details of the implementation can be
found in the implementation notes “Sobolev reconstruction”.

1The operational significance of the fractional operator −
√
−∆, which is the generator of the

Poisson scale space, is explained in detail by Duits et al. [29]. In Fourier space it corresponds
to the multiplicative operator −||ω||.
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Figure 3.4: The metameric class V contains all images of L2(R2) that have the same
filter responses. The Sobolev reconstruction with γ = 0 is equal to the standard linear
reconstruction and hence is an orthogonal projection in L2(R2) (left figure). For γ > 0
this is an A-orthogonal projection or orthogonal projection in Hk,2

γ (R2) (right figure),
which is a skew projection in L2(R2) (left figure). The smoothness of the projection
increases with γ > 0. In practice there is an optimal γ dependent on the original image.
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Implementation Notes

Sobolev reconstruction

The Sobolev reconstruction is similar to the standard linear reconstruction,
but uses a different type of inner product. Therefore the kernels and Gram
matrix become more complicated. Using (3.16) we obtain the following kernel:

ψi = (I +A†A)−1φi = (I − γ2∆)−1φi = F−1(ω 7→ 1

1 + γ2||ω||2F(φi)(ω))

(3.18)
In which F is the standard Fourier transform. Since the filter in the spatial
domain is hard to obtain, a different approach to calculate the Gram matrix in
the Fourier domain is proposed. By the Parseval theorem and equation (3.11)
we have that:

〈ψi|ψj〉A = 〈F(ψi)|F(ψj)〉A = 〈 1

1 + γ2||ω||2F(φi)|F(φj)〉L2 =

〈 1

1 + γ2||ω||2 |F(φi)F(φj)〉L2 = 〈F−1(
1

1 + γ2||ω||2 )|φi ∗ φj〉L2 (3.19)

which boils down to taking a Gaussian derivative of F−1( 1
1+γ2||ω||2 ) at the ori-

gin using kernel φ(mi+mj ,ni+nj ,ξi−ξj ,ηi−ηj ,si+sj). The reconstruction function
is also created in the Fourier domain so that the algorithm for the Sobolev
reconstruction now is as follows:

Algorithm 3.3: Sobolev reconstruction

1. Calculate the feature vector c. (For all N points

calculate ci of equation 3.1).

2. Calculate the kernel K = F−1( 1
1+γ2||ω||2 ) using FFT.

3. Calculate the Gram matrix G using Gaussian derivatives

of the kernel K.

4. Calculate the normalization matrix S with elements
1√
Gij

on the diagonal and 0 otherwise.

5. Solve the linear system (SGS)x = Sc using Singular

Value Decomposition or other method.

6. Build the reconstruction function using FFT g(x, y) =
F−1(

∑
i xiSii

1
1+γ2||ω||2F(φi(x, y))).

7. Sample the reconstruction function g(x, y).
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Implementation Notes

Speedup tricks

The previously described reconstruction algorithms can be improved in terms
of speed using the following tricks. Consider the kernel φ of equation (3.7)
and up to 4-th order derivatives for each point i. Since

〈φi|φj〉 = 〈φj |φi〉 (3.20)

the Gram matrix will be symmetric and hence a factor 2 can be saved calcu-
lating only the upper or lower half. Furthermore

〈φi|
∂

∂xk
φj , 〉 = −〈 ∂

∂xk
φi|φj〉 (3.21)

which means that for every point i there are pairwise symmetries in the deriva-
tives. For up to m-th order derivatives, instead of 1

4
(m + 1)2(m + 2)2 inner

products only 1
2
(2m+1)(2m+2) (all combinations of derivatives) inner prod-

ucts have to be calculated. For up to 4-th order this means 45 inner products
per point instead of 225 inner products per point. In practice one should cal-
culate all possible combinations once and use a lookup table to place the parts
in the Gram matrix.
Considering derivatives of the Gaussian, another implementation trick can be
applied. Since d

dx
ex = ex we have that:

∂

∂xk
φi(x, y) =

∂

∂xk
(−x

2 + y2

4t
)φi(x, y) (3.22)

This means that for every derivative of φi there is a static part (φi itself) and
a non-static polynomial part. Using Hermite polynomials this trick can be
done with all derivatives of a Gaussian. In practice the fastest method is to
hard-code these polynomials and calculate the φi only once per point.
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Implementation Notes

Stability

In theory the Sobolev reconstruction for γ = ∞ should be close to the Brown-
ian reconstruction, since the first term of (3.17) can be neglected. In practice
however it is shown that there is an optimal γ and that for large γ the re-
construction can be even worse than the standard linear reconstruction. The
reason lies in the stability of the linear system that has to be solved, which can
be expressed in the condition number of the Gram matrix (quotient of largest
and smallest eigenvalue of the Gram matrix).
When two interest points are close to each other and have similar derivatives
the system will become more dependent. This will result in a bad condition
number of the Gram matrix and a hard to solve linear system. One solution
is to use Singular Value Decomposition (SVD) to remove near dependencies.
However, this also means that information about the points is thrown away,
which results in loss of information in the reconstruction. In practice one
should carefully choose the threshold for the SVD to minimize errors in the
inverse calculation of the Gram matrix, while maintaining as much information
of the image as possible.
For the Sobolev reconstruction the condition number of the matrix is however
dependent on γ. Algorithm 3.3 shows that in practice the Gaussian derivative
of kernel K is calculated using a Gaussian kernel of scale s = si + sj located
at (xi−xj , yi− yj). Figure 3.5 shows the kernel K for some values of γ. Since
the amplitude drops with increasing γ, the Gaussian derivatives at different
positions will become more similar and due to limited machine precision, the
condition number of the Gram matrix will become worse with increasing γ.
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Figure 3.5: Kernel K in the spatial domain for γ = 0.5, γ = 2.0,
γ = 10 and γ = 25.
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Figure 3.6: Two example images used for reconstruction. Top row, from left to right:
Canada1.jpg test image (128 × 128 pixels) , 100 strongest corner points projected on
the original image (the size of the circles represents the scale of the point) and 300
strongest corner points projected on the original image. Bottom row, from left to right:
Tulip.jpg test image (128× 128 pixels), 100 strongest Laplacian blobs projected on the
original image and 300 strongest Laplacian blobs projected on the original image. For
more details on the extraction of interest points from images, the reader is referred to
chapter 5.

3.3 Evaluation of the reconstruction algorithms

In this section some experiments are presented that demonstrate the properties of the
presented reconstruction algorithm. For these experiments two sample images are used
that are shown in figure 3.6, canada1.jpg and tulip.jpg. More experiments using a set
of 8000 image patches of the van Hateren database [134] and a set of 12 digital images
of natural scenes are presented in chapter 5. For the canada1 image 458 corner points
were detected (for more information on the extraction of interest points from images
the reader is referred to chapter 5) and for the tulip image 437 Laplacian blobs were
detected (again we refer to chapter 5 for details). Subsets of these two point sets (shown
in figure 3.6) are used to reconstruct the original images using several parameters and
reconstruction algorithms. Gaussian filter responses with up to 4-th order derivatives
located at the interest points were used as constraints for the reconstruction algorithms
(see section 3.2 for details). The reconstruction results are evaluated using two different
error measures, the Root Mean Square (RMS) error and the Multi-Scale Differential
Error (MSDE). More details on these error measures can be found in chapter 4.
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3.3.1 Evaluation of the γ-parameter

The proposed Sobolev type inner product reconstruction algorithm (further referred to
as Sobolev reconstruction) has a free parameter γ that sets the smoothness of the image.
For γ = 0 the Sobolev reconstruction equals the standard linear reconstruction while for
γ = ∞ the Sobolev reconstruction equals the Brownian reconstruction (since the first
term of equation (3.17) can be neglected for γ = ∞). In practice however, there are some
limitations on γ because of limited machine precision as is shown in the implementation
notes “Stability”. This section shows experiments using the two images with varying γ.
The experiments are performed using our Mathematica implementation, where a higher
precision is used at the cost of lower speed (currently the Mathematica implementation
uses more than one hour for a 4-th order reconstruction of 100 points, while our less
accurate C++ implementation uses less than one minute for the same reconstruction on
the same machine). For the remainder of this thesis all experiments are performed using
our C++ implementation, unless noted otherwise. To show the actual influence of the
prior of the reconstructions, the subset of 100 points is used. Figure 3.7 shows some
results of the Sobolev reconstruction using various γ. The reconstructions of varying γ
are evaluated using the RMS error and the MSDE (for details, see chapter 4). Figure 3.8
shows the resulting graphs. Note that first the error decreases with increasing γ, while
for higher γ the error increases for the canada1 image due to limited machine precision
(also visible in figure 3.7 on the two top right images). Another interesting effect is the
difference between the RMS and the MSDE, especially for the tulip image. The MSDE
is much smoother which actually better represents the visual differences between the
reconstructed images as is also found in chapter 4. The small jump in the MSDE for the
canada1 image is due to numerical errors in the reconstruction algorithm that suddenly
cause a large blob to change the mean gray-scale value of a large part of the image.
For the remainder of this thesis γ = 20 is used for our experiments, since this gives a
reasonable smoothing, while the C++ algorithm will still give stable results.

3.3.2 Evaluation of the SVD settings

The inverse of the Gram matrix used in the Sobolev reconstruction is calculated using
the Singular Value Decomposition (SVD). Before calculating the actual inverse of the
decomposition, equations corresponding to small singular values are removed. Equations
are removed if the corresponding singular value is smaller than ε times the largest singular
value, where ε < 1 is referred to as the SVD tolerance. The higher the tolerance, the more
equations are removed from the linear system and the more stable the inverse becomes
(which means less numerical errors in the inverse). However, image information is lost
while removing equations and thus the lower the tolerance, the more image information
is maintained. In practice one should carefully choose the SVD tolerance to obtain
a stable inverse, while maintaining as much image information as possible. In this
section some results are presented of reconstructions using various settings for the SVD
tolerance. Figure 3.9 shows some results of reconstructions using SVD tolerances of
10−1, 10−3, 10−5 and 10−8 respectively. Note that the images using a tolerance of 10−1

lack some detail, while the images using a tolerance of 10−8 contain large artifacts due to
numerical errors. Figure 3.10 and figure 3.11 show the errors of the reconstructions for
various settings of the tolerance for the canada1 image and the tulip image respectively.
Note that indeed first the error decreases with decreasing tolerance, but increases if the
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Figure 3.7: Reconstruction results using varying γ. The top row shows reconstructions
of the canada1 image using up to 4-th order derivatives in 100 corner points with γ = 1,
γ = 25, γ = 50 and γ = 100 respectively. Note the large structures at the top-right part
of the images for high γ due to numerical errors. The bottom row shows reconstructions
of the tulip image using up to 4-th order derivatives in 100 Laplacian blobs with γ = 1,
γ = 25, γ = 50 and γ = 100 respectively.

2 0 4 0 6 0 8 0 1 0 0
g

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0
E r r o r

t u l i p M S D E

t u l i p R M S

C a n a d a 1 M S D E

C a n a d a 1 R M S

G a m m a

Figure 3.8: Reconstruction errors for varying γ. Reconstructions of the canada1 image
were made using up to 4-th order derivatives in 100 corner points while reconstructions
of the tulip image were made using up to 4-th order derivatives in 100 Laplacian blobs.
Note that first the error decreases with increasing γ, while for higher γ the error increases
for the canada1 image due to limited machine precision. The tulip image does not suffer
from these numerical errors and shows a more constant MSDE for high γ. Also note
that the MSDE is much smoother which actually better represents the visual differences
between the reconstructed images as is also found in chapter 4.
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Figure 3.9: Reconstruction results using varying SVD tolerance. The top row shows
reconstructions of the canada1 image using up to 4-th order derivatives in 100 corner
points with tolerance ε = 10−1, ε = 10−3, ε = 10−5 and ε = 10−8 respectively. The
bottom row shows reconstructions of the tulip image using up to 4-th order derivatives
in 100 Laplacian blobs with tolerance ε = 10−1, ε = 10−3, ε = 10−5 and ε = 10−8

respectively. Note the lack of detail in the images with tolerance ε = 10−1 and the large
artifacts due to numerical errors for images with tolerance ε = 10−8.

tolerance is too small. The graphs also show the percentage of equations that have been
removed by the SVD inverse. In cases where no equations are removed, the error is much
larger due to numerical errors. For further experiments a value of 10−5 for the SVD
tolerance is used since this seems to result in stable reconstructions while maintaining
as much image information as possible.

3.3.3 Evaluation of the number of reconstruction points

The quality of the reconstruction will be dependent on the amount of constraints and
the quality of the prior. The less constraints, the more important the prior becomes.
The constraints used for the reconstruction are Gaussian (derivative) filter responses
located in scale space interest points. In this section experiments using a varying number
of points are presented. The points are ranked by strength or differential TV-Norm
(see chapter 5 for details). For the reconstructions in this section, up to 4-th order
derivatives are used as features in each interest point. Figure 3.12 shows some example
reconstructions with 10, 50, 150 and 400 points respectively. As one would expect the
reconstruction quality increases with the number of reconstruction points. Figure 3.13
shows the error of reconstructions with varying number of reconstruction points. Note
that for the canada1 image the error stabilizes after approximately 150 points. Most of
the image information is thus contained in the first 150 corner points. With the tulip
image this number is much higher (and not present in the graph). In practice for these
128× 128 images using up to 4-th order derivatives, approximately 300 points will give
reasonable reconstructions.
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Figure 3.10: Reconstruction errors for varying SVD tolerance for the canada1 image.
The dashed line shows the percentage of removed equations for a given tolerance. Note
that first the error decreases with decreasing tolerance, but increases if the tolerance is
too small. In cases where no equations are removed, the error is much larger due to
numerical errors.
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Figure 3.11: Reconstruction errors for varying SVD tolerance for the tulip image. The
dashed line shows the percentage of removed equations for a given tolerance. Note that
first the error decreases with decreasing tolerance, but increases if the tolerance is too
small. In cases where no equations are removed, the error is much larger due to numerical
errors.
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Figure 3.12: Reconstruction results using a varying number of scale space interest points.
The top row shows reconstructions of the canada1 image using up to 4-th order deriva-
tives in 10, 50, 150 and 400 corner points respectively. The bottom row shows recon-
structions of the tulip image using up to 4-th order derivatives in 10, 50, 150 and 400
Laplacian blobs respectively. As expected the image quality improves with an increasing
number of interest points, since the metameric class is more constrained.
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Figure 3.13: Reconstruction errors for a varying number of scale space interest points.
Reconstructions of the canada1 image were made using up to 4-th order derivatives in
each corner point while reconstructions of the tulip image were made using up to 4-th
order derivatives in each Laplacian blob point. Note that for the canada1 image the error
stabilizes after approximately 150 points. Most of the image information is contained in
the first 150 corner points. With the tulip image this number is higher (and not present
in the graph).
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3.3.4 Evaluation of the reconstruction order

The number of constraints used for the reconstruction is not only dependent on the
number of interest points. The amount of local information taken into account in each
interest points is also important. In this section a number of experiments is performed
showing the influence of the order of derivatives taken into account in each interest
point. Figure 3.14 shows example reconstructions using derivatives up to order 0,1,2,3
and 4 respectively in each interest point (which means that in each point respectively
1, 3, 6, 10, 15, 21 features are used as constraints). The subsets of 100 interest points
are used to show the influence of the features in each point since a high number of
points can compensate a low number of features. Figure 3.15 shows the error of the
reconstructions using varying orders of derivatives. Note that the error decreases, but
the difference between up to 4-th order and up to 5-th order is relatively small while 40%
of information is added. So the ratio between the error and the amount of information
added decreases fast. In practice up to 4-th order will be sufficient if the number of
points is not too low.

3.3.5 Stability with respect to noise on the position of the points

The reconstruction algorithm works with any type of filter response. In principle one
could use random points in scale space and calculate Gaussian derivatives in those points
as features. However, some points in scale space contain more image information than
others. This can be demonstrated by comparing reconstructions from scale space in-
terest points with reconstructions from perturbed interest points. In this section some
experiments are shown using additive noise on the position of the scale space interest
points with varying standard deviation σ. The features are recalculated in each point
to simulate the effect of errors in the detection of the points. Figure 3.16 shows some
example reconstructions using additive noise on the interest point position with a stan-
dard deviation of σ = 0, σ = 5, σ = 12 and σ = 20 pixels respectively. Note that
indeed the image quality decreases with increasing noise. Figure 3.17 shows the errors
for reconstructions using additive noise on the interest point positions. Note that the er-
ror increases with increasing noise. However, the visual quality seems to degrade faster
than one would expect looking at the error. The peak in the graph for the canada1
image is due to artifacts introduced by numerical errors since the linear system can get
nearly dependent when noise is added. The conclusion is that there are indeed points in
scale space that contain more image information than others. In chapter 5 an extensive
evaluation is given using 10 different types of scale space interest points from a set of
8.000 image patches.

3.3.6 Stability with respect to noise on the features

The reconstruction from scale space interest points and some local features in those
points relies on the accuracy of those features. In this section the influence of noise
on the features in the reconstruction points is investigated. Multiplicative noise with
mean 0 and standard deviation σ is added to the feature vector after calculation of the
derivatives in each interest point. The use of multiplicative noise is due to the fact that
the derivatives are not normalized and have different ranges in amplitude. Additive noise
would in this case have much influence on high order derivatives and lower influence on
low order derivatives. Figure 3.18 shows some reconstruction examples using noise on
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Figure 3.14: Reconstruction results using a varying number of features in each interest
point. The top row shows reconstructions of the canada1 image using 100 corner points
and derivatives up to order 0,1,2,3 and 4 in each corner point respectively. The bottom
row shows reconstructions of the tulip image using 100 Laplacian blobs and derivatives
up to order 0,1,2,3 and 4 in each corner point respectively. As expected the image quality
improves with an increasing number of features per point, since the metameric class is
more constrained. Note that the difference between up to 3-rd order and up to 4-th
order is hard to see.
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Figure 3.15: Reconstruction errors for a varying number of features in each interest
point. Reconstructions of the canada1 image were made using 100 corner points while
reconstructions of the tulip image were made using 100 Laplacian blob points. Note that
the error decreases with increasing order, but the difference becomes small for orders
higher than 4.
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Figure 3.16: Reconstruction results using additive noise on the interest point positions
using varying standard deviation σ. The top row shows reconstructions of the canada1
image using 300 corner points and up to 4-th order derivatives in each corner point. The
bottom row shows reconstructions of the tulip image using 300 Laplacian blobs and up
to 4-th order derivatives in each Laplacian blob point. From left to right the additive
noise on the position of the interest points has a standard deviation of σ = 0, σ = 5,
σ = 12 and σ = 20 respectively.
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Figure 3.17: Reconstruction errors using additive noise on the interest point positions
using varying standard deviation σ. Reconstructions of the canada1 image were made
using 100 corner points with up to 4-th order derivatives in each point while reconstruc-
tions of the tulip image were made using 100 Laplacian blob points with up to 4-th order
derivatives in each point. Note that the error increases with increasing noise, but the
visual image quality seems to degrade more than one would expect looking at the error.
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the features with a standard deviation of σ = 0, σ = 0.025, σ = 0.060 and σ = 0.1
respectively. Note that the noise is added to all features at once and the influence of
noise on the features is much higher than noise on the position of the interest points.
Furthermore, image information is perturbed in the case of noise on the features, while
this is not the case for noise on the position of the interest points since the features are
recalculated there. Figure 3.19 shows the errors for noise on the features for various
σ. Note that indeed the error increases fast when the standard deviation of the noise
increases. In practice this means that accurate calculation of the features in each interest
point is important.

3.3.7 Comparison of the proposed algorithms

The different point sets of the two example images shown in figure 3.6 are also used to
compare the three reconstruction algorithms presented. The three algorithms differ in
that they select a different image from the metameric class based on a different prior.
One would expect the prior to have more influence when the number of constraints
is low. Therefore reconstructions from both the 100 point subsets and the 300 point
subsets are compared for the three reconstruction algorithms. Figure 3.20 shows the
reconstruction results for the three reconstruction algorithms using the two interest
point subsets. Note that the standard linear reconstruction performs worse than the
Brownian and the Sobolev reconstruction in all cases. However, the difference between
the Sobolev and the Brownian reconstructions is much smaller, but still in favor of
the Brownian reconstruction (that is with the current implementation). Note that the
visual quality of the reconstructions is not correctly reflected in the RMS error. The
MSDE better reflects the difference in visual quality between the Brownian and Sobolev
reconstructions. Also note that the influence of the prior is more clearly visible in the
100 point reconstructions. Table 3.1 shows the corresponding errors.

standard linear Sobolev Brownian
reconstruction reconstruction reconstruction

Image RMS MSDE RMS MSDE RMS MSDE

Canada1, 100 pts 14.83 0.4988 8.56 0.3600 9.88 0.3384
Canada1, 300 pts 7.25 0.2657 6.01 0.2257 5.36 0.1756
Tulip, 100 pts 25.39 0.8886 16.39 0.6998 17.24 0.6142
Tulip, 300 pts 12.11 0.3896 6.04 0.2757 6.39 0.2018

Table 3.1: RMS and MSDE errors of the three different reconstruction algorithms.

3.4 Conclusion and discussion

To use scale space interest points for image editing, it is important to know how much
image information is available in such a point set. One method to make the image
information of a point set explicit is image reconstruction. If it is possible to create a good
reconstruction from a set of scale space interest points, that set must contain almost all
image information. Two existing reconstruction algorithms are presented in this chapter:
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Figure 3.18: Reconstruction results using multiplicative noise on the features of each
interest point with varying standard deviation σ. The top row shows reconstructions of
the canada1 image using 300 corner points and up to 4-th order derivatives in each corner
point. The bottom row shows reconstructions of the tulip image using 300 Laplacian
blobs and up to 4-th order derivatives in each Laplacian blob point. From left to right
the multiplicative noise on the features in each interest point has a standard deviation
of σ = 0, σ = 0.025, σ = 0.060 and σ = 0.1 respectively. Note that the visual quality
decreases fast when noise is added to the features.

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1
s

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0
E r r o r

t u l i p M S D E

t u l i p R M S

C a n a d a 1 M S D E

C a n a d a 1 R M S

S t a b i l i t y p o i n t f e a t u r e s

Figure 3.19: Reconstruction errors using multiplicative noise on the features of each
interest point with varying standard deviation σ. Reconstructions of the canada1 image
were made using 300 corner points with up to 4-th order derivatives in each point while
reconstructions of the tulip image were made using 300 Laplacian blob points with up to
4-th order derivatives in each point. Note that the error increases fast when the standard
deviation of the noise increases.
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Figure 3.20: Reconstructions from scale space interest points and local features of two
example images using three different reconstruction algorithms. From top to bottom:
Reconstruction from 100 corner points of the Canada1 image, reconstruction from 300
corner points of the Canada1 image, reconstruction from 100 Laplacian blobs of the
Tulip image and reconstruction from 300 Laplacian blobs of the Tulip image. From
left to right: Original image, standard linear reconstruction, Sobolev reconstruction and
Brownian reconstruction.
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one simple linear reconstruction algorithm that is fast, but has visually unappealing
results for a low number of points and a more sophisticated iterative reconstruction
scheme that is slower, but gives a more appealing result for a low number of points.
We presented a third method that is still linear, but the results are visually close to the
iterative reconstruction scheme.

A number of experiments is performed to show the properties of the newly introduced
reconstruction algorithm. This algorithm has a free parameter γ > 0 that represents
the amount of blurring between the feature points. In theory setting this value to
γ = ∞ would lead to equal results as the iterative reconstruction, but in practice due
to numerical errors, one should not make the γ parameter too high. A reasonable
value for our C++ implementation is γ = 20 to γ = 25. Another parameter that is
of influence is the SVD tolerance. In theory this value should be small to maintain all
image information in the points, but the numerical precision of the computer limits this.
In our experiments a value of ε = 10−5 gives good results.

The quality of the reconstruction depends mostly on the amount of constraints that
is used. In our experiments we used two types of scale space interest points and local
derivatives up to 4th order in these points as constraints. Experiments using more
images and more types of scale space interest points are presented in chapter 5. In the
experiments of this chapter we showed that a larger number of interest points gives a
better reconstruction but that the improvement is slowly decaying. A number of 300
scale space interest points seemed optimal for our 128 × 128 images. The same holds
for the order of derivatives included in the reconstruction. The higher number of orders
included, the better the reconstruction. However, again the improvement will decay and
in practice using up to 4-th order derivatives for our test images was sufficient. It is also
shown that adding noise to the position of the scale space interest points does affect the
reconstruction quality. This shows that reconstruction from scale space interest points
gives better results than just random points. With respect to the features it is shown
that adding noise to the features greatly degrades the reconstruction quality and that
one should thus detect the features as accurate as possible.

Finally it is shown that the proposed linear reconstruction algorithm performs very
close to the existing iterative reconstruction algorithm and outperforms the old stan-
dard linear reconstruction algorithm. It is also shown that scale space interest points
and some local properties of these points can contain a substantial amount of image in-
formation. More experiments showing this can be found in chapter 5. There are several
improvements possible for the reconstruction algorithm. Currently there are boundary
issues, since for the measurement filters as well as for the reconstruction filters boundary
conditions have to be chosen for points close to the border of the image. This means
assumptions have to be made about the outside of the image. A possible solution is to
include the boundary of the image itself as a constraint. The flux features presented
by Duits [29] could also result in a big improvement since for certain areas properties
can be set instead of for single points. The question is however how this would affect
the stability of the linear system. One should also reconsider the way constraints are
used in the current implementation. Currently all points share the same type of feature,
e.g. all points have up to 4-th order derivatives as features. It makes sense to make an
implementation able of having different types of features for different types of interest
points, for example first order derivatives for edge points and zeroth order derivatives
for blobs or scale related as presented by Florack [42].
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4.1 Introduction

In the previous chapter we have introduced three reconstruction algorithms that are
able to reconstruct an image from multi scale interest points and their local features.
To compare the three algorithms and to evaluate their properties, the image quality of
the reconstructed images must be quantified in a reproducible manner. Image quality
can be quantified in two ways: Using subjective measures (e.g. human observers, not
reproducible and not quantitative) or using objective measures (e.g. computer algo-
rithms, reproducible and quantitative). Some studies that address the problem of how
to obtain subjective measurements on images can be found in the work of Hamberg
and de Ridder [57] and the ISO20462 standard [76]. Objective image quality mea-
sures can roughly be divided into two groups: Generic mathematical measures and
measures specifically based on (complex) models of the human visual system (HVS).
There are several papers comparing generic mathematical measures with more sophisti-
cated measures and with subjective measures, mostly in the field of image compression
[52, 48, 34, 33, 107, 31, 35, 6, 28], halftone printing [106, 10, 11], CRT display quality
[4, 131, 121] or specific for color imaging [150, 1, 62, 90, 70]. A more recent application
involves measuring image quality of synthetic (rendered) images [22, 124, 18, 101]. A
very comprehensive comparison of 26 different error measures can be found in the work
by Avcibas [2]. In 2004 Wang and Simoncelli introduced a method to evaluate the dif-
ference between two image quality metrics [151]. One of the main problems in computer
vision is to relate the objective measures with subjective measures. In 1996 Martens and
Kayargadde presented a method to relate objective measures and subjective measures
[105] by introducing a perceptual space and a psychometric space.

The problem with the current literature is however that it is biased to specific ap-
plications with aims very different from image reconstruction from multi-scale interest
points. Compression for example has only limited types of artifacts (e.g. blocking or
color-shift) which are usually known a priori. Image reconstruction from scale space
interest points however has many types of artifacts which are not known a priori since
they depend on the reconstruction algorithm, the interest points and their features. For
this reason many commonly used objective quality measures will not be similar to how
a human observer would rate the image quality. In section 4.2 we present 31 commonly
used generic objective image quality measures, a new scale space image quality measure
is introduced and 3 more complex human visual system based quality measures are pre-
sented. Section 4.3 presents a set of experiments comparing a human observer study
with all presented objective image quality measures. Finally conclusions and discussion
are given in section 4.4.

4.2 Objective image quality measures

In this section a number of objective image quality measures is presented. First some
generic mathematical measures are defined and finally some more complex HVS based
measures are presented. Note that some of the methods described are based on heuristics
and contain choices that are not always obvious. Some methods are even unsuitable for a
large class of images, but are included for completeness sake. We present these methods
as described in the respective references, without judging the credibility of the methods.
First we define our reference image f [i, j] and some distorted image g[i, j] with 1 ≤ i ≤M
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and 1 ≤ j ≤ N . All image values of f and g are scaled to the unit interval (0,1).

4.2.1 Generic mathematical measures

4.2.1.1 MSE

Given the definition of reference image f and distorted image g we define the Mean
Squared Error (MSE) as:

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(f [i, j]− g[i, j])2 (4.1)

4.2.1.2 RMSE or RMS

The well known Root Mean Squared Error is defined as the square root of the MSE:

RMSE(f, g) = ||f − g||2 =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(f [i, j]− g[i, j])2 (4.2)

The RMS error is one of the most commonly used image quality measures mostly because
its simplicity.

4.2.1.3 RRMSE

The Relative Root Mean Squared Error is defined as:

RRMSE(f, g) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(f [i, j]− g[i, j])2

f [i, j]2
(4.3)

Note that if f [i, j] = 0 for any i, j the RRMSE=∞, which makes this error measure
useless for many types of images.

4.2.1.4 MI

The Mutual Information is defined as:

MI(f, g) =
∑
u∈U

∑
v∈V

pfg{u, v} log
pfg{u, v}
pf{u}pg{v}

(4.4)

with U and V the set of gray scale values of f and g respectively. For 8-bits images with
normalized values, U = V = {0, 1

255
, 2

255
, ... 254

255
, 1}, pf{u} is the number of pixels in f

with value u divided by the total number of pixels in f , pg{v} is the number of pixels
in g with value v divided by the total number of pixels in g and finally pfg{u, v} is the
number of pixels in f with value u and in g with value v divided by the total number
of pixels in f . The Mutual Information results in a value between 0 and the entropy of
image f (when f and g are the same). To obtain a value between 0 and 1 we normalize
the MI.
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4.2.1.5 SNR

The Signal to Noise Ratio between 2 images is defined by:

SNR(dB)(f, g) = 10 10 log

(
σ2

f

MSE(f, g)

)
(4.5)

with σ2
f the variance of the original image f .

4.2.1.6 PSNR

Conform [123] we define the Peak Signal to Noise Ratio (for normalized images) as:

PSNR(dB)(f, g) = 10 10 log

(
1

MSE(f, g)

)
(4.6)

4.2.1.7 MAD

The Maximum Absolute Difference is defined by:

MAD(f, g) = ||f − g||∞ = max
i,j

|f [i, j]− g[i, j]| (4.7)

4.2.1.8 RMAD

The Relative Maximum Absolute Difference is defined by:

RMAD(f, g) = max
i,j

|f [i, j]− g[i, j]|
f [i, j]

(4.8)

Again note that if f [i, j] = 0 for any pair i, j, the RMAD=∞, which makes it unusable
for many types of images.

4.2.1.9 MAE

The Mean Absolute Error is defined by:

MAE(f, g) = ||f − g||1 =
1

MN

M∑
i=1

N∑
j=1

|f [i, j]− g[i, j]| (4.9)

4.2.1.10 Minkowski metric Lp

The Lp norm is given by:

Lp(f, g) = ||f − g||p =

(
1

MN

M∑
i=1

N∑
j=1

|f [i, j]− g[i, j]|p
) 1

p

(4.10)

with 1 ≤ p ≤ ∞. Note that for p = 1 one obtains the MAE and for p = 2 one obtains
the RMSE.
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4.2.1.11 Modified Minkowski infinity metric

For p = ∞ the Minkowski metric becomes the maximum pixel difference (MAD):

L∞(f, g) = max
i,j

|f [i, j]− g[i, j]| (4.11)

This is however very sensitive to noise. To make it more robust to noise one can define
the modified Minkowski infinity metric (cf. D3 of Avcibas [2]):

MMIMr(f, g) =

√√√√1

r

r∑
m=1

∆2
m(f [i, j]− g[i, j]) (4.12)

where ∆l(f [i, j]− g[i, j]) is the lth largest deviation among the pixels. Thus ∆1(f [i, j]−
g[i, j]) is the normal Minkowski infinity metric which is equal to (4.7) and (4.11) and
∆2(f [i, j]− g[i, j]) is the second largest deviation, etc. Note that r is a free parameter,
which influences the number of deviations that are taken into account.

4.2.1.12 Neighborhood Difference

Image distortion can also arise from displacements of pixels. A distortion measure that
penalizes spatial displacements in combination with gray level differences is introduced
by DiGesu and Staravoitov [27]:

NDw(f, g) =

√
1

2(M − w)(N − w)
·√√√√√M−w/2∑

i=w/2

N−w/2∑
j=w/2

{M ij
w (f, g) +M ij

w (g, f)} (4.13)

with:

M ij
w (f, g) =

(
min

l,m∈wi,j

{d(f [i, j], g[l,m])}
)2

(4.14)

where d(·, ·) is some appropriate distance metric and w is some neighborhood size, for
example 3 or 5 pixels. For the distance metric one could use for example the city block
or Manhattan metric:

dcity
α,β (f [i, j], g[l,m]) =

(|i− l|+ |j −m|)
α

+
|f [i, j]− g[l,m]|

β

(4.15)

where α and β are two parameters to tune the penalties due to pixel shift and gray value
difference. Note that this implementation ignores the boundaries and thus NDw(f, g) =
0 ; f = g. This can be solved by properly handling the boundaries of the image.
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4.2.1.13 Multi-resolution Distance Measure

Most of the presented methods only look at the finest resolution of the images. The
human visual system however, takes many different scales into account when observing
images. Juffs [71] introduced a multiresolution distance measure which assigns larger
weights to low resolutions and smaller weights to high resolutions (details in the image).
Consider the various levels of resolution denoted by r ≥ 1, cf. Avcibas [2]. For each value
of r the image is split into blocks b1 to bn where n depends on the scale r. For example
for r = 1, at the lowest resolution, only one block covers the whole image characterized
by its average gray level av(1). For r = 2 one has four blocks each of size (M/2×N/2)

with average gray levels av
(2)
11 , av

(2)
12 , av

(2)
21 and av

(2)
22 . For the r-th resolution level one

would have 22r−2 blocks of size ( M
2r−1 × N

2r−1 ) characterized by the block average gray

levels av
(r)
ij , i, j = 1, ..., 22r−2. The average difference in gray level at the resolution r

has weight 1/2r. If one considers a total of R resolutions, the total distance becomes:

MrDM(f, g) =

R∑
r=1

1

2r

1

22r−2

2r−1∑
i,j=1

|av(r)
ij [f ]− av

(r)
ij [g]| (4.16)

where av
(r)
ij [f ] and av

(r)
ij [g] are the average gray levels of the corresponding blocks at

resolution r in image f and image g respectively.

4.2.1.14 Structural Content

Alternatively one could measure the closeness between two images in terms of correlation
or similarity between two images. In this sense these correlation or similarity based
methods are complementary to the difference based methods. One similarity based
measure is the Structural Content (SC, cf. C1 in [2]):

SC(f, g) =

∑M
i=1

∑N
j=1(f [i, j])2∑M

i=1

∑N
j=1(g[i, j])

2
(4.17)

Note that the Structural Content makes little sense if g[i, j] = 0 for any pair i, j.

4.2.1.15 Normalized Cross-Correlation Measure

Another correlation measure is the Normalized Cross-Correlation Measure, cf. C2 in [2]:

NCC(f, g) =

∑M
i=1

∑N
j=1 f [i, j]g[i, j]∑M

i=1

∑N
j=1(f [i, j])2

(4.18)

Note that also the Normalized Cross-Correlation Measure makes little sense if f [i, j] = 0
for any pair i, j.

4.2.1.16 Pratt Measure

In the perception of scene content by the human visual system, edges play a major role.
Therefore it is important to include edge information in image quality measures. The
following two measures include edge distortion measures. For this, binary edge maps of
the images are obtained using the Canny edge detector [14]. The x-derivative fx[i, j]
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of image f [i, j] at scale σ can be found by convolving image f with the derivative of a
Gaussian:

fx[i, j] = (f ∗Gx,σ)[i, j] (4.19)

where Gx,σ is:

Gx,σ =
∂Gσ

∂x
=

−x
2πσ4

e
− x2+y2

2σ2 (4.20)

Similarly the y-derivative can be obtained by:

fy[i, j] = (f ∗Gy,σ)[i, j] (4.21)

where Gy,σ is:

Gy,σ =
∂Gσ

∂y
=

−y
2πσ4

e
− x2+y2

2σ2 (4.22)

The gradient magnitude |∇f | of the image at scale σ is now defined as:

|∇σf [i, j]| =
√
fx[i, j]2 + fy[i, j]2 (4.23)

To obtain the edge map of image f , the gradient magnitude image is thresholded with
T = α(max

i,j
|∇σf [i, j]| −min

i,j
|∇σf [i, j]|) + min

i,j
|∇σf [i, j]|. Finally binary thinning is ap-

plied to obtain single pixel edges. This procedure can also be applied to the reconstructed
image g in a straightforward way. Give the edge map of images f and g Pratt [122] in-
troduced a measure that both considers edge location accuracy and missing or false edge
elements. It is defined as:

Prattβ(f, g) =
1

max(ng, nf )

ng∑
i=1

1

1 + βd2
i

(4.24)

where nf and ng are the number of edge pixels of f and g respectively and di is the
distance to the closest edge candidate for the i-th detected edge pixel in image g. Note
that β is a free parameter to weigh the importance of edge dislocation in the error
measure.

4.2.1.17 Edge Stability Measure

Carevic [15] defined edge stability as the consistency of edge evidences across different
scales in both the original and coded images. First the gradient of both images at
different scales is obtained using the Canny edge detector as described in steps (4.19)-
(4.23). Conform [2] we use scales σm = 1.19, 1.44, 1.68, 2.0, 2.38 for m = 1, 2, 3, 4, 5
respectively. The output of this operator at scale m is thresholded with Tm where
Tm = 0.1(Cm

max − Cm
min) + Cm

min. In this expression Cm
max and Cm

min are defined by:

Cm
max = max

i,j
(|∇σmf [i, j]|) (4.25)

Cm
min = min

i,j
(|∇σmf [i, j]|) (4.26)

Now the edge map E(i, j, σm) at scale σm of image f is defined by:
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E(i, j, σm) =

{
1, for |∇σmf [i, j]| > Tm

0, otherwise (4.27)

An edge stability map Q(i, j) is obtained by considering the longest subsequence
E(i, j, σm), ..., E(i, j, σm+l−1) of edge images such that Q(i, j) = l where l is given by:

l = argmax
l

⋂
σm≤σk≤σm+l−1

{E(i, j, σk) = 1} (4.28)

The edge stability map Q̂(i, j) of the reconstructed image g can be calculated in a similar
fashion. The Edge Stability Mean Square Error (ESMSE) now becomes:

ESMSE(f, g) =
1

nf

nf∑
i,j=1

(
Q(i, j)− Q̂(i, j)

)2

(4.29)

where nf is again the number of edge pixels in image f . Note that this makes the
measure non symmetrical.

4.2.1.18 Spectral Magnitude Distortion

First we define the discrete Fourier transform F [ω1, ω2] of image f [x, y] as:

F (ω1, ω2) =
1√
MN

M∑
i=1

N∑
j=1

(f [x, y]eı(ω1x+ω2y)) (4.30)

Consider the discrete Fourier transforms F [ω1, ω2] and G[ω1, ω2] of f[i,j] and g[i,j] re-
spectively. The phase and magnitude of F [ω1, ω2] can be written as:

ϕf (ω1, ω2) = arctan (F (ω1, ω2)) (4.31)

Mf (ω1, ω2) = |F (ω1, ω2)| (4.32)

Similarly we can define the phase ϕg and magnitudeMg of image g. Following Avcibas [2]
we define the Spectral Magnitude Distortion (SMD) as:

SMD(f, g) =
1

MN

M∑
i=1

N∑
j=1

|Mf (i, j)−Mg(i, j)|2 (4.33)

4.2.1.19 Spectral Phase Distortion

Using previous definitions the Spectral Phase Distortion (SPD) is defined as:

SPD(f, g) =
1

MN

M∑
i=1

N∑
j=1

|ϕf (i, j)− ϕg(i, j)|2 (4.34)
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4.2.1.20 Weighted Spectral Distortion

The total spectral distortion can be calculated by weighing phase and amplitude. Fol-
lowing Avcibas [2] the Weighted Spectral Distortion (WSD) becomes:

WSDλ(f, g) =
1

MN
·

(λ

M∑
i=1

N∑
j=1

|ϕf (i, j)− ϕg(i, j)|2 + (1− λ)

M∑
i=1

N∑
j=1

|Mf (i, j)−Mg(i, j)|2) (4.35)

with λ a free parameter to balance phase and amplitude.

4.2.1.21 Median Spectral Magnitude Block Distortion

The previous spectral methods did however not take any localization into account. In
order to include this, Minkowski averaging of block spectral distortions may be advan-
tageous. Consider an image divided into L overlapping or non-overlapping blocks of
size b× b, say 32× 32, and blockwise spectral distortions can be computed as in (4.33)-
(4.35). Consider the discrete Fourier transform F l(ω1, ω2) of the l-th block of image f
and Gl(ω1, ω2) of the l-th block of image g. The phase and magnitude of the l-th block
of image f become:

ϕl
f (ω1, ω2) = arctan

(
F l(ω1, ω2)

)
(4.36)

M l
f (ω1, ω2) = |F l(ω1, ω2)| (4.37)

Similarly M l
g and ϕl

g of the l-th block of image g can be calculated. Minkowski averaging
of the magnitude differences over all blocks results in:

J l
M =

(
M∑

ω1=1

N∑
ω2=1

(
M l

f −M l
g

)γ
)1/γ

(4.38)

For γ = 2 we obtain the RMS of the magnitude error. The Median Spectral Magnitude
Block Distortion (MSMBD) now becomes:

MSMBD(f, g) = Median
l

J l
M (4.39)

4.2.1.22 Median Spectral Phase Block Distortion

Similar to the previous measure for the magnitude we can do Minkowski averaging of
the phase differences over all blocks:

J l
ϕ =

(
M∑

ω1=1

N∑
ω2=1

(
ϕl

f − ϕl
g

)γ
)1/γ

(4.40)

For γ = 2 we now obtain the RMS of the phase error. The Median Spectral Phase Block
Distortion (MSPBD) now becomes:

MSPBD(f, g) = Median
l

J l
ϕ (4.41)
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4.2.1.23 Median Weighted Spectral Block Distortion

Similar to (4.35) one can combine the phase block distortion and the magnitude block
distortion:

J l = λJ l
M + (1− λ)J l

ϕ (4.42)

and thus the Median Weighted Spectral Block Distortion (MWSBD) becomes:

MWSBD(f, g) = Median
l

J l (4.43)

4.2.1.24 Fuzzy Similarity Measures

Van der Weken [133] presented a number of fuzzy similarity measures. The first one is
based on the Minkowski metric:

S1p(A,B) = 1−

(
1

MN

M∑
i=1

N∑
j=1

|A[i, j]−B[i, j]|p
) 1

p

(4.44)

Here A[i, j] and B[i, j] represent the fuzzy sets of f [i, j] and g[i, j] respectively. In
practice for normalized images with gray-scale values between 0 and 1, A[i, j] = f [i, j]
and B[i, j] = g[i, j], which makes this measure equal to one minus the Lp-norm. The
second similarity measure is based on the Kullback distance [88]:

S3(A,B) = 1− 1

MN2ln2
·

M∑
i=1

N∑
j=1

[(A[i, j]−B[i, j])ln(
1 +A[i, j]

1 +B[i, j]
)(B[i, j]−A[i, j])ln(

2−A[i, j]

2−B[i, j]
)] (4.45)

Again A[i, j] and B[i, j] represent the fuzzy sets of f [i, j] and g[i, j] respectively. Note
that the name S3 is adapted from Avcibas [2].

4.2.1.25 Ordered Histogram Similarity Measures

Instead of applying similarity measures on the pixel data directly, one could also apply
similarity measures on histograms of the images. Van der Weken presented similarity
measures based on ordered histograms [132]. Let us consider the histogram hA(xi)
of fuzzy set or image A. The value hA(xi) is equal to the total number of pixels in
image A with gray value xi. Note that for 8-bits grayscale images ranging from 0 to
1, xi = 0

255
, 1

255
, ..., 255

255
for i = 1, ..., 256 respectively. The ordered histogram oA(i)

is obtained by sorting the histogram hA(xi) by its frequencies in descending order.
The ordered histogram can be transformed into a fuzzy set by dividing by the largest
component of the ordered histogram:

OhA(i) =
oA(i)

oA(1)
(4.46)

with oA(1) = max
xi

hA(xi). Now two similarity measures are used to compare image

histograms, adapted from [132]:
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H1p(A,B) = 1−

(
1

L

L∑
i=1

|OhA(i)−OhB(i)|p
) 1

p

(4.47)

H3(A,B) = 1−
∑L

i=1 |OhA(i)−OhB(i)|∑L
i=1(OhA(i) +OhB(i))

(4.48)

where A[i, j] and B[i, j] represent the fuzzy sets of f [i, j] and g[i, j] respectively. Note
that L = 256 for 8-bit images and p is a free parameter for the Minkowski metric.

4.2.1.26 Combined Fuzzy Histogram Measures

In [132] the fuzzy similarity measures and the ordered histogram similarity measures are
combined. Two combinations are evaluated in this paper:

Q1p(A,B) = S1p ·H1p (4.49)

Q3(A,B) = S3 ·H3 (4.50)

4.2.1.27 Universal Image Quality Index

Wang and Bovik introduced the universal image quality index [146] defined as:

UIQI(f, g) =
4σfgf g

(σ2
f + σ2

g)[f
2

+ g2]
(4.51)

where

f =
1

MN

M∑
i=1

N∑
j=1

f [i, j]

g =
1

MN

M∑
i=1

N∑
j=1

g[i, j]

σ2
f =

1

MN − 1

M∑
i=1

N∑
j=1

(f [i, j]− f)2

σ2
g =

1

MN − 1

M∑
i=1

N∑
j=1

(g[i, j]− g)2

σfg =
1

MN − 1

M∑
i=1

N∑
j=1

(f [i, j]− f)(g[i, j]− g)

4.2.1.28 SVD-based Error Measure

Shnayderman [126] introduced an error measure based on the singular value decompo-
sition (SVD) of an image. Consider singular values si

fk
= s1fk

, ..., sn
fk

of a block fk with
size n× n from image f . The distortion between the k-th non-overlapping image block
of f and g is defined by:
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Dk(fk, gk) =

√√√√ n∑
i=1

(si
fk
− si

gk
)2 (4.52)

Note the block size n is a free parameter. The resulting error between image f and g
becomes:

MSV D(f, g) =

∑MN
n2

k=1 |Dk(fk, gk)−Dmid(fk, gk)|
MN
n2

(4.53)

where Dmid represents the mid point of the sorted Dk(fk, gk) list and n is the block size.

4.2.1.29 GWSB-PSNR

Wang et al. [123] considered an image measure based on the PSNR but calculated in
different blocks in the image. Consider the images divided into m× n non-overlapping
blocks of size h× w, which means M = m× w and N = n× h. According to [123] the
Block Mean Squared Error (BMSE) of the k-th block becomes:

BMSEk(fk, gk) =
1

hw

w∑
i=1

h∑
j=1

(fk[i, j]− gk[i, j])2 (4.54)

Similarly, the Block Peak Signal to Noise ratio (BPSNR) can be calculated:

BPSNRk(fk, gk) = 10 10 log

(
1

BMSEk(fk, gk)

)
(4.55)

Now the Geometry Weighted Separating Block Peak Signal to Noise Ratio (GWSB-
PSNR) is defined by:

GWSBPSNR(f, g) =
1

mn

mn∑
k=1

λk BPSNRk(fk, gk) (4.56)

where λk is equal to:

λk =
BMSEk(fk, gk)

MSE(f, g)
(4.57)

4.2.1.30 FIM

Another fuzzy image metric is proposed by Junli et al. [19, 20]. Consider two images X
and Y as vectors, X = (x1, x2, ..., xK) and Y = (y1, y2, ..., yK) where K is the number
of pixels in the image. The difference between X and Y is defined as:

|X − Y | = (|x1 − y1|, |x2 − y2|, ..., |xK − yK |) (4.58)

Now for 8-bits images the Fuzzy Image Metric (FIM) is defined as:

FIM(X,Y ) = max
0≤i≤255

min(i/255, µ(Ni/255(|X − Y |))) (4.59)

with:
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µ =
|{·}|
K

(4.60)

where |{·}| is the number of elements in {·} and

Nα(f) = {x|f(x) ≥ α} (4.61)

the elements in f larger than α.

4.2.1.31 IQE

The Image Quality Evaluation [20] is defined by:

IQE(X,Y ) =
5

1 + (FIM(X,Y )/a)b
(4.62)

where a = 0.0647 and b = 4.438. These parameters from [20] are determined experi-
mentally using human observer data.

4.2.2 Multi-Scale Differential Error (MSDE)

Additionally to the presented image quality measures, a new image quality measure is
proposed named Multi-Scale Differential Error (MSDE). It is inspired by the human
visual system and scale space theory. The goal of the MSDE is to provide a simple,
effective error measure suitable for image reconstruction that is comparable to results
of a human observer. The MSDE is based on a solid mathematical framework for
multi-scale image analysis, viz. scale space theory. In 1962, Taizo Iijima derived the
Gaussian kernel from a set of basic axioms to investigate signals at multiple scales [61].
Later, papers about linear or Gaussian scale space followed from various other authors
independently, including Witkin [141] and Koenderink [80] in the eighties. Scale space
theory also provides a nice mathematical framework for taking spatial derivatives of the
image.

It is known that the human front end visual system also uses different scales of
observation and takes derivatives up to at least 4th order at these scales [145, 83].
It seems that the differential structure of an image is important for humans to detect
objects. This should thus be reflected in an error measure to compare two images. There
exist several multi-scale methods [123, 5, 27, 71] and also measures using derivatives
(such as the L2 gradient [127]) or edges [15, 122] are used commonly. However, no
current method is known by the authors that combines scale and differential structure
for image quality measures.

Consider again the gradient magnitude |∇σf [i, j]| of image f at scale σ, cf. (4.23).
For R different scales, the gradient magnitude error map Ψf,g between image f and g is
defined as:

Ψf,g[i, j] =

√√√√ 1

R

σR∑
σ=σ1

(|∇σf [i, j]| − |∇σg[i, j]|)2 (4.63)

Note that the largest scale σR should be chosen such that the complete image is covered.
The Multi-Scale Differential Error is now defined as:
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MSDE(f, g) =
1

MN

M∑
i=1

N∑
j=1

Ψf,g[i, j] (4.64)

The MSDE is not sensitive to brightness changes (it is however sensitive to contrast
changes, although less than the Lp-error) and it takes the differential structure of the
images (edges) into account. The MSDE also has no tunable parameters, except for
the number of scales that are taken into account. However, for large R the exact value
is unimportant, since almost nothing changes between scales (the sum converges to
an integral with an appropriate scale measure). One could introduce σ1 as a tuneable
parameter to have some control on the highest frequency taken into account for the error.
This might be beneficial for comparison of very noisy images. Note that normalized
derivatives also could have been used, but some bias to low scale errors showed better
results in practice.
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Implementation Notes

Fast MSDE

Calculating the MSDE using Gaussian derivatives can be quite slow, depend-
ing on the number of scales taken into account. However, a much faster rough
approximation can be used. Consider an image pyramid with various levels
of resolution denoted by r ≥ 0. Instead of the average gray-level, the aver-
age gradient using pixel differences can be used. First consider the gradient
magnitude f ′ of image f using pixel differences:

f ′[i, j] =
√

(f [i, j]− f [i+ 1, j])2 + (f [i, j]− f [i, j + 1])2 (4.65)

Note that at the boundary one should use a proper condition, e.g. zero-
padding, reflective boundary or constant boundary. Similarly the gradient
magnitude g′ of g can be calculated:

g′[i, j] =
√

(g[i, j]− g[i+ 1, j])2 + (g[i, j]− g[i, j + 1])2 (4.66)

One should start at the highest resolution r = 0 and calculate the difference
in each pixel between f ′ and g′. For r = 1 the resolution should be lowered
by a factor 2 and the difference should be calculated in each corresponding
pixel at that level of resolution. For r = 2 the resolution of the image of r = 1
should be lowered by a factor of 2, etc. This should be repeated until only one
pixel is left. In case that an odd number of pixels is left at a certain scale, one
line should either be neglected or added to the last pair. The Fast Multi-Scale
Differential Error (FMSDE) now becomes:

FMSDE(f, g) =

R∑
r=0

i= N
2r ,j= M

2r∑
i,j=1

|f ′r[i, j]− g′r[i, j]| (4.67)

where f ′r[i, j] is the image in the gradient magnitude image pyramid of f ′ at
level r and g′r[i, j] is the image in the gradient magnitude image pyramid of
g′ at level r. Note that with the FMSDE there are no tuneable parameters,
since the highest resolution is the pixel scale and the lowest resolution has
only one value. However, one parameter α can be introduced related to the
σ1 parameter for the MSDE. It represents the number of low level scales that
are not taken into account for the first sum:

FMSDEα(f, g) =

R∑
r=α

i= N
2r ,j= M

2r∑
i,j=1

|f ′r[i, j]− g′r[i, j]| (4.68)
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4.2.3 Human Visual System based measures

Several error measures based on models of the Human Visual System (HVS) exist. These
measures can be quite complex and are usually not trivial to implement. Therefore,
three measures are selected of which code is publicly available. Some other measures,
not included in our experiments, can be found in the work by Bock et al. [10], Beghdadi
et al. [5], Pons et al. [121], Eude et al. [35], Xu et al. [144], de Freitas et al. [24], Chin
et al. [21], Rohaly et al. [125] and Westen et al. [140].

4.2.3.1 DCTune 2.0

DCTune [138] is a tool designed to optimize still image compression [139]. It is de-
veloped by NASA and based on a perceptual error measure. The latest version can
calculate the perceptual error between two images as a single number, which is used in
our experiments.

4.2.3.2 SSIM

The Structural SIMilarity (SSIM) index is an image quality measure that incorporates
a Human Visual System model of degradation of structural information [148, 146]. The
publicly available software package of Wang et al. [147] is used.

4.2.3.3 Quality Assesser v2.0

Carnec et al. [17] also presented a HVS based error measure based on the structural
information between the original and distorted image. It is implemented in a tool called
Quality Assesser (v2.0) [16] which is used for our experiments.

4.3 Experiments

4.3.1 Setup

For the experiments, four sets of 10 images are used, which are shown in figure 4.1. The
Einstein set (top row) consists of a reference image (left) and 9 degraded images. The
type of degradation differs from additive noise, greyscale transformation and compression
artifacts to image reconstruction from a limited set of constraints (see chapter 3 and 5).
The Lena set (second row) and the Scotland set (third row) are similar to the Einstein
set: The left images are reference images and the other images have diverse degradations.
The Russia set (bottom row) is used for validation. The left image is again the reference
image and the following images are reconstructions using a decreasing set of constraints.
This set is the only ordered set.

In order to compare the presented error measures with human observers, 33 vol-
unteers were asked to order the images in the Einstein, Lena and Scotland set. The
best degraded image (with the lowest perceptual error) obtained a score of 1, while the
worst image (with the highest perceptual error) obtained a score of 9. The results of
the human observer experiment are shown in figure 4.2. The images above the graphs
are ordered from lowest error to largest error (Appendix B shows larger images of the
Einstein, Lena and Scotland set, ordered by the human observers). The graphs show
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Figure 4.1: Image sets used for experiments: From top to bottom: Einstein set, Lena
set, Scotland set and Russia set. Note that only the Russia set is ordered.

the mean and standard deviation of the scores from all 33 observers for all three image
sets.

All of the presented error measures are used to calculate the error between the
reference image and the degraded images of the three image sets. In all cases the results
are ordered in the same way as the mean human observer ordering. This means that
image 1 of the error measures corresponds to the best degraded image according to the
human observers. Ideally the error measure should thus give monotonically increasing
errors for each image set. Note that the Scotland set was considered hard to order by
most human observers, which is reflected in the standard deviation of the ordering.

4.3.2 Evaluation

First some remarks can be made about the ordering of the sets by the human observers.
Appendix B shows enlarged versions of the ordered test images for viewing purposes.
In the Einstein set one can observe that the best rated image (image 1) is in fact the
original image which is lowered in intensity slightly. Since all image information is still
available and no noise is present, this image is logically rated as the best image (we will
however see that many objective error measures rate this image differently). The second
image seems to show some “grid” on the image, but is still quite detailed. The third
image shows some compression artifacts. Image 4 has noise added to the image, but
many human observers actually prefer some noise over missing information or strange
artifacts. The worst image is a reconstruction with noise added to the points. The result
is a blurred and yet “noisy” image, which is not clear. For the Lena image, the best
three images are reconstructions from a decreasing number of constraints. Image 4 is
a reconstruction from the same number of points as image 1, but with a small artifact
in the lower-left corner. Humans are very sensitive to artifacts in area’s where known
objects (such as parts of a face) are present. In practice however it will be impossible
to incorporate the advanced human interpretation of a scene in an image in any generic
objective error measure. The last three images are reconstructions from the same points
as the first three images, but with additive noise. For the Scotland set, the best image
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Figure 4.2: Human observer results. 33 Volunteers were asked to order the images of the
three test sets. Top: Mean ordering for the Einstein set with the corresponding graph
of mean and standard deviation of the scores. Center: Mean ordering and correspond-
ing graph for the Lena set. Bottom: Mean ordering and corresponding graph for the
Scotland set.
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Figure 4.3: Mean Squared Error (MSE) results. Images are ordered by human observers
from best (image 1) to worst (image 9). The corresponding error is shown.

has an artifact similar to the one in the Lena set. However, no clear known object is
present which makes the artifact less disturbing. It is however clear from figure 4.2 that
the human observers found it much harder to order this set. Ideally, this should also be
reflected in the objective error measure.

In this section we will give some observations on the results of the objective error
measures compared to the human observer study and show some of the resulting graphs.
Only some of the actual results are shown here due to space limitations, the reader is re-
ferred to Appendix A for the results of all error measures, including different parameters
that were used. The first presented error measure is the Mean Squared Error (MSE).
Figure 4.3 shows the results of the MSE for the four test sets. The Russia set shows
an increasing error from image 1 (left) to image 9 (right) as expected, since the number
of constraints for the reconstruction is decreasing. For the first image of the Einstein
set however, the MSE is large. This image shows a small decrease in brightness, but
contains almost all image information. While the human observer rates this image as
best quality, the MSE is the largest among the test images. The MSE is very sensitive to
intensity changes of the image. Note that the fourth image of the Einstein and Scotland
set also have a rather high MSE, due to the fact that the human observer prefers mi-
nor noise over absence of information, which is not reflected in the error measure. The
standard deviation in the human observer results is however relatively large for these
images.

The Root Mean Squared Error (RMSE) and the Relative root Mean Squared Error
(RRMSE) show similar trends, where the RRMSE seems to suffer less from the intensity
and noise problems of the MSE. The Mutual Information (MI) is a similarity measure
rather than an error measure. This means that one would expect decreasing trends
in the graphs rather than increasing lines as for error measures. Figure 4.4 shows the
resulting graph of the MI. Note that the MI does not suffer from the intensity problem
of the MSE based error measures. It does however rate noisy images very low as can
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Figure 4.4: Mutual Information (MI) results. Images are ordered by human observers
from best (image 1) to worst (image 9). The corresponding similarity is shown.

be seen in the Einstein set. Image 4 of the Lena set with the small artifact has high
similarity, which shows that the MI is not really sensitive to small pixel distortion. The
Signal to Noise ratio (SNR) and Peak Signal to Noise Ratio (PSNR) show similar trends,
but do suffer from the intensity problem similar to the MSE.

The Maximum Absolute Difference (MAD) only uses the maximum difference in a
single pixel. Therefore it is sensitive to outliers and reconstruction artifacts. Image 4 of
the Einstein set has a low MAD since the noise that is added has a low variance. This
is the reason it has the lowest MAD. This error measure does not resemble the human
observer rating very well. This is similar for the Relative Maximum Absolute Difference
(RMAD). The Mean Absolute Error (MAE) has similar properties as the MSE. The Lp

error is equal to the MAE for p = 1, equal to the RMSE for p = 2 and equal to the MAD
for p = ∞. The Lp ranges from global to local, with corresponding properties. For low
p it resembles the MSE while for high p it resembles the MAD. Despite the fact that the
Modified Minkowski Infinity Metric not only looks at the largest pixel difference, even
for large r it resembles the behavior of the MAD; the method is still very sensitive to
outliers. The Neighborhood Difference (ND) takes a small displacement of pixels into
account. However, it still suffers from the intensity problem of the MSE. The trend of
the ND is similar for all settings that have been tried.

The Multi-resolution Distance Measure (MDM) calculates the MAE at several levels
of resolution, weighted differently for each resolution. The MDM is also very sensitive to
intensity changes; the first image of the Einstein set has a very high MDM, almost three
times as high as the second largest error. The Structural Content (SC) is a very simple
method looking at the difference in total intensity. It gives the correlation between the
two images. The corresponding graph is shown in figure 4.5. Since most images in the set
are distorted versions of the original image, this error measure is very poorly describing
the differences. The same holds for the Normalized Cross-Correlation (NCC).

The Pratt Measure (PM) incorporates edges in the image. Therefore it is not sensi-
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Figure 4.5: Structural Content (SC) results. Images are ordered by human observers
from best (image 1) to worst (image 9). The corresponding correlation is shown.

tive to intensity changes. According to the PM for σ = 1, α = 0.2 and β = 1 image 5 of
the Einstein set is much worse than the other images, which is not the case in the human
observer results. Image 5 does however lack detail. Figure 4.6 shows the corresponding
graph of the PM. The PM resembles the human observer results reasonably well consid-
ering the standard deviation in the human observer results. The Edge Stability Measure
also takes edges into account, but does not a good job describing the differences in the
images. Even the Russia control set shows a non increasing trend.

The Spectral Magnitude Distortion (SMD), the Spectral Phase Distortion (SPD)
and the Weighted Spectral Distortion (WSD) use the frequencies of the discrete Fourier
transform to calculate the difference of the images. Since the zero frequency is also
used, the magnitude (SMD) will suffer from the intensity problem. It is also sensitive
to high frequency noise and artifacts. The phase (SPD) is not sensitive to the intensity
problem, but is sensitive to high frequency noise. For the Russia image however, there
is almost no difference according to the SPD, while a large peak is found for the noisy
Einstein image. The combined magnitude and phase (WSD) combines the flaws of the
two separate methods. The median can be taken for these measures localized in different
blocks of the image (MSMBD, MSPBD and MWSBD, respectively) which improves the
results, since outliers are removed. Especially the MSPBD, shown in figure 4.7 performs
quite well, except that it is sensitive to high frequency noise such as image 4 of the
Einstein set.

Some fuzzy measures are introduced, such as the Fuzzy Similarity Measures (S1 and
S3). For high p S1 performs reasonably well, but is sensitive to the black background
at the boundaries. The differences in both S1 and S3 between images of the Russia
set are small, which makes these error measures not usable for the presented recon-
struction evaluation. The Ordered Histogram Similarity Measures (H1 and H3) did not
resemble the human observer results at all and thus the combined methods (Q1 and
Q3) performed not well either. The Universal Image Quality Index did not show much
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Figure 4.6: Pratt Measure (PM) results with σ = 1, α = 0.2, β = 1. Images are
ordered by human observers from best (image 1) to worst (image 9). The corresponding
similarity is shown.
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Figure 4.7: Median Spectral Phase Block Distortion (MSPBD) results with blocksize
b = 32. Images are ordered by human observers from best (image 1) to worst (image 9).
The corresponding error is shown.
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Figure 4.8: Singular Value Decomposition error measure MSV D results with blocksize
b = 4. Images are ordered by human observers from best (image 1) to worst (image 9).
The corresponding error is shown.

discrepancy between the images except for the noisy image 4 of the Einstein set and the
blurred image 4 of the Scotland set. The presented method using Singular Value De-
composition (MSV D) also shows reasonable results except that for the Scotland set the
black background near the boundaries is penalized too much. Furthermore the method
shows some sensitivity to the artifacts of image 4 of the Lena set. The corresponding
graph is shown in figure 4.8.

The Geometry Weighted Separating Block Peak Signal to Noise Ratio (GWSB-
PSNR) did show reasonable results for the Russia and Lena image set, however for
the Scotland and Einstein set the discrepancies between the images are very small. The
Fuzzy Image Metric (FIM) shows good results for the Russia control set, but suffers from
the intensity problem and is sensitive to noise which shows in the Einstein and Lena set.
The related Image Quality Evaluation (IQE) does not solve the intensity problem and
also still suffers from sensitivity to noise.

The proposed Multi-Scale Differential Error (MSDE) does not suffer from the inten-
sity problem, but is still sensitive to noise. With proper settings for the lowest scale to
take into account, this sensitivity can be controlled. Figure 4.9 shows the graphs for the
MSDE with σ1 = 1.4 pixels. The Russia control set shows good results and the Einstein
set also follows the human observer results quite well. It does however rate the blurred
image 5 of the Einstein set a bit too low. In the Lena set the artifact in image 4 is not
really taken into account due to the higher scale and as such the image is rated a bit too
low. The first few images and the last image of the Scotland set are rated correctly, but
in between the ordering differs from the human observer results. The standard deviation
of the human observer results is however large for these images.

The Fast Multi-Scale Differential Error - which is an approximation of the MSDE -
shows similar results. The sensitivity to noise is however slightly worse. The FMSDE
also suffers from the black background in the boundaries of the Scotland image. The
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Figure 4.9: Multi-Scale Differential Error (MSDE) results with σ1 = 1.4. Images are
ordered by human observers from best (image 1) to worst (image 9). The corresponding
error is shown.

more complex human visual system (HVS) based methods include the DCTune 2.0 error
measure. Unfortunately this error measure is also not invariant to intensity changes
and has problems with the black background on the borders of the Scotland image.
The Structural Similarity Measure (SSIM) shown in figure 4.11 has good results on all
sets but is rather sensitive to noise. The Quality Assesser 2.0 (QA2) did not work for
the small Lena image. The results for the Russia image were good, but the discrepancy
rather small. For the Einstein set the ordering is quite different from the human observer
results.

4.4 Conclusion and discussion

To measure the quality of image reconstructions from scale space interest points, ob-
jective error measures are a necessity. Many types of error measures exist in literature,
but no reference can be found describing image errors for such a broad spectrum of
degradations as is the case with image reconstruction from a limited set of constraints.
Therefore we presented 31 generic mathematical error measures and three more complex
human visual system based error measures found in the literature and compared them
to a simple human observer experiment for reconstructed images. Furthermore two new
image error measures are presented and compared to the human observer results as well.

First it can be concluded that it is almost impossible to find an objective error
measure that correctly resembles the human observer results. A human observer uses
knowledge about the image and its contents that cannot be captured by a simple com-
puter algorithm. This makes designing a perfect objective error measure impossible.
However, some error measures are more suitable for certain tasks than others and for
the image reconstruction this is reflected in the results of the experiments done in this



4.4 Conclusion and discussion 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9

FMSDE1 (Einstein)

FMSDE1 (Lena)

FMSDE1 (Scotland)

FMSDE1 (Russia)

Error

Image number

Figure 4.10: Fast Multi-Scale Differential Error (FMSDE) results with α = 1. Images are
ordered by human observers from best (image 1) to worst (image 9). The corresponding
error is shown.
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servers from best (image 1) to worst (image 9). The corresponding similarity is shown.
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chapter. Many of the methods described are not invariant to intensity changes. This is
reflected in the results, since there is a large discrepancy between human observers and
most error measures when the intensity is raised or lowered a bit. Noise is a problem for
all error measures. Clearly some noise in the image does not affect the human observer
too much, while this is not the case for the objective error measures. A human some-
times prefers some noise over missing information or strange artifacts. As for artifacts,
much model information is used by humans. A strange set of spots in a face is more
disturbing than a similar structure on a leaf or stone, while for a computer at a certain
scale the images might be similar.

Of all the tested error measures, the Structural Similarity Measure (SSIM) probably
resembles the human observer results best. However, this method is still sensitive to
noise in the image. Our proposed Multi-Scale Differential Error (MSDE) and the fast
version of it (FMSDE) are performing quite well. Both suffer from the noise problem,
but in most cases less than the SSIM since a tunable parameter can control the highest
resolution taken into account. However, the (F)MSDE is less sensitive to certain artifacts
as the human observers and the SSIM. The edge based Pratt measure (PM) and the
phase based MSPBD are also performing reasonably well, but worse than the (F)MSDE
and SSIM. The well known and most commonly used Mean Squared Error (MSE) and
related measures are performing not very well since they are not invariant to intensity
changes. This also holds for the Signal to Noise Ratio (SNR) and related error measures.

The human observer experiment was rather small (only 33 subjects) and only a
limited set of images was used. This makes it impossible to draw hard conclusions on the
quality of the measures in general. A much larger experiment would be useful to conclude
which error measure is the best. One of the problems with most error measures is the
intensity problem. Some of the algorithms (including our proposed methods) handle this
by making the measure invariant to intensity changes. In our opinion however, this is
not exactly as human observers would see it. Up to a certain degree an intensity change
would be not too disturbing for humans, but for large changes an image with minor blur
might be better looking to human observers. Instead of intensity invariance, some sort
of intensity tolerance should be introduced. The same holds for noise, but this is harder
to implement. Introducing models of image contents could be useful for certain tasks,
but is too complex for general applications.
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5.1 Introduction

In chapter 2 the α-scale spaces are introduced. We already noted that there are several
special points in a scale space of an image, so called scale space interest points. Scale
space interest points are often used for image matching and a comparison between dif-
ferent types of interest points with respect to image matching can be found in the work
by Mikolajczyk and Schmid [110] and Platel [119]. However, points that are good for
image matching might not be optimal for image reconstruction. Therefore we present in
this chapter 10 different types of scale space interest points that are commonly used and
we compare these types of interest points with respect to image reconstruction (rather
than matching). For the reconstruction we used the Sobolev reconstruction presented
in chapter 3 and for the evaluation we used the best image quality measures of chapter
4. In section 5.2 the 10 different types of interest points used in our comparison are de-
fined. These 10 types of interest points are calculated in 8.000 image patches of the van
Hateren database of natural images [134]. Reconstructions are made using these points
and the results are evaluated using objective error measures, presented in section 5.3. It
is shown that combining different types of scale space interest points can be beneficial
for image reconstruction. It is however not trivial how to combine the different types of
points. In section 5.4 a method is presented to combine scale space interest points using
canonical sets. Finally the conclusions and discussion are presented in section 5.5.

5.2 Interest points

Consider a continuous signal f : Rd → R. The linear scale space representation u :
Rd × R+ → R of f is defined as the solution of the heat equation:{

∂
∂s
u = ∆u

lim
s↓0

u(·, s) = f(·) (5.1)

Where s is the scale. The unique solution to this equation leads to convolution with a
Gaussian kernel, hence the name Gaussian scale space1. For 2D images the scale space
u can be obtained by the convolution:

u(x, y, s) = (Gs ∗ f)(x, y) =∫ ∞

−∞

∫ ∞

−∞
f(x′, y′)Gs(x− x′, y − y′) dx′ dy′ (5.2)

with f the original image and Gs a Gaussian of scale s defined by:

Gs(x, y) =
1

4πs
e−

x2+y2
4s (5.3)

Spatial derivatives of the image can be calculated by convolution with a derivative of a
Gaussian:

∂ν1,...,νnu(x, y, s) = (∂ν1,...,νnGs ∗ f)(x, y) (5.4)

1It is shown that using reasonable axioms, a complete α-parameterized class of kernels exists
resulting in so-called α-scale spaces [39, 118, 30]. The Gaussian scale space is one specific case
(α = 1).
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with ν1, . . . , νn the spatial indices (for a 2D image this can be any combination of x and
y). For further reference we will use the short notation us,ν1...νn for ∂ν1,...,νnu(x, y, s).
Lindeberg [96, 99] introduced scaled derivatives where the γ-normalized derivative op-
erator is defined by:

∂ξ,γ−norm = s
γ
2 ∂x (5.5)

which corresponds to the change of variables

ξ =
x

s
γ
2

(5.6)

In the special case when γ = 1, these ξ-coordinates and their associated normalized
derivative operator are dimensionless and the corresponding derivatives are scale invari-
ant [44].

Spatial derivatives in x- and y-direction are however not rotation invariant, which is
desirable for detecting interest points. For this reason gauge coordinates [8] are intro-
duced. In a first order gauge coordinate system one coordinate axis is locally fixed to
the gradient of the image and one axis perpendicular to it. The local first order gauge
coordinate frame (−→v ,−→w ) is defined by:

−→w = (
∂u

∂x
,
∂u

∂y
) (5.7)

−→v = (
∂u

∂y
,−∂u

∂x
) (5.8)

Since these coordinate frames are locally fixed to the image, derivatives with respect
to these coordinates will always be rotation invariant. For example, the first order
derivatives are given by (short notation used):

uw =
√
u2

x + u2
y (5.9)

uv
.
= 0 (5.10)

The first order derivative with respect to −→v is zero since it is always pointing in the
direction of the isophote, while the first order derivative with respect to −→w is equal to
the gradient since it is always pointing in the direction of the gradient.

5.2.1 Blobs

Scale-space blobs [94, 95, 100] are defined as the positive local maxima (or negative local
minima) in space and scale of the normalized Laplacian of the image:

(x, y, s) = arglmax
x,y,s

{|sγ(us,xx + us,yy)|} (5.11)

with arglmax the arguments for which a local maximum is found and using γ-normalization
with γ = 1. Lowe [103, 104] approximated the Laplacian by Difference of Gaussians
(DoG). He showed that

uks(x, y)− us(x, y) ≈ (k − 1)s(us,xx + us,yy) (5.12)

which is very efficient to calculate and has a low error if k ≈ 2.
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Figure 5.1: Laplacian Blobs in a synthetic image. Top left: Original synthetic image.
Top right: all Laplacian blobs of the image, the radius relates to the scale of the blob.
Bottom left: Weight (equal to the strength) of the Laplacian blobs. Bottom right: 5
Strongest Laplacian blobs.
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Alternatively scale space blobs can be defined as the local maxima of the squared nor-
malized determinant of the Hessian.

(x, y, s) = arglmax
x,y,s

{s4γ(us,xxus,yy − u2
s,xy)2} (5.13)

Again using γ-normalization with γ = 1. Blobs can be ordered in strength by the
magnitude of the response of their respective filters [115, 93]. Figure 5.1 shows an
example of Laplacian blobs on a synthetic image. The strength of the blobs is shown
in the graph and the 5 strongest blobs are shown on the right. Note that the expected
blobs indeed have a higher strength than the other detected blob structures. Figure 5.2
shows the result for Hessian blobs. Again the strength is shown in the graph and the
strongest 7 blobs are shown on the bottom-right. Note that 2 extra blobs are detected
with a high strength using this method. Figure 5.3 shows the two different types of
blobs from a natural image.

5.2.2 Corner points

The isophote curvature κ is a measure of how curved lines of equal intensity are. The
curvature κ is defined by:

κ = −uvv

uw
(5.14)

In order to give a stronger response near edges, the level curvature can be multiplied by
the gradient magnitude to the power 3 [8, 56] which is referred to as an affine invariant
corner detector:

Θ = κu3
w = −u2

wuvv = 2uxuxyuy − uxxu
2
y − u2

xuyy (5.15)

Note that Lindeberg [99] and Brunnström et al. [13] used a slightly different definition
for the curvature:

κ =
uvv

uw
(5.16)

and corresponding re-scaled level curve curvature:

|κ| = |u2
wuvv| = |uxxu

2
y + u2

xuyy − 2uxuxyuy| (5.17)

which results in the same local extrema. Corner points in the image can now be defined
as points with high curvature and high intensity gradient:

(x, y, s) = arglmax
x,y,s

{|s2γ(2us,xus,xyus,y − us,xxu
2
s,y − u2

s,xus,yy)|} (5.18)

using γ-normalization with γ = 7/8 [99]. Note that for ordering the corner points in
strength, the magnitude of the corresponding filter response has to be normalized with
γ = 1 to make magnitude values at different scales comparable. Figure 5.4 shows the
result of the corner detector. Note that the displacement of the corner points increases
with the scale due to the blurring process and that there are some spurious corners due
to responses to edges, especially near the boundaries. Figure 5.6 shows corner points
from a natural image.
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Figure 5.2: Hessian Blobs in a synthetic image. Top left: Original synthetic image. Top
right: all Hessian blobs of the image, the radius relates to the scale of the blob. Bottom
left: Weight (equal to the strength) of the Hessian blobs. Bottom right: 7 Strongest
Hessian blobs.
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Figure 5.3: Blob points of the butterfly.jpg image projected on the original image. Left
the original image, in the center the 250 strongest Laplacian blobs and right the 250
strongest Hessian blobs.

Figure 5.4: Corners in a synthetic image. Top left: Original synthetic image. Top right:
40 Strongest corner points. Bottom: Weight (equal to the strength) of the corner points.
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Figure 5.5: Edges in an image. Top left: Original image of Lena’s eye. Top right: 80
Strongest edge points. Bottom: Weight (equal to the strength) of the edge points.

5.2.3 Edge points

Edges play an important role in the human visual system and thus it plays an important
role in image analysis. If one considers a gauge coordinate system as described before,
an edge can be seen as a curve where the gradient magnitude uw is large. To find multi
scale edge points this can be translated into two constraints [93, 115]:

{
sγuww = 0

lmax
s
{sγ/2uw} (5.19)

using γ-normalization with γ = 1/2 [98]. For edge strength, the gradient magnitude is
used, re-normalized with γ = 1. Figure 5.5 shows the result for the edge points. The
edge point strength is plotted in the graph and the 80 strongest edge points are shown
on the right. Figure 5.6 shows edge points from a different natural image.
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Figure 5.6: Corner points and Edge points of the butterfly.jpg image projected on the
original image. Left the original image, in the center the 250 strongest corner points
and right the 250 strongest edge points.

5.2.4 Ridge points

In topography a ridge is defined as a separator between regions from which water flows
into different sinks. However, there have been several approaches to a mathematical
formulation of a ridge. An overview of the developments can be found in the work by
Koenderink and van Doorn [84]. Most commonly used is the definition of a ridge as being
a connected set of points for which the intensity assumes a local extremum (maximum
for bright ridges, minimum for dark ridges) in the main principal curvature direction
[58, 98]. If one is interested in ridge strength, without a response to blobs, the square of
the γ-normalized Hessian eigenvalues can be used [98]:

Aγu(x, y, s) = {s2γ((us,xx − us,yy)2 + 4u2
s,xy)} (5.20)

using γ = 3/4 [98]. Ridge points are defined as the local extrema of this ridge strength:

(x, y, s) = arglmax
x,y,s

{Aγu(x, y, s)} (5.21)

Note that for ordering the ridge points in strength, again the magnitude of the corre-
sponding filter response has to be normalized with γ = 1 to make magnitude values at
different scales comparable. Figure 5.7 shows the ridges of an image of a map. Again
the ridge strength is shown in the graph and the 90 strongest ridge points are shown on
the right.

5.2.5 Top points or bifurcation points

Local extrema and saddle points are important features in a 2D image. These spatial
critical points (at a fixed scale) are defined by:

∇us = (us,x, us,y)T = 0 (5.22)

Many people have investigated the behavior of spatial critical points over scale, where
these points will form paths (which are called critical paths). Special point in scale
space are points where these paths come together, which are referred to as catastrophe
points [129, 51, 23]. Lindeberg et al. referred to these points as bifurcation points
[100, 97] and Johansen referred to these points as top-points [69, 67, 68]. Koenderink et
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Figure 5.7: Ridges in an image. Top left: Original image. Top right: 90 Strongest ridges
points. Bottom: Weight (equal to the strength) of the ridge points.
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al. [80, 82, 81] and Florack et al. [43, 40, 38] also studied the behavior of critical points
in scale space. For generic 2D images only two catastrophe points exist: Annihilation
points of an extremum (maximum or minimum) path with a saddle path or creation
points of an extremum path with a saddle path. These points (x, y, s) are defined by:{

∇us = (us,x, us,y)T = 0
detH(us) = us,xxus,yy − u2

s,xy = 0
(5.23)

where H(us) is the 2-nd order Hessian matrix defined by:

H(us) =

(
us,xx us,xy

us,xy us,yy

)
(5.24)

In practice these points can be detected by intersecting the 3D zero-crossing surfaces
us,x = 0, us,y = 0 and us,xxus,yy−u2

s,xy = 0. Platel et al. and Kanters et al. showed that
top points can be ordered by a stability norm called differential TV-norm [120, 75]. The
amount of structure contained in a spatial area around a critical point can be quantified
by the total (quadratic) variation (TV) norm over that area [12]. By using a spatial
Taylor series around a considered critical point the TV-norm simplifies to Eqn. (5.25)
which is referred to as the differential TV-norm [120].

diff tv = 4s2(u2
s,xx + u2

s,yy + 2u2
s,xy) (5.25)

An example of top points of a synthetic image is shown in figure 5.8. On the left side, the
original image with the critical paths and the top points are shown in a 3D view. The
third dimension represents scale. In the center the strength of the top points is shown in
a graph. On the right the top points are shown projected on the original image. Figure
5.11 shows an example of top points of a natural image.

It has been shown that top points of the Laplacian of an image (rather than top points
of the gray level image itself) can be used for image matching [120] and reconstruction
[72]. They are defined by:


us,xxx + us,xyy = 0
us,xxy + us,yyy = 0
(us,xxxx + us,xxyy)(us,xxyy + us,yyyy)− (us,xxxy + uxyyy)2 = 0

(5.26)

Laplacian top points can be seen as points in scale space where extrema and saddles
of the Laplacian of the image annihilate. Instead of describing the behavior of local
extrema in scale space, Laplacian top points describe the behavior of blobs through
scale. Figure 5.9 shows the Laplacian top points of a synthetic image.

5.2.6 Scale space saddle points

Kuijper et al. [85, 86, 87] considered scale-space saddle points, which are defined by:

∇u(x, y, s) = (ux, uy, us)
T = 0 (5.27)

Since ux = 0 and uy = 0 these points are also on the critical paths like the top points.
By definition the derivative to scale is equal to the Laplacian, thus we can rewrite (5.27)
to:
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Figure 5.8: Top points of a synthetic image. Top left: Original image with the critical
paths and top points (third dimension represents scale). Top right: All 4 top points
projected on the image plane. Bottom: Weight (equal to the strength) of the top points.
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Figure 5.9: Laplacian top points of a synthetic image. Top left: Original image. Top
right: Strongest 5 Laplacian top points projected on the image plane. Bottom: Weight
(equal to the strength) of the Laplacian top points.
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Figure 5.10: Scale space saddle points of a synthetic image. Top left: Original image
with the critical paths and scale space saddle points (third dimension represents scale).
Top right: All 4 scale space saddle points projected on the image plane. Bottom: Weight
(equal to the strength) of the scale space saddle points.


us,x = 0
us,y = 0
us,xx + us,yy = 0

(5.28)

Scale-space saddle points can thus be easily detected by intersecting the 3D zero-
crossing surfaces us,x = 0, us,y = 0 and us,xx + us,yy = 0. Also these points can be
ordered by differential TV-norm (5.25). Note that scale space saddles of the Laplacian
of the image are in fact equal to Laplacian blobs. Figure 5.10 shows an example of scale
space saddles of a synthetic image. On the left side, the original image with the critical
paths and the scale space saddle points are shown in a 3D view. The third dimension
represents scale. In the center the strength of the scale space saddle points is shown in
a graph. On the right the scale space saddle points are shown projected on the original
image. Note that multiple scale space saddles can occur on a single saddle path. Figure
5.11 shows an example of scale space saddle points of a natural image.
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Figure 5.11: Top points and scale space saddle points of the butterfly.jpg image projected
on the original image. Left the original image, in the center all 235 top points and right
all 93 scale space saddle points.

5.2.7 Scale adapted Hessian-Laplace points

Mikolajczyk and Schmid [111, 110] introduced a hybrid blob detection method where the
local spatial maxima of the square of the determinant of the Hessian matrix (introduced
by Lowe [104] to eliminate edge response) are combined with the local scale maxima of
the Laplacian. 

(x, y) = arglmax
x,y

{s4(us,xxus,yy − u2
s,xy)2}

s = arglmax
s

{s2(us,xx + us,yy)} (5.29)

For our experiments the implementation of Mikolajczyk et al. [108] is used. An
explanation of the parameters can be found in their paper [109] (no thresholding was
used on the strength of the points). Figure 5.12 shows an example of Hessian-Laplace
points of a synthetic image. For ordering the points by strength, the Laplacian is used.
Figure 5.13 shows an example of Hessian Laplace points for a natural image.

5.2.8 Scale adapted Harris-Laplace points

Mikolajczyk and Schmid [109] also introduced a scale adapted version of the Harris
corner detector [59]. Consider the scale-adapted second moment matrix:

µ(sD, sI) = sDGsI ∗
(
usD,xx usD,xy

usD,xy usD,yy

)
(5.30)

with sD the differentiation scale, sI the integration scale and GsI a Gaussian at scale
sI as defined in (5.3). The Harris measure [59] combines the trace and determinant of
this matrix as a measure for cornerness. Scale selection is based on the local maxima
over scale of the Laplacian. The scale adapted Harris-Laplace points are defined as:

(x, y) = arglmax
x,y

{det(µ(sD, sI))− αtrace2(µ(sD, sI))}

s = arglmax
s

{s2(us,xx + us,yy)} (5.31)

Note that in practice, sD = βsI with β a suitable constant. For our experiments the
implementation of Mikolajczyk et al. [108] is used. An explanation of the parameters
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Figure 5.12: Hessian-Laplace points of a synthetic image. Top left: Original synthetic
image. Top right: All 5 Hessian-Laplace points. Bottom: Weight (equal to the strength)
of the Hessian-Laplace points.
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(e.g. α) can be found in their paper [109]. Again the Laplacian is used as strength
measure. Figure 5.13 shows an example of Harris Laplace points for a natural image. For
details on the implementation of the other presented scale space interest point detectors
the reader is referred to the implementation notes “Interest point detectors” on page 96.

Figure 5.13: Harris Laplace points and Hessian Laplace points of the butterfly.jpg image
projected on the original image. Left the original image, in the center all 110 Harris
Laplace points and right the strongest 250 Hessian Laplace points.

5.3 Reconstruction experiments

5.3.1 Comparison of scale space interest points for reconstruction

To compare the different types of scale space interest points described in section 5.2 for
image reconstruction, experiments on two sets of images are performed. The first set of
images consists of 8.000 random patches (64× 64 pixels) of the van Hateren database of
natural images [134]. The second set consists of 12 images (128×128 pixels) sub-sampled
from images of a digital camera. For all images in both sets, all 10 described types of
scale space interest points are calculated. For the second set, the result of the scale
space interest point detectors is shown in appendix C. Using the Sobolev reconstruction
described in chapter 3, reconstructions are made for all images and all 10 different point
sets (80.000 reconstructions in total for the first set, 120 for the second set). For the first
set, a maximum of 50 points is used for each reconstruction, while for the second set a
maximum of 400 points is used for each reconstruction. The reconstruction results of the
second set are shown in appendix D. All reconstructions use up to 4-th order derivatives
in each interest point and an SVD tolerance of 10−5. For a quantitative comparison of the
scale space interest points with respect to image reconstruction, all reconstructions are
compared to the corresponding original images using 6 objective image quality measures
presented in chapter 4: The Mean Squared Error (MSE, section 4.2.1.1), the Pratt
Measure (PM, section 4.2.1.16), the Median Spectral Phase Block Distortion (MSPBD,
section 4.2.1.22), the Multi-Scale Differential Error (MSDE, section 4.2.2), the Fast
Multi-Scale Differential Error (FMSDE, implementation notes “Fast MSDE” on page 67)
and the Structural SIMilarity measure (SSIM, section 4.2.3.2). The mean and standard
deviation of the errors is calculated for both test sets. Table 5.1 shows the results
for the first set and in table 5.2 the results for the second set are shown. Note that in
general blobs, ridge points and corner points are better suitable for image reconstruction
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Implementation Notes

Interest point detectors

The 10 different types of scale space interest points presented can be detected
in an image using derivatives of scale spaces of that image. For our exper-
iments, derivative scale spaces up to 4-th order (and up to second order in
gauge coordinates) of the image are calculated. For detecting the interest
points from the derivative scale spaces, either local maxima (blobs, corner
points and ridges), intersections of zero-crossings (top points, top points of
the Laplacian and scale space saddles) or a combination of both (edge points)
have to be found.
To detect local maxima in the volume of a scale space (e.g. local maxima of
the absolute value of the Laplacian scale space for Laplacian blobs), each voxel
and its 26 neighboring voxels are evaluated. If the center voxel is larger than
all neighboring voxels, a local maximum is found.
To detect intersections of zero-crossings in the volumes of the corresponding
scale spaces (e.g. intersections of zero-crossings of the x-derivative, y-derivative
and Laplacian for scale space saddles), each voxel is evaluated in the three
corresponding volumes. A single voxel contains a zero-crossing of a volume if
and only if at least one corner point value of the voxel differs in sign from the
other corner point values of the voxel. A voxel can only have an intersection of
three zero-crossing surfaces if the corresponding voxel contains zero-crossings
in all three volumes. To speed up detection, this condition is checked first
for each voxel in the volumes. For every possible candidate voxel, intersection
points between the three surfaces are calculated using a marching cubes like
algorithm [102]. In case of ambiguities all possible combinations are calculated.
This can result in a slight overestimation of the number of interest points.
For the edge points, every voxel in the uww scale space is evaluated. If a
candidate voxel contains a zero-crossing, the value of the corresponding voxel
in the uw scale space is compared to the 9 neighboring voxels one scale higher
and 9 neighboring voxels one scale lower than the candidate voxel in the uw

scale space. If the value in the candidate voxel is larger than the other 18
voxels, an edge point is found.

than the other scale space interest points and that Harris Laplace points, often used for
image matching, are not very suitable for image reconstruction. One reason is that the
number of Harris Laplace points is in general very low. However, adding features in
this low number of points might improve the reconstruction quality, while maintaining a
comparable number of constraints as the reconstructions from blobs for example. Note
that top points of the Laplacian perform relatively bad in the first set, while in the second
set they perform very well, even among the best. A possible cause can be the fact that
the first set contains many patches with very little structure, while in the second set
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every image contains much structure. It is possible that top points of the Laplacian
perform bad in images with little structure. Also the ordering of the top points of the
Laplacian might be a cause, since for the first set only a quarter of the points is used in
general, while for the second set almost half the number of points is used. As can be seen
in appendix D, the visual quality of reconstructions from top points of the Laplacian
in the second set supports the low errors in table 5.2. For reconstructions with lower
quality there is a deviation in ordering for the different image quality measures (e.g.
according to the MSE the Harris Laplace points are the worst points for reconstruction,
while according to the SSIM the top points of the Laplacian are the worst points for
reconstruction).

Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from: Mean Mean Mean Mean Mean Mean

(σ) (σ) (σ) (σ) (σ) (σ)

Laplacian blobs 0.0017 0.5676 0.0015 0.0225 0.0103 80.8663
(128)(50) (0.0063) (0.1286) (0.0032) (0.0177) (0.0088) (11.8492)

Hessian blobs 0.0020 0.5434 0.0017 0.0249 0.0113 77.9351
(232)(50) (0.0066) (0.1414) (0.0037) (0.0209) (0.0101) (12.6089)

Ridge points 0.0028 0.4775 0.0023 0.0310 0.0139 77.8055
(80)(48) (0.0078) (0.1505) (0.0051) (0.0270) (0.0127) (13.5613)

Corner points 0.0030 0.4778 0.0024 0.0340 0.0148 74.1752
(110)(50) (0.0135) (0.1424) (0.0049) (0.0274) (0.0127) (13.8028)

Edge points 0.0046 0.3126 0.0035 0.0473 0.0228 67.5569
(1215)(50) (0.0101) (0.1516) (0.0062) (0.0332) (0.0173) (14.7262)

Hessian Laplace 0.0057 0.3060 0.0039 0.0478 0.0241 67.5219
points (39)(34) (0.0136) (0.1377) (0.0071) (0.0313) (0.0165) (16.0539)

Top points 0.0058 0.3892 0.0045 0.0480 0.0204 67.4022
(58)(46) (0.0210) (0.1471) (0.0094) (0.0444) (0.0199) (16.2812)

Top points of the 0.0070 0.4098 0.0060 0.0599 0.0240 58.5503
Laplacian
(188)(50)

(0.0152) (0.1357) (0.0115) (0.0555) (0.0229) (18.0585)

Scale space 0.0084 0.2704 0.0055 0.0593 0.0263 63.3623
saddles (24)(24) (0.0306) (0.1215) (0.0107) (0.0529) (0.0251) (17.1148)

Harris Laplace 0.0094 0.1451 0.0051 0.0633 0.0321 60.3909
points (11)(11) (0.0261) (0.0817) (0.0088) (0.0458) (0.0254) (18.8402)

Table 5.1: Error measures of reconstructions from scale space interest points for 8.000
random patches (64 × 64 pixels) of the van Hateren database of natural images [134],
using a maximum of 50 interest points per reconstruction. The first number behind the
point type is the mean number of interest points detected, the second number shows the
mean number of points used for the reconstruction. The mean and standard deviation
for all 8.000 patches are given. Note that the PM and the SSIM are similarity measures,
while the others are error measures.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from: Mean Mean Mean Mean Mean Mean

(σ) (σ) (σ) (σ) (σ) (σ)

Laplacian blobs 0.0174 0.7381 0.0028 0.0292 0.0125 80.6530
(558)(400) (0.0239) (0.0763) (0.0044) (0.0098) (0.0035) (7.8326)

Hessian blobs 0.0166 0.7579 0.0025 0.0285 0.0124 80.6920
(958)(400) (0.0234) (0.0880) (0.0038) (0.0104) (0.0040) (8.8361)

Ridge points 0.0289 0.5559 0.0059 0.0482 0.0193 71.6460
(258)(258) (0.0356) (0.1331) (0.0086) (0.0214) (0.0081) (11.9290)

Corner points 0.0197 0.6940 0.0033 0.0349 0.0142 77.6370
(427)(389) (0.0253) (0.1030) (0.0045) (0.0115) (0.0043) (8.3314)

Edge points 0.0410 0.4184 0.0064 0.0702 0.0357 62.7980
(4490)(400) (0.0315) (0.0947) (0.0058) (0.0248) (0.0113) (10.3860)

Hessian Laplace 0.0370 0.5700 0.0052 0.0544 0.0288 68.7970
points
(294)(260)

(0.0326) (0.1131) (0.0068) (0.0189) (0.0076) (8.7003)

Top points 0.0301 0.5351 0.0055 0.0526 0.0216 71.2280
(235)(235) (0.0246) (0.0893) (0.0051) (0.0179) (0.0065) (5.2343)

Top points of the 0.0167 0.7574 0.0029 0.0288 0.0123 80.7120
Laplacian
(888)(400)

(0.0228) (0.0788) (0.0046) (0.0103) (0.0039) (7.8331)

Scale space 0.0918 0.2656 0.0141 0.1084 0.0470 51.2780
saddles (95)(95) (0.0857) (0.0924) (0.0120) (0.0488) (0.0207) (11.6350)

Harris Laplace 0.0669 0.3544 0.0111 0.0852 0.0423 57.4540
points
(104)(104)

(0.0472) (0.0792) (0.0099) (0.0273) (0.0133) (10.9340)

Table 5.2: Error measures of reconstructions from scale space interest points for 12
images (128×128 pixels) from a digital camera, using a maximum of 400 interest points
per reconstruction. The first number behind the point type is the mean number of
interest points detected, the second number shows the mean number of points used for
the reconstruction. The mean and standard deviation for the 12 images are given. Note
that the PM and the SSIM are similarity measures, while the others are error measures.
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5.3.2 Stability of the interest points

Another method to compare the descriptive power of scale space interest points is to
compare the stability of the reconstruction with respect to the localization error of the
scale space interest points. If a point set contains much local image information, random-
izing the position of the points should degrade the reconstruction quality. To simulate
the localization error, normally distributed noise with a varying standard deviation is
added to the interest point positions and the corresponding features are recalculated.
This is done for all images and all 10 types of interest points of the second test set.
Reconstructions of these noisy point sets with varying σ are made using the Sobolev
reconstruction described in chapter 3. A maximum of 100 points per reconstruction
is used to amplify the effects of the noise. Again, all reconstructions use up to 4-th
order derivatives in each interest point and an SVD tolerance of 10−5. For quantita-
tive analysis two image quality measures of chapter 4 are calculated: The Root Mean
Squared error (RMS, section 4.2.1.2) and the Multi-Scale Differential Error (MSDE,
section 4.2.2). The mean RMS error and the mean MSDE over all images in the second
test set for all 10 types of interest points and standard deviation σ ranging from σ = 1
pixel to σ = 20 pixels are presented in appendix E. Reconstructions from corner points,
blobs, ridge points and top points show an increasing error for increasing σ. However,
for edge points and Hessian Laplace points the error decreases with increasing σ. This
means that randomizing these point positions actually improves reconstruction quality.
For edge points this can be explained since many edge points close together contain
much redundant information. Randomizing these points removes some of that redun-
dancy and improves the reconstruction quality. Reconstructions from scale space saddles
and Harris Laplace points do not show much difference for various σ. Note that these
stability results support the earlier result that some of the scale space interest points
(such as corner points, blobs and ridge points) perform better for image reconstruction
than others.

5.4 Combining interest points using canonical sets

5.4.1 Introduction

As can be seen from the reconstruction results in appendix D, the different types of in-
terest points capture different aspects of image structure. Nielsen and Lillholm showed
that a combination of different types of interest points can improve the reconstruction
quality substantially [115, 93]. It is however not clear how exactly these points should be
combined. Specifically, given a large set of different types of interest points, how should
one pick points for an optimal subset? Consider for example the test image butterfly.jpg
from the second test set. All 10 types of scale space interest points previously defined
are calculated and combined in one large point set. One possible option to do this, is
to combine all types of points in a large set and re-order all points using their differen-
tial TV-norm or a similarly defined strength measure. The result of the 200 strongest
combined interest points of the test image ordered by TV-norm and the corresponding
reconstruction is shown in figure 5.14.

Note that the quality of the combined scale space interest point reconstruction is lower
than some of the separate interest point reconstructions shown in appendix D. The
reason for this is that in the combined point set many points that are close to each other
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Figure 5.14: Left: 200 strongest combined scale space interest points of the butterfly.jpg
image ordered by differential TV-norm. Right: Reconstruction of the butterfly.jpg image
using the 200 strongest combined scale space interest points ordered by differential TV-
norm.

will share a similar differential TV-norm (or other strength measure). Using strength
measures as the sole criteria for ordering interest points may result in selecting points
close to each other and consequently poor reconstruction results since these points will
contain much redundant information. Table 5.3 shows the MSDE for reconstructions
from the 200 strongest scale space interest points of different types and 200 of the
strongest combined scale space interest points using the TV-norm to rank the points.
Note that the MSDE of the reconstruction from combined scale space interest points,
ordered by TV-norm, is higher than reconstructions from the best single type interest
points.

Reconstruction from MSDE Reconstruction from MSDE

Top points of the Laplacian 0.0723 Hessian Laplace points 0.2527
Hessian blobs 0.0858 Harris Laplace points 0.2784
Corner points 0.0928 Edge points 0.2246
Laplacian blobs 0.0989 Scale space saddles 0.2460
Top points 0.0963 Combined interest
Ridge points 0.1493 points using TV-norm 0.1367

Table 5.3: MSDE of reconstructions from separate scale space interest points.

5.4.2 Canonical set framework

In this section, we propose an optimization framework for selecting scale space interest
points for image reconstruction using canonical sets [25, 116] of scale space features. We
will formulate the feature selection problem as a quadratic optimization problem and
propose an approximation algorithm for its solution. Using only the strength measure
of points can result in the selection from the combined point set of too many points that
are close to each other. In order to take into account the spatial distance between points
as well as the strength of the points, we select canonical subsets of the combined point
sets. Canonical sets are subsets of points with special properties, namely:



5.4 Combining interest points using canonical sets 101

I. Points in the canonical set are minimally similar.
II. Points outside the canonical set are maximally similar to points in

the canonical set.
III. Points in the canonical set have high stability compared to elements

outside the set.

The canonical set problem is formulated in terms of a quadratic integer programming
optimization. Many problems of this type are known to be intractable [49], but they
admit good approximation algorithms [54]. In what follows, we give a brief overview of
the problem formulation and its solution (for an in-depth treatment of the problem the
reader is referred to [116, 26, 25]).

The input set to the canonical set problem consists of a set of points P = {p1, ..., pn},
an associated set of strength (stability) measures {t1, ..., tn}, ti ∈ R+ 1 ≤ i ≤ n, and
a similarity function W : P × P → R+

0 . In this work we let ti equal the differential
TV-norm of point pi (See Eqn. 5.25), and define the similarity of two points, pi and pj ,
as

Wij =
1

1 + dij
,

where dij denotes the Euclidean distance between the points pi and pj .

The problem is formulated as a multi-objective quadratic integer program where the
outcome of the optimization will determine whether each point is in the canonical set,
P∗, or not. Specifically, for each point, pi, an indicator variable, yi, is used that will be
equal to 1 if pi ∈ P∗ and −1 otherwise. Using these indicator variables, it can be shown
that the aforementioned properties I, II, and II can be stated as optimization objectives:

Minimize
3

4

∑
i,j

Wijyiyj +
1

2

n∑
i=1

yi

n∑
j=1

Wij +
3

4

∑
ij

Wij (5.32)

Minimize
1

2

n∑
i=1

ti(1− yi) (5.33)

Subject to yi ∈ {−1,+1}, ∀ 1 ≤ i ≤ n. (5.34)

The optimal solution to this integer program is a vector y = [y1, ..., yn]T , indicating
which points belong to the canonical set.

Vector labeling and lifting [53] are used to relax and reformulate the problem as
a semidefinite program. To get rid of the linear terms we increase the dimension of
the indicator vector by 1 and introduce a set indicator variable, yn+1, which acts as
a reference for membership in the canonical set. In an optimal solution, pi is a mem-
ber of the canonical set only if yi = yn+1. The integrality constraints are removed
by substituting a vector for each indicator variable, that is, we replace each indicator
variable yi, 1 ≤ i ≤ n + 1, with a vector xi ∈ Sn+1, where Sn+1 is the unit sphere in
Rn+1. Let wΣ =

∑
i,j Wij , define d as a column vector in Rn whose ith entry has value

di =
∑n

j=1Wij , and let tΣ =
∑n

i=1 ti, and 0̂ be an n×n matrix of zeros. The objectives
are then encoded into matrices C and T ,

C =

 3
4
W 1

4
d

1
4
dT 3

4
wΣ

 , T =

 0̂ − 1
4
t

− 1
4
tT 1

2
tΣ

 , (5.35)
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where t is a vector in Rn whose ith entry is ti (the strength of point i).

These objectives are combined using Pareto optimality by defining a parameter α ∈
[0, 1], and defining the matrix Q as a weighted convex combination of C and T , where
Q = αC + (1−α)T . This implies that for any given α the combined objective is convex
and a solution will be optimal for that α. The semidefinite program formulation of the
canonical set can be stated as

CANSET:

Minimize Q • X (5.36)

Subject to Di • X ≥ 0, ∀ i = 1 . . . ,m, (5.37)

X � 0, (5.38)

where m = n+ 3 and denotes the number of constraint matrices, and X � 0 denotes a
positive semidefinite matrix. The notation A • B denotes the Frobenius inner product
of matrices A and B, i.e., A • B = Trace(ATB). The first n + 1 constraint matrices,
D1,D1, . . . ,Dn+1, are all zeros with a single 1 that moves along the main diagonal,
enforcing the xT

i xi = 1 constraints from Eqn. (5.34). The matrices Dn+2 and Dn+3,
encode constraints that are used to bound the size of the canonical set.

Once the solution to this semidefinite program is computed, a rounding step is
performed to obtain an approximate integer solution. This step identifies the set of
values for indicator variables y1, ..., yn. We use a standard rounding scheme based on
Cholesky decomposition and a multivariate normal hyperplane method [135].

The parameter α controls the relative significance of stability versus spatial distri-
bution of the selected features. Specifically, in one extreme, setting α = 0 will select
the most stable features, and in the other extreme setting α = 1 will select dispersed
features from all across the image plane without regarding their stability.

5.4.3 Incorporating distance lower-bound constraints

In this section we show that the canonical set framework is flexible enough for incorporat-
ing distance lower bound constraints among the members of canonical set. Specifically,
in addition to requirements I, II, and III, we would like to make sure that for a given
radius parameter r, if pi ∈ P∗ then pj /∈ P∗ if the distance between pi and pj is less
than or equal to r. This set of constraints will prevent the selection of canonical features
that are too close to each other. The structure of forbidden pairs with respect to P will
be encoded in the form of a 0, 1 binary matrix F = F(r) where entry Fij ∈ {0, 1}. Let
Fij = 1 if the distance between features pi and pj is less than or equal to r and zero
otherwise. Intuitively, the matrix F encodes the forbidden pairs, that is, if two features
are closer than r to each other at least one of them should be outside the canonical set.
This constraint can be written as: as:

1

4

∑
i,j

Fij(1 + yiyn+1)(1 + yjyn+1) = 0. (5.39)
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Using the fact that F is symmetric and y2
i = 1, for each 1 ≤ i ≤ n + 1, the constraint

(5.39) can be restated as:

1

4

∑
i,j

Fij +
1

4

∑
i,j

Fijyiyj+

1

2

n∑
i=1

yiyn+1

n∑
j=1

Fij = 0. (5.40)

Letting fΣ =
∑

i,j Fij , and defining f as a column vector in Rn whose ith entry is equal
to fi =

∑n
j=1 Fij , we can then express this latter constraint as

F̂ • X = 0, where F̂ =

[
1
4
F 1

4
f

1
4
fT 1

4
fΣ

]
. (5.41)

Our new SDP formulation for the canonical set with forbidden relations can be stated
as

CANSET2:

Minimize Q • X (5.42)

Subject to Di • X ≥ 0, ∀ i = 1 . . . ,m, (5.43)

X � 0, (5.44)

where Q is as described in (5.36), m = n+4, and the first n+3 constraint matrices are as
described in (5.37), and constraint matrix n+ 4 is (5.41). The approximate solution for
this modified formulation can be estimated in a similar manner to the original canonical
set problem of Denton et al. [26].

5.4.3.1 Computing the optimal radius

We would like the value of r to be as large as possible, thereby spreading the canonical
set members as far apart as possible. Without loss of generality, let us assume that the
distances between all pi and pj are normalized to fall between zero and one. To find the
optimal value of r, we note that when r = 0 the formulation reduces to the standard
canonical set formulation, i.e. the matrix F is all zeros. On the other hand if r = 1, the
matrix F is all ones and the problem is infeasible for our purposes since only one vertex
can be in the canonical set. We next show how we can find the optimal r in polynomial
time.

Lemma 5.4.1. Let r be some value such that the CANSET2 algorithm is feasible. Then
any value r − δ where δ > 0 is feasible.

Proof. Any edge that is forbidden by r is also forbidden by r − δ. This is clearly the
case since, if the distance between two set members, pi and pj is less than r− δ it is also
less than r. Thus a problem using r − δ is less constrained than a problem using r.

Lemma 5.4.2. There are at most n2/2 values for r that give distinct matrices F , where
n = |P|, the cardinality of P.

Proof. Since matrix F is symmetric and Fij = 1 if the distance between features pi and
pj is less than or equal to r and zero otherwise, the number of distinct F matrices is
bounded by the number of distinct distances, which can be no more that n2/2.
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Lemma 5.4.3. The number of ones in the matrix F increases monotonically as the
value of r increases.

Proof. Let dij be the distance between pi and pj . Clearly, if dij ≤ r then dij ≤ r + δ,
where δ > 0.

Theorem 5.4.4. The optimal value for r can be found by running the CANSET2 algo-
rithm at most O(logn) times.

Proof. Let r∗ be the optimal value for r. By lemma 5.4.2 there are at most n2/2 possible
values for r that must be searched, by lemma 5.4.1 and lemma 5.4.3 we know for any
particular r whether r∗ < r or r∗ > r. We can thus perform a binary search to find r∗,
running the CANSET2 algorithm at most O(logn) times.

5.4.3.2 Algorithm complexity

Our algorithm for computing the approximate canonical subset with forbidden edges,
which we denote CANSET3 thus consists of running the CANSET2 algorithm at most
O(logn) times, performing a binary search to find the optimal radius r. Since SDP
algorithms such as CANSET2 run in polynomial time, it follows that CANSET3 also
runs in polynomial time.

5.4.4 Experiments

1 2 3 4 5 6

7 8 9 10 11 12

Figure 5.15: Images used for the canonical set experiments, all images are 128 by 128
pixels.

For our experiments, we used the 12 test images shown in Figure 5.15. For each
image we extracted the 10 types of scale space interest points described in Section 5.2
and combined them into one file ordered by TV-norm. The total number of interest
points extracted ranged from 7160 for the tulip image (image number 12 in Figure 5.15)
to over 10438 for the clock image (image number 9 in Figure 5.15).

From each of the combined point files we extracted the top 200 points ordered by
TV-norm, created reconstructions, and measured the MSDE rate. The large number of
interest points precluded running the CANSET3 algorithm on the full sets of combined
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features, so we reduced the size of the combined feature sets by discarding points within
a radius of 3 pixels of one with a higher TV-norm. The size of the resulting filtered
combined sets was in the order of 1000 interest points. We ran the CANSET3 algorithm
on each of the reduced combined interest point sets, varying the convexity parameter,
α, between 0 and 1 in 0.1 increments and selected subsets of 200 points. We created
reconstructions from each of the subsets and measured the resultant error. Figure 5.16
shows the MSDE rates obtained from reconstructions based on the TV-norm subsets
and the canonical subsets.

Figure 5.16: Error rates for top 200 TV-norm versus best canonical set.

Examination of the graph shows that subsets selected based on the canonical set
algorithm have lower error rates for all but two of the example images. Figure 5.17
shows a detail for image 3, where the reconstruction from the canonical set had higher
error. The top row shows an area of the clouds where the canonical subset provided
greater detail than the TV-norm subset. The bottom row shows the boat area, for
which the canonical set gives a poorer reconstruction.

Figure 5.18 shows the reconstruction results for the images in Figure 5.15. The
left column in each cell shows the original image, the second column shows the re-
constructions from the top 200 points selected by TV-norm, the right column shows
reconstructions from 200 points selected using the canonical set algorithm. The recon-
structions from the canonical sets of image points have lower error for all but two of
the images. Further examination of the reconstructions shows reconstructions using the
canonical sets avoid the large empty regions (areas with no selected features) present in
the reconstructions using the ordered TV-norm.

We next inspected the error rates for reconstructions using the top 200 points from
the filtered combined interest point sets. Recall that the reduced sets are generated by
discarding points within a radius of 3 pixels of one with a higher TV-norm. Figure 5.19
shows the result of this comparison. The canonical set is better in 8 out of the 12
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Original TV-norm Canonical Set

Figure 5.17: The left column shows the original image, the middle column shows the
reconstruction using the TV-norm, and the right column shows a reconstruction using
the canonical set. Even though the canonical set gives a better reconstruction of the
clouds, the boat has reconstruction artifacts, resulting in a higher MSDE.

reconstructions and only slightly worse in 3 instances in terms of error rates. One
reason for this behavior (being only slightly worse) is that for α = 0, the canonical set
algorithm is only considering the stability (TV-norm) of the points in the objective and
the spreading of the points is enforced through the constraint (5.41).

Figure 5.20 shows reconstructions of test image 9 from canonical sets computed using
various values for α. The MSDE error rate for α = 0.1 is higher than the MSDE error
rate for the TV-norm reconstruction and all of the others are lower, with α = 0.2 giving
the best result.

Finally, we examined the effect of the number of selected features on the quality of
reconstruction. Our preliminary investigations indicate a progressive improvement on
the quality of reconstruction as a function of subset size. Figure 5.21 shows the results
of this investigation for image 9 from our test set. Figure 5.22 shows reconstruction
results for various subset sizes.
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OriginalTV-norm Canonical setOriginal TV-norm Canonical set

Figure 5.18: Image reconstructions, the left columns show the original images, the middle
columns show reconstructions with the top 200 scale space points ordered by TV-norm,
the right columns show reconstructions with the canonical set of scale space points
computed by the CANSET3 algorithm.
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Figure 5.19: Error for top 200 min3 filtered versus best canonical set.

α = 0.0 α = 0.1 α = 0.2 α = 0.3

α = 0.4 α = 0.5 α = 0.6 α = 0.7

α = 0.8 α = 0.8 α = 1.0

Figure 5.20: Reconstructions from subsets computed with different values for α param-
eter.
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Figure 5.21: The effect of canonical subset size on the quality of reconstruction for image
9 from Figure 5.15. The reconstruction error decreases as the size of the subset increases.

50 100 150 200

250 300 350 400

450 500 550 600

Figure 5.22: Reconstruction based canonical sets of increasing size. The size of canon-
ical sets for each reconstruction is indicated in the cells. The line artifacts are due to
numerical errors in the reconstruction algorithm.
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5.5 Conclusion and discussion

In this chapter 10 commonly used scale space interest points are compared for the pur-
pose of image reconstruction: Corner points, edge points, Harris Laplace points, Hessian
blobs, Hessian Laplace points, Laplacian blobs, ridge points, scale space saddles, top
points and top points of the Laplacian. These scale space interest points are calculated
for all images in two test sets. Test set one consists of 8.000 patches of the van Hateren
database of natural images and the second set consists of 12 images taken with a digital
camera and later sub-sampled. For all these point sets, reconstructions are made using
the Sobolev reconstruction scheme presented in chapter 3. These reconstructions are
evaluated using several image quality measures presented in chapter 4. The results show
that certain types of interest points perform better for image reconstruction than others.
More specifically, in general blobs, ridge points and corner points perform better than
the other scale space interest points for reconstruction. Harris Laplace points, often used
for image matching, are not very suitable for image reconstruction. One reason is that
the number of Harris Laplace points is in general very low. However, adding features in
this low number of points might improve the reconstruction quality, while maintaining
a comparable number of constraints as the reconstructions from blobs for example. Top
points of the Laplacian perform relatively bad in the first set, while in the second set
they perform very well, even among the best. A possible cause can be the fact that the
first set contains many patches with very little structure, while in the second set every
image contains much structure. Also the ordering of the top points of the Laplacian
might be a cause, since for the first set only a quarter of the points is used in general,
while for the second set almost half the number of points is used.

Another method presented in this chapter to compare the descriptive power of scale
space interest points is to compare the stability of the reconstruction with respect to the
localization error of the scale space interest points. If a point set contains much local
image information, randomizing the position of the points should degrade the reconstruc-
tion quality. Results from experiments with varying noise on the position of the scale
space interest points show again that some types of points are more suitable for image
reconstruction than others. More specifically, reconstructions from corner points, blobs,
ridge points and top points show an increasing error for increasing standard deviation
of the noise. In contrast, for edge points and Hessian Laplace points the error decreases
with increasing standard deviation of the noise. For edge points this can be explained
since many edge points close together contain much redundant information. Random-
izing these points removes some of that redundancy and improves the reconstruction
quality.

It is shown in literature that a combination of different types of interest points can
improve the reconstruction quality substantially. It is however not clear how exactly
these points should be combined. The conventional feature selection method for image
reconstruction is driven by stability or strength measures associated with scale space
interest points. Experimental studies show that ordering interest points by TV-norm
and selecting the strongest points will result in good reconstructions for some single
type scale space interest points, but will not necessarily result in good reconstructions
for combined types of scale space interest points. In this chapter we proposed a frame-
work for feature selection that accounts for both stability of scale space interest points
as well as their spatial distribution. Our method is a generalization of canonical feature
selection algorithm. We presented a new formulation for the canonical set problem that
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incorporates constraints on the minimum distance between selected features. We also
presented the feasibility analysis for optimal solution of the parametric form of spatial
canonical sets. Finally, the complexity analysis for approximating the canonical set for
image reconstruction in polynomial time was discussed. Through a set of experiments,
we compared the reconstructions based on selected features using our new method with
those ordered by TV-norm. For our test images we considered 10 types of scale space
interest points. The preliminary experiments show the quality of the reconstructions
based on the subsets of image features selected by the canonical set algorithm produced
lower error as measured by the Multi Scale Differential Error (MSDE) in 10 of 12 re-
constructions. In 8 of the 12 case studies the error was significantly lower, and in the
other cases, they were comparable. In all cases the subsets selected using our algorithm
avoided the large empty areas in images (areas with no selected features) that were
present using the subsets selected by the ordered TV-norm.

The best type of scale space interest points will depend on the image itself. It is
shown in this chapter that the top points of the Laplacian for certain images are very
suitable, but for a different set of images are not. Some other types of scale space interest
points are less sensitive to the actual image content and are suitable for a broad class
of images. Future research should include more experiments evaluating the stability of
different types of scale space interest points for varying types of images. With respect
to combining different types of scale space interest points it is shown that besides the
strength, also the spatial distribution is important. The similarity measure used is
currently solely based on the Euclidean distance in 2D. The scale of the interest points
should also be included in future research. For future work we also intend to consider
the performance of feature selection on a plane by plane basis, i.e. selecting a subset of
each feature type and then combining them into a unified set.
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6.1 Introduction

Since the introduction of digital images, image editing with a computer is used to ma-
nipulate the contents of an image. In the eighties the first commercial programs to
manipulate digital images became available and articles about this subject appeared in
several journals [79, 9]. Nowadays editing digital images such as pictures from a digi-
tal camera has become a daily practice for many professional photographers and even
consumers often edit the pictures from their digital cameras. Also in other fields such
as special effects in movies or cosmetic surgery, digital image editing has become pop-
ular. The early programs to edit digital images manipulated the pixels of the digital
images directly. Many of today’s commonly used image editing packages such as Adobe
PhotoShopTM are still based on the direct manipulation of pixels or groups of pixels
in the image. However, for some operations an object-based approach to edit images
is preferred. For example to automatically replace apples in a scene with pears it is
necessary for the computer program to have a more abstract representation than the
raw pixel data alone. Object-based image editing operations however have tradition-
ally been limited to well defined graphical objects such as lines, rectangles and circles.
Examples of object-based image editing software with simple geometrical objects are
Adobe IllustratorTM and Corel DrawTM.

In the last decade, several approaches to object-based image editing for complex
scenes have been presented. Some properties of good object-based image editing opera-
tions are proposed by Mortensen [32]. However, no indication is given how to implement
these properties. Some approaches use a different representation of the image to per-
form the edits in, such as contours [66, 113], verge points [137] or a skeleton plus residual
representation [89] and perform a reconstruction of the edited representation to obtain
the edited image. To improve the visual quality of the edits performed with an image
editing operation, adaptation of an area to its background is important. Methods like
Poisson image editing [117] and covariant derivatives [50] can improve the image qual-
ity drastically by adapting the edited region to its surrounding background. Zeng et
al. [149] propose a variational image model based on image derivatives that has similar
properties. A content-aware tool is presented by Diakopoulos et al. [112] which uses a
simple database of textures to seamlessly compose image edits. These methods however
include no information on the object level, only on some local properties of neighboring
pixels. Kar-Han Tan [128] presents an interactive tool to select objects in an image
using simple freehand sketches. This however needs some basic human interaction to
obtain the object in an image and no editing is performed. Wu et al. [143] present a
fully automatic object based editing algorithm to remove eyeglasses from face images,
but this is very application specific. Huang et al. [60] present a method to edit images
using a recovery of the 3D shape from objects in a scene. However, some knowledge on
the scene content is necessary for their algorithm. Barret and Cheney [136] introduce
object-based image editing by selecting objects with some simple clicks and performing
an automatic segmentation of the object using watersheds. After this step, using anchor
points, interactive editing operations can be performed while corrections for geometry
changes and background filling are automatically performed in real-time. While this
method shows very good results, it is still impossible to automatically replace apples
with pears in a scene since no object recognition is included in their framework.

In this chapter we propose a framework to perform object-based image editing based
on scale space interest points. It is shown that some scale space interest points are
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suitable for object detection and recognition [111, 120, 119]. In section 6.2 a proof of
concept is given to show that scale space interest points can also be used for image
editing using the image reconstruction algorithms proposed in chapter 3. Since this
representation is suitable to automatically detect objects in a scene (given some reference
object) and to replace one object with another in a visually coherent way, the objective
to automatically replace apples with pears in a scene is within reach. In section 6.3 a look
into the future is given about the possibilities of the proposed image editing framework.
Finally, conclusions are given in section 6.4.

6.2 Proof of concept

In this section a proof of concept is given for image editing using scale space interest
points. Consider the test image shown in figure 6.1. The image shows a sailing boat
with a complex background. From this image, all Hessian blobs, Laplacian blobs, corner
points and ridge points are calculated. These points are combined in a single set using
a minimum distance constraint, ordered by differential TV-norm (see section 5.4 for
more details). The 395 remaining points in the combined interest point set are shown
in figure 6.1. Using this combined point set and the Brownian reconstruction from
chapter 3 we try to manipulate the objects in the image.

Figure 6.1: Original test image sailboat.jpg for our proof of concept (left). The original
image is 180× 180 pixels. A combined set of 395 scale space interest points of the test
image is shown on the right side, projected on the original image (the diameter of the
circles represent the scale of the interest points). Using reconstruction from manipulated
scale space interest points the objects in the image can be manipulated.

As a first test we will try to remove the sailboat from the image. In order to
do this, all interest points belonging to the sailboat are removed. This is done by
applying a mask, which is shown in figure 6.2. All points within the white area of
the mask are removed from the combined point set. Note that no scale information
is taken into account for the masking; only spatial information is used. The mask is
created manually for this experiment, but in a practical application one should create a
mask automatically. Using an image matching algorithm based on scale space interest
points [120, 119], one can identify which interest points of a complex scene belong to a
given reference object image provided one has a database object similar to the reference
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object. Specifically, given our image of a sailboat in a scene it will be possible to
extract the interest points corresponding to the sailboat from the image. A mask can
be created using the outline of the filters used for reconstruction, but in this case having
the interest points is sufficient. The reconstruction from the sailboat.jpg image without
the interest points belonging to the sailboat itself is shown in figure 6.2. Note that
indeed the sailboat is removed and that the background is filled in by the prior of the
reconstruction algorithm. However, there is no texture of the water in the area where
once our sailboat was present.

Figure 6.2: Removing the sailboat from sailboat.jpg. The top row, from left to right
shows the original image, the 395 combined scale space interest points projected on the
original image and the mask used to filter the interest points respectively. The bottom
left image shows the remaining 307 interest points after applying the mask and the
bottom right image shows a reconstruction from the remaining interest points.

In order to make a more realistic image, the water in the area where the sailboat was
present should be textured. In the presented framework this can be done by copying
information from the background water. First a number of points (58 in total for a
good distribution of the points) is placed in the area where the sailboat was present
using the mask created previously. A randomly varying scale is used to reduce the
chance of artifacts being visible. Next, derivatives of the points in the right side of
the image (the textured water part) are used for the new points as constraints for the
reconstruction algorithm. Figure 6.3 shows the results. Note that the water is now
textured where once the sailboat was present and therefore gives a more realistic image
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with the sailboat removed from the scene.

Figure 6.3: Texturing the water. The top left image shows the original test image. The
top center image shows all 395 interest points taken from the image. The top right image
shows the 307 interest points of the scene with the interest points of the boat removed.
The bottom left image shows the 365 interest points with the sailboat interest points
removed and the additional texture points added, projected on the original image. The
bottom right image is a reconstruction from these manipulated interest points. The
sailboat is removed from the scene and the hole is filled with water texture.

It is also possible to insert a new object into the scene. In the following experiment, a
new object will replace the sailboat in the sailboat.jpg image. The new object is a rubber
duck, obtained from an image of the coil database [114] shown in figure 6.4. The size of
the duck image is 328× 328 pixels. From this image the canonical set of combined scale
space interest points is calculated using the minimum distance constraint. The image
should be flipped horizontally, so from all points in the canonical set, the x-coordinates
are inverted. The interest points of the duck image are combined with the interest points
of the background image with the sailboat removed. Points of the background image
that are within a radius of 4 pixels of points from the duck are removed. A reconstruction
is shown in figure 6.4. To obtain sharp edges the derivatives that are used as constraints
for the reconstruction are recalculated. At the boundary information of the background
image and the object is combined using a reconstruction from the object points and a
mask created from interest points of the object. Within the mask, the reconstruction of
the object is used to re-calculate the features, outside the mask the background image
is used (which is in this case also a reconstruction).
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Figure 6.4: Replacing the sailboat with a rubber duck. The top left image shows the
rubber duck image (328×328 pixels) and the top center image shows the 159 scale space
interest points of the duck. The top right image shows the flipped duck points. The
bottom left image shows the points of the background combined with the points of the
rubber duck (406 interest points in total). The bottom right shows a reconstruction from
these points. Note that derivatives in points at the object boundary used as constraints
for the reconstruction are recalculated.

Now we try to find a new background for the sailboat that has been retrieved from
the sailboat.jpg image. An image of the sea, shown in figure 6.5, is used for this purpose.
Again scale space interest points are calculated from this image and combined with the
scale space interest points of the sailboat. Points of the background within a radius of
4 pixels of points from the object are again removed and the features at the boundary
of the object are recalculated as described in the previous experiment. The result is
shown in figure 6.5. Since there is no sampling done in our representation, scaling of
objects is simple. In figure 6.6 a second sailboat is added to the image, while the first
one is translated. The second sailboat is scaled with a factor 2 by multiplying the x- and
y-coordinates of all interest points of the object with a factor 2 and the scale s of the
interest points with a factor 4 (σ =

√
2s). The result is shown in figure 6.6. Note that

the second sailboat is scaled without the need of interpolation, since the reconstruction
algorithm takes care of sampling. Due to the increased scale of the interest points of
the second sailboat, this part of the image is more blurred. This might be resolved by
changing the derivatives of the points to sharpen edges, for example using the work by
Florack [45].
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Figure 6.5: Giving the sailboat a new background. The top left image shows the new
background image. The top center image shows the 150 scale space interest points of the
new background image. The top right image shows the original sailboat.jpg image with
the 88 interest points of the sailboat projected. The bottom left image shows the com-
bined interest points (235 in total) and the bottom right image shows a reconstruction
from these points.

Figure 6.6: Adding a larger sailboat. The left image shows the background image, the
center image shows the 281 combined scale space interest points of the background, the
translated small boat and the scaled large boat. The right image shows a reconstruction
from these points. Note that no interpolation was needed, since the reconstruction
algorithm performs the sampling afterwards. Due to the increased scale of the points of
the large sailboat, this part is more blurred.
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Since there is no need to worry about interpolation, it is also possible to use smaller
objects in the scene. For example, if we would like to add the arbitrarily chosen logo
shown in figure 6.7 in the sail of the large sailboat this can be done by manipulating
the scale space interest points. All x- and y-coordinates of the logo are divided by 4
and the scale s is divided by 16. Again a reconstruction is made from the combined
interest points as described in previous experiments. Depending on the sampling of the
reconstruction function, all detail of the logo will still be present. For our purpose a
relative low resolution is used to sample the final reconstruction, hence some detail is
lost. Note that still much of the logo is visible, which would not be the case if simple
sub-sampling of the object had been used.

The trick of replacing the sailboat with a rubber duck can again be performed in
this new background. In figure 6.8 we replaced the interest points of the large sailboat
with the interest points of the duck image and performed a reconstruction. The com-
pany logo can also be placed into the image as is shown in figure 6.9. The gray-level
values of the logo are changed by changing the intensity value and derivatives in each
interest point of the logo image. In this way, objects can be blended in a scene in a
simple way. A full alpha blending of background and object is also possible by making
separate reconstructions first and then recalculate combined features from the separate
reconstructions.

6.3 A look into the future

In the previous section a proof of concept is presented which shows that image editing
using scale space interest points is feasible. The reconstruction quality and methods to
combine scale space interest points are however not yet optimal and much research has
to be performed before real-life applications using this technique can be expected. In this
section a short overview will be given of what might be possible once the reconstruction
quality, speed and combination methods have improved to a higher performance/quality
level.

6.3.1 Digital photo editing

Imagine a photo editor, connected to a large database (for example over the internet)
that contains objects in a scale space interest point representation. The user loads an
image, taken with his or her digital camera. Using a fast scale space interest point
matching algorithm, the objects in the scene are identified. If there are new objects,
the user is asked if the object should be included in the database locally or on the
internet. Since the interest points of the objects are matched with the interest points
of the scene, masks of the objects can be made with a simple click. If one would like
to change the position, size or orientation of an object, this can be simply done by
dragging the object to its new place or use the size and orientation handles. A fast
interactive reconstruction algorithm could immediately update the image. If the objects
in the background are recognized in the detection step, the information on the interest
points from the database could be used to fill in the holes in the image left by the moved
object. If the object is not known, for example if it is a picture of the sea or a desert,
statistics on the database can give the best point set to fill in the hole, without knowing
exactly what was behind the object. Replacing the object with another object is also
easy, one can just click the desired object in the database or a second image from his or



6.3 A look into the future 121

Figure 6.7: Putting advertisement on the sailboat. The top left image shows the logo
used to place on the sail. The top center image shows the 122 scale space interest points
of the logo and the top right image shows the 281 points of the two sailboats and the
background image. The bottom left shows the 403 combined interest points and the
bottom right image shows the reconstruction from these points. Note that no interpo-
lation is necessary and that the sampling of the reconstruction function determines the
amount of detail in the final result.

Figure 6.8: Replacing a sailboat with a duck again. The left image shows the original
background image, the center image shows the 366 combined scale space interest points
with the large sailboat points replaced with the duck points and the right image shows
the reconstruction from these points.
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Figure 6.9: Adding a watermark to the scene. The left image shows the original back-
ground image, the center image shows the 488 combined scale space interest points with
the watermark logo where the features have been adapted to get a gray-scale blending
and the right image shows the reconstruction from these points.

her digital camera and the corresponding interest points can automatically be replaced
with the new ones. Resizing the image is actually just re-sampling the reconstruction
function. Also automatic categorization of your digital pictures is easier, since it can be
automatically connected with the objects that are present in the scene.

6.3.2 Photo synthesis

Given a large database of objects in the compact scale space interest point representation,
synthesizing images of complex scenes is an easy task. One can just drag and drop objects
from the database, scale, rotate and translate as desired and decide which resolution the
end result will be rendered in. Since the representation can be very compact (especially
compared to high resolution images) and resizing without losing information is possible,
this method is more powerful than just using the sampled version of the images. It is
also possible to combine objects with classic sampled images by calculating the interest
point representations for the classic images. Synthesizing simple objects is also possible
by defining some important scale space interest points such as corners, edges, ridges
and blobs and the local derivatives in those points to tune for example edge strength.
Photo-realistic scenes can be composed in a simple fashion, without worrying about
resolution. This method can replace the stock photos that are often used for creating
advertisements.

6.3.3 Company advertisement

There are more possibilities useful for company advertisements. If a company changes
its logo or style, automatic replacement would be very useful. Imagine a soccer game
with advertisement boards and shirt sponsoring. If a company wants to show another
logo, adapted for example to some specific topic (such as google does sometimes) this
can be automatically done by searching and tracking the scale space interest points of
the old logo and replace them with the new ones. Of course, only parts of the image
with the logos have to be reconstructed, which can be done in real-time. Also adapting
the logo for viewers in specific countries is possible. The same principle could also
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be implemented in copiers and fax machines. Imagine a copier or fax machine that
automatically detects low resolution or old company logos and automatically replaces
them with the latest, high resolution version. Or a fax machine that detects all objects
to reduce bandwidth and still can create high resolution output.

6.3.4 Animation and Morphing

Another application can be found in the animation and film industry. An object in the
scale space interest point representation is disconnected from a grid, and has several
key points that can be manipulated as a group which is described previously, but also
separately. It is possible to build a tree or graph from the interest point structure and
use this to manipulate parts of an object. For example a person has arms, legs, a body
and a head. An arm has a hand with fingers attached, etc. All parts have their own scale
space interest points and therefore can be manipulated separately or as a group. This is
ideal for animation of objects with a photo-realistic nature. Such an application is also
useful for special effects in a movie, making it possible to edit photo-realistic objects in
a way, that normally can only be done with synthetic objects. In both applications it
is possible to put constraints on the movement of (sub) parts of the objects. This can
for example prevent a hand to move into the body or to constrain the angle of rotation
for a group of points. Also morphing one object into another object can be done with
a scale space interest point representation. Specific paths can be given for each interest
point from one object into the other or the shortest path using some distance measure
can be automatically determined (using complex constraints of movements of sub-parts).
A smooth morphing with constraints specific for each object can be enforced with this
method.

6.3.5 Medical applications

A very challenging field for image analysis is medical imaging. Objects in medical
images usually do not have a nice, clear boundary in contrast with previously described
applications. Therefore it will be much harder to describe objects in these images with
scale space interest points. However, if one succeeds to find good object descriptors
(which might possibly not be points, but other descriptors such as lines, regions with
certain texture or a combination of different types of descriptors) these might help with
many medical applications. For example on lung CT images, lung nodules can be hard
to see due to the presence of the ribs. If the ribs in the image can be described with scale
space descriptors, they can be attenuated using some reconstruction algorithm. This is
inspired by a noted instruction of a radiology professor to his trainees: “Think away the
ribs”. In such a case, the lung nodules can become better visible in the image, which helps
(automatic) detection. Another example where scale space descriptors could be useful is
the detection of the heart state or deviations in the motion of the heart, by comparing
the scale space descriptors with statistical data of many other images. Statistics on
a small number of meaningful descriptors is much easier that statistics on the image
data itself. For plastic surgery, the scale space interest point representation might help
building realistic models predicting the outcome of an operation. Also 3D images can be
used creating 4D scale spaces. Reconstructions will be more computationally intensive,
but the algorithm will not become more complex.
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6.4 Conclusion and discussion

Many of today’s image editing software is still based on direct manipulation of the
pixel data of the digital images. However, for some more complex operations such as
replacing all apples from a scene with pears, this pixel representation is not suitable.
There have been recent advances in object based image editing, but they either need
manual interaction to select an object (boundary) or are very task specific. The presented
scale space interest point representation has already been successfully applied to image
matching problems, identifying known objects in a complex scene. In this chapter we
showed that it is feasible to use a scale space interest point representation for editing the
contents of an image. Despite the fact that the presented results are far from optimal,
a combination of the matching and editing possibilities of the scale space interest point
representation looks promising. A number of possible applications is given in the fields
of photo editing, photo synthesis, company advertisement, animation, morphing and
medical applications.

However, the current quality of the reconstruction algorithm and the edit operations
of the interest points is not yet sufficient for these applications. A question that may rise
is why not use standard methods to segment the image into objects and perform standard
pixel based methods? In principle any image editing operation performed on a sampled
image resulting in another sampled image can be done directly in the pixel domain. But
despite the fact that these pixel based methods still result in higher quality images, there
are some advantages of the presented method to perform object based image editing.
Due to the compact representation it is easier to do statistics on objects, which may help
filling in regions that are unknown. Also occlusion of objects is easier to handle with the
scale space interest point representation than with a pixel based scheme. This can help
both in the detection of objects as well as for the edit operations. An extension to 3D
images or time series is straightforward. Building a database of objects, independent of
resolution is not possible for the pixel based methods. Also scaling and rotating objects
is easier, since in the pixel based methods a good interpolation scheme (for example
spline interpolation) is necessary. The representation also provides points that can be
used for controlled motion or morphing effects that are hard to perform in the pixel
domain.

Before these benefits really can be exploited in the proposed applications, the recon-
struction quality and the quality of the edits should be further improved. The presented
proof of concept used blobs, corner points and ridge points for editing the image. The
object recognition is however performed with different points, such as Harris Laplace
points and top points of the Laplacian. It should be further investigated if the interest
points used for editing are also suitable for matching. The reconstruction algorithm is
currently being improved by including boundary conditions and a way to have a pre-
scribed boundary as a constraint for the reconstruction [7]. This makes it possible to
extract a region from an image, perform some edits, make a reconstruction and finally
a seamless integration back into the image can be performed. The reconstruction will
also be improved by including different types of constraints and filters. For example the
gray-scale flow of a certain area or line features opposed to single points. The mask-
ing presented in the proof of concept is relatively poor. Better masking methods (for
example the one described by Kar-Han Tan [128]) is likely to improve the quality sub-
stantially. Also the way of combining derivatives of points near boundaries (used as
constraints for the reconstruction) should be investigated more carefully. The method
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used in this chapter is rather ad-hoc and in some cases causes stability problems in
the reconstruction. Another important aspect that prevents the current algorithms to
be used in real-life applications is the speed of the calculations and the memory con-
sumption. This has not been a major concern during this research, but some comments
can be made. The scale space interest point detection algorithm and the reconstruction
algorithms can be implemented on a parallel machine in a very efficient way (mostly
convolutions are used). Therefore a hardware implementation using fpga’s could im-
prove speed with a few orders of magnitude compared to our current Mathematica and
C++ implementations. Also having the fast increasing capabilities of modern computers
in mind, using the algorithms for real-life applications should be possible in the near
future. Finally an extension to color images is necessary for many real-life applications.
This can be done in a simple way, dividing the image into the basic colors red, green
and blue and handling everything separately, or using more sophisticated methods to
create color interest points and color features for editing and reconstruction.
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7.1 Summary

Since the introduction of digital images, image editing with a computer is used to manip-
ulate the contents of an image. Nowadays editing digital images such as pictures from a
digital camera has become a daily practice for many professional photographers and even
consumers often edit the pictures from their digital cameras. Many of today’s commonly
used image editing packages such as Adobe PhotoShopTM are still based on the direct
manipulation of pixels or groups of pixels in the image. However, for some operations an
object-based approach to edit images is preferred. For example to automatically replace
apples in a scene with pears it is necessary for the computer program to have a more
abstract representation than the raw pixel data alone. In this thesis a framework is
presented based on a different representation of images that is one more step towards
object-based image editing. The representation used in this thesis is based on scale
space theory, which is the theory of apertures, through which we and machines observe
the world. For computer vision systems, the notion of aperture can be introduced as
blurring the high resolution image with a kernel of a certain width. Scale space theory
also makes it possible to look at (spatial) derivatives of the image in a mathematically
well posed way. It is shown that the human front end visual system takes derivatives
up to at least 4th order at various scales. It seems that the differential structure of an
image is important to detect objects, for humans as well as for machines.

In chapter 2 the α-scale space of an image is introduced, a more general class of scale
spaces of which the well known Gaussian scale space is a special case. One problem with
the α-scale space is that there is no closed form expression for the α-kernel (for general
α) in the spatial domain, only in the Fourier domain. However, in some cases a spatial
implementation is preferred instead of a Fourier implementation. In chapter 2 we present
an approximation of the α-kernel in the spatial domain that is implemented in a novel
software package called ScaleSpaceViz, that is created for calculation and visualization
of general scale spaces, among which α-scale spaces. The main purpose of this software
package is exploration of the scale space of an image. Special points exist in a scale
space of an image, so called scale space interest points which can also be visualized
in ScaleSpaceViz. These points represent the image quite well and can be used for
image matching and image reconstruction. In this thesis the scale space interest point
representation of an image plays a key role in the journey towards object-based image
editing.

In chapter 3 we compare three image reconstruction algorithms that can be used to
reconstruct an image from scale space interest points. The first reconstruction algorithm
is simple to implement, but does not yield visually attractive results if the number of
constraints is low. The second algorithm uses a different prior that smoothes the image,
which results in visually more attractive images for reconstructions with a low number
of constraints. This method however uses an iterative implementation that is computa-
tionally more expensive. For the third reconstruction algorithm, we introduce a novel
algorithm that is computationally less expensive as the second algorithm (comparable
to the first algorithm), but results in images that are visually more attractive than the
first algorithm. Since less smoothing is used, the results are still a bit behind the results
from the second algorithm. Some practical notes on the implementation of all three
algorithms are also given in this chapter.

In order to compare reconstruction results in a reproducible manner, 34 objective
image quality measures are compared in chapter 4. This comparison shows that many
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image quality measures only resemble the human notion of image quality for single type
distortions (e.g. noise or blocking artifacts) and are not suitable to compare images that
have as many different types of distortion as image reconstructions from different types
of scale space interest points. Only some of the more complex human visual system
based image quality measures are able to simulate the human notion of image quality
for this type of images. In chapter 4 we propose a novel image quality measure based on
scale space theory that is both simple and has a reasonable resemblance with the human
notion of image quality. The presented method outperforms simple mathematical image
quality measures and has similar results as more complex human visual system based
methods.

In chapter 5, 10 different types of scale space interest points are compared with re-
spect to image reconstruction. This comparison is performed on two image databases;
the first set contains 8.000 random image patches from the van Hateren database of
natural images and the second test set contains 12 downsized images of various subjects
taken with a digital camera. For all images in both test sets, 10 types of scale space in-
terest points are calculated and reconstructions are made from all these point sets. The
results are evaluated using the best image quality measures from chapter 4. It is shown
that some interest points are more suitable for image reconstruction than others. More
specifically, corner points, blobs and ridge points are suitable for image reconstruction,
while for example top points and scale space saddles are less suitable for image recon-
struction. Most points are ordered by their strength, which is different for each type of
interest point. This makes combining different types of interest points difficult. In chap-
ter 5 we propose an optimization framework for selecting scale space interest points for
image reconstruction using canonical sets of scale space features. The feature selection
problems is formulated as a quadratic optimization and an approximation algorithm for
its solution is presented. Experimental results show improved performance over ranking
the points in the combined point set with the TV-norm, which works well for single type
scale space interest points.

In chapter 6 we present a feasibility study on the useability of the scale space interest
point representation for image editing. In previous work by others it is shown that scale
space interest points are suitable for image matching, e.g. finding an object in a complex
scene given a reference object. In this thesis we showed that scale space interest points
can be used for image reconstruction and moreover we showed in chapter 6 that by
manipulation of the scale space interest points the image can be manipulated. Since the
scale space interest point representation is suitable for grouping structure into objects,
image editing can be performed at object level rather than pixel level. A number of
possible applications is given in the fields of photo editing, photo synthesis, company
advertisement, animation, morphing and medical applications. Despite the fact that
much more further research is necessary to realize these applications, this thesis provides
one more step towards object-based image editing.

7.2 Future research

To reach the goal of true object-based image editing using the presented framework,
more research needs to be performed. The scale space interest points as described
in this thesis are all obtained in a Gaussian scale space. Scale space interest points
obtained from α-scale spaces (for general α) should be investigated. Considering α as an
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additional dimension could introduce additional interest points. More research about the
reconstruction algorithms could lead to improved visual quality of image reconstructions
from scale space interest points, for example improving the boundary conditions and
improving the stability of the implementation. Also adding different types of constraints
(e.g. lines or areas instead of points) could lead to improved image quality. Adapting
the features to the points used for reconstruction (especially for mixed types of scale
space interest points) could also improve image quality while reducing the total amount
of information used for the reconstruction. For objective comparison of reconstructions
the presented error measure has to be further improved. More experiments using human
observers should be performed to evaluate the new objective error measure. When the
visual quality of reconstructions from scale space interest points has reached a level
that humans can hardly see the difference between original and reconstruction, the
way is open to perform image editing using reconstruction from scale space interest
points. A major challenge will be the definition of the edits on the point set. Scale space
interest points have been proven to be useful for image matching, but a clear hierarchical
grouping of the scale space interest points into objects in a scene is not yet presented.
Further research about grouping of scale space interest points in a complex scene will
be crucial for true object-based image editing. Once this grouping is possible, edits on
the groups and separate points can be defined. Problems like seamless integration of
the objects and filling in holes in the image can be solved afterwards using some of the
hints presented in chapter 6. The problem of true object-based image editing will be an
interesting topic of research for many years to come.
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A.1 Introduction

This appendix shows the results of the image error measures presented in chapter 4.
First a set of original and degraded images were presented to 33 volunteers and all
were asked to order the degraded images from best (1) to worse (9). The results of
this experiment are shown in figure 4.2. Appendix B shows an enlarged version of the
ordered image sets for viewing purposes. All described error measures were used to
calculate the errors between the degraded and original images. The graphs in the next
section show the results. An example is given in figure A.1 for the Mean Squared Error
(MSE). On the horizontal axis the (degraded) image number is shown. The ordering is
the same as the human observer ordering. On the vertical axis the corresponding error
is shown. Note that some measures present the similarity or correlation rather than the
error. If an error measure resembles the human observer results well, one should expect
a monotonically increasing or decreasing trend. In figure A.1 one can see that for the
Russia set (which is a control set that has only one type of degradation) the MSDE
shows indeed an increasing trend. However, for the other sets this is not the case. The
graphs in the next section are similar and show the results for all error measures. In the
caption the name of the error measure, the corresponding section in chapter 4 as well as
the choice of parameters, if present, can be found.
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Figure A.1: Example: MSE (Section 4.2.1.1).
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Figure A.2: MSE (Section 4.2.1.1).
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Figure A.3: RMSE (Section 4.2.1.2).
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Figure A.4: RRMSE (Section 4.2.1.3).
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Figure A.5: MI (Section 4.2.1.4).
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Figure A.6: SNR (Section 4.2.1.5).
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Figure A.7: PSNR (Section 4.2.1.6).
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Figure A.8: MAD (Section 4.2.1.7).
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Figure A.9: RMAD (Section 4.2.1.8).
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Figure A.10: MAE (Section 4.2.1.9).
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Figure A.11: Lp with p = 1 (Section 4.2.1.10).
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Figure A.12: Lp with p = 2 (Section 4.2.1.10).
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Figure A.13: Lp with p = 4 (Section 4.2.1.10).



A.2 Image Error Results 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

L600 (Einstein)

L600 (Lena)

L600 (Scotland)

L600 (Russia)

Error

Image number

Figure A.14: Lp with p = 600 (Section 4.2.1.10).
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Figure A.15: MMIM with r = 1 (Section 4.2.1.11).
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Figure A.16: MMIM with r = 5 (Section 4.2.1.11).
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Figure A.17: MMIM with r = 10 (Section 4.2.1.11).
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Figure A.18: MMIM with r = 100 (Section 4.2.1.11).
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Figure A.19: ND with w = 3, α = 256, β = 1 (Section 4.2.1.12).
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Figure A.20: ND with w = 5, α = 256, β = 1 (Section 4.2.1.12).
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Figure A.21: ND with w = 3, α = 64, β = 1 (Section 4.2.1.12).
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Figure A.22: ND with w = 5, α = 64, β = 1 (Section 4.2.1.12).
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Figure A.23: MDM (Section 4.2.1.13).
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Figure A.24: SC (Section 4.2.1.14).
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Figure A.25: NCC (Section 4.2.1.15).
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Figure A.26: PM with σ = 1, α = 0.3, β = 1 (Section 4.2.1.16).
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Figure A.27: PM with σ = 2, α = 0.3, β = 1 (Section 4.2.1.16).
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Figure A.28: PM with σ = 4, α = 0.3, β = 1 (Section 4.2.1.16).
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Figure A.29: PM with σ = 1, α = 0.2, β = 1 (Section 4.2.1.16).
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Figure A.30: PM with σ = 2, α = 0.2, β = 1 (Section 4.2.1.16).
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Figure A.31: PM with σ = 4, α = 0.2, β = 1 (Section 4.2.1.16).
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Figure A.32: PM with σ = 1, α = 0.4, β = 1 (Section 4.2.1.16).
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Figure A.33: PM with σ = 2, α = 0.4, β = 1 (Section 4.2.1.16).
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Figure A.34: PM with σ = 4, α = 0.4, β = 1 (Section 4.2.1.16).
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Figure A.35: ESM (Section 4.2.1.17).
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Figure A.36: SMD (Section 4.2.1.18).
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Figure A.37: SPD (Section 4.2.1.19).
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Figure A.38: WSD with γ = 0.1 (Section 4.2.1.20).
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Figure A.39: WSD with γ = 0.3 (Section 4.2.1.20).
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Figure A.40: WSD with γ = 0.5 (Section 4.2.1.20).
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Figure A.41: WSD with γ = 0.7 (Section 4.2.1.20).
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Figure A.42: WSD with γ = 0.9 (Section 4.2.1.20).
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Figure A.43: MSMBD with blocksize b = 4 (Section 4.2.1.21).
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Figure A.44: MSMBD with blocksize b = 8 (Section 4.2.1.21).
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Figure A.45: MSMBD with blocksize b = 16 (Section 4.2.1.21).
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Figure A.46: MSMBD with blocksize b = 32 (Section 4.2.1.21).
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Figure A.47: MSPBD with blocksize b = 4 (Section 4.2.1.22).
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Figure A.48: MSPBD with blocksize b = 8 (Section 4.2.1.22).
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Figure A.49: MSPBD with blocksize b = 16 (Section 4.2.1.22).
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Figure A.50: MSPBD with blocksize b = 32 (Section 4.2.1.22).
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Figure A.51: MWSBD with blocksize b = 4, γ = 0.2 (Section 4.2.1.23).
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Figure A.52: MWSBD with blocksize b = 8, γ = 0.2 (Section 4.2.1.23).
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Figure A.53: MWSBD with blocksize b = 16, γ = 0.2 (Section 4.2.1.23).
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Figure A.54: MWSBD with blocksize b = 32, γ = 0.2 (Section 4.2.1.23).
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Figure A.55: MWSBD with blocksize b = 4, γ = 0.5 (Section 4.2.1.23).
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Figure A.56: MWSBD with blocksize b = 8, γ = 0.5 (Section 4.2.1.23).
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Figure A.57: MWSBD with blocksize b = 16, γ = 0.5 (Section 4.2.1.23).
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Figure A.58: MWSBD with blocksize b = 32, γ = 0.5 (Section 4.2.1.23).



152 A.2 Image Error Results

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 3 4 5 6 7 8 9

MWSBD9 (Einstein)

MWSBD9 (Lena)

MWSBD9 (Scotland)

MWSBD9 (Russia)

Error

Image number

Figure A.59: MWSBD with blocksize b = 4, γ = 0.8 (Section 4.2.1.23).
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Figure A.60: MWSBD with blocksize b = 8, γ = 0.8 (Section 4.2.1.23).
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Figure A.61: MWSBD with blocksize b = 16, γ = 0.8 (Section 4.2.1.23).
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Figure A.62: MWSBD with blocksize b = 32, γ = 0.8 (Section 4.2.1.23).
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Figure A.63: S1 with p = 1 (Section 4.2.1.24).
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Figure A.64: S1 with p = 2 (Section 4.2.1.24).
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Figure A.65: S1 with p = 4 (Section 4.2.1.24).
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Figure A.66: S1 with p = 10 (Section 4.2.1.24).
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Figure A.67: S3 (Section 4.2.1.24).



A.2 Image Error Results 155

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

OHSMH11 (Einstein)

OHSMH11 (Lena)

OHSMH11 (Scotland)

OHSMH11 (Russia)

Similarity

Image number

Figure A.68: H1 with p = 1 (Section 4.2.1.25).
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Figure A.69: H1 with p = 2 (Section 4.2.1.25).
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Figure A.70: H1 with p = 4 (Section 4.2.1.25).
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Figure A.71: H1 with p = 10 (Section 4.2.1.25).
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Figure A.72: H3 (Section 4.2.1.25).
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Figure A.73: Q1 with p = 1 (Section 4.2.1.26).
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Figure A.74: Q1 with p = 2 (Section 4.2.1.26).
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Figure A.75: Q1 with p = 4 (Section 4.2.1.26).
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Figure A.76: Q1 with p = 10 (Section 4.2.1.26).
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Figure A.77: Q3 (Section 4.2.1.26).
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Figure A.78: UIQI (Section 4.2.1.27).
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Figure A.79: MSV D with blocksize b = 2 (Section 4.2.1.28).
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Figure A.80: MSV D with blocksize b = 4 (Section 4.2.1.28).
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Figure A.81: MSV D with blocksize b = 8 (Section 4.2.1.28).
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Figure A.82: MSV D with blocksize b = 16 (Section 4.2.1.28).
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Figure A.83: MSV D with blocksize b = 32 (Section 4.2.1.28).
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Figure A.84: GWSB-PSNR with blocksize b = 2 (Section 4.2.1.29).
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Figure A.85: GWSB-PSNR with blocksize b = 4 (Section 4.2.1.29).
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Figure A.86: GWSB-PSNR with blocksize b = 8 (Section 4.2.1.29).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5 6 7 8 9

GWSBPSNR4 (Einstein)

GWSBPSNR4 (Lena)

GWSBPSNR4 (Scotland)

GWSBPSNR4 (Russia)

Similarity

Image number

Figure A.87: GWSB-PSNR with blocksize b = 16 (Section 4.2.1.29).
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Figure A.88: GWSB-PSNR with blocksize b = 32 (Section 4.2.1.28).
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Figure A.89: FIM (Section 4.2.1.30).
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Figure A.90: IQE (Section 4.2.1.31).
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Figure A.91: MSDE with σ1 = 0.6 (Section 4.2.2).
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Figure A.92: MSDE with σ1 = 1.4 (Section 4.2.2).
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Figure A.93: MSDE with σ1 = 3.1 (Section 4.2.2).
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Figure A.94: FMSDE with α = 0 (Section 4.2.2).
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Figure A.95: FMSDE with α = 1 (Section 4.2.2).
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Figure A.96: FMSDE with α = 4 (Section 4.2.2).
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Figure A.97: DCTune 2.0 (Section 4.2.3.1).
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Figure A.98: SSIM (Section 4.2.3.2).
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Figure A.99: Quality Assesser v2.0 (Section 4.2.3.3).
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Figure B.1: Test images for the experiments of chapter 4, ordered by human observers.
The large images represent the originals, the small images are degraded images rated
from best to worse respectively averaged over 33 human observers.
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250 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 141 strongest Scale Space Saddles.

87 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.1: Interest points of the boat.jpg image projected on the original image. The
size of the circles represent the scale of the interest points. Maximum 250 points of each
set are shown for the sake of clarity.



C. Interest Points of Test Images 171

239 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 199 strongest Ridge points. 93 strongest Scale Space Saddles.

110 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.2: Interest points of the butterfly.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.



172 C. Interest Points of Test Images

169 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 241 strongest Ridge points. 74 strongest Scale Space Saddles.

49 strongest Harris Laplace points. 250 strongest Hessian Blobs. 160 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.3: Interest points of the canada1.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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250 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 192 strongest Ridge points. 101 strongest Scale Space Saddles.

77 strongest Harris Laplace points. 250 strongest Hessian Blobs. 145 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.4: Interest points of the canada2.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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166 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 38 strongest Scale Space Saddles.

110 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.5: Interest points of the hawaii1.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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176 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 58 strongest Scale Space Saddles.

113 strongest Harris Laplace points. 250 strongest Hessian Blobs. 167 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.6: Interest points of the hawaii2.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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164 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 44 strongest Scale Space Saddles.

161 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.7: Interest points of the lilly.jpg image projected on the original image. The
size of the circles represent the scale of the interest points. Maximum 250 points of each
set are shown for the sake of clarity.
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238 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 124 strongest Scale Space Saddles.

84 strongest Harris Laplace points. 250 strongest Hessian Blobs. 168 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.8: Interest points of the model.jpg image projected on the original image. The
size of the circles represent the scale of the interest points. Maximum 250 points of each
set are shown for the sake of clarity.
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250 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 216 strongest Ridge points. 144 strongest Scale Space Saddles.

125 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.9: Interest points of the prague.jpg image projected on the original image. The
size of the circles represent the scale of the interest points. Maximum 250 points of each
set are shown for the sake of clarity.
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250 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 186 strongest Ridge points. 130 strongest Scale Space Saddles.

116 strongest Harris Laplace points. 250 strongest Hessian Blobs. 250 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.10: Interest points of the russia1.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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250 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 135 strongest Scale Space Saddles.

155 strongest Harris Laplace points. 250 strongest Hessian Blobs. 224 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.11: Interest points of the russia2.jpg image projected on the original image.
The size of the circles represent the scale of the interest points. Maximum 250 points of
each set are shown for the sake of clarity.
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173 strongest Top points. 250 strongest Laplacian Top points.

250 strongest Laplacian Blobs. 250 strongest Ridge points. 59 strongest Scale Space Saddles.

58 strongest Harris Laplace points. 250 strongest Hessian Blobs. 224 strongest Hessian Laplace points.

Original image 250 strongest Corner points. 250 strongest Edge points.

Figure C.12: Interest points of the tulip.jpg image projected on the original image. The
size of the circles represent the scale of the interest points. Maximum 250 points of each
set are shown for the sake of clarity.
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266 top points 400 top points Laplacian

400 Laplacian Blobs points 274 ridge points 141 scale space saddles

87 Harris Laplace points 400 Hessian Blobs points 281 Hessian Laplace points

Original image 350 corner points 400 edge points

Figure D.1: Reconstructions of the boat.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0111 0.7431 0.0018 0.0338 0.0135 76.3530
(597)(400)

Hessian blobs 0.0103 0.7693 0.0018 0.0286 0.0124 77.9910
(994)(400)

Ridge points 0.0164 0.5942 0.0029 0.0475 0.0168 69.4360
(274)(274)

Corner points 0.0134 0.7005 0.0024 0.0410 0.0146 68.4570
(350)(350)

Edge points 0.0263 0.4819 0.0049 0.0543 0.0233 67.3380
(4563)(400)

Hessian Laplace 0.0189 0.6464 0.0029 0.0385 0.0168 73.4610
points
(281)(281)

Top points 0.0150 0.5792 0.0032 0.0410 0.0149 69.1210
(266)(266)

Top points of the 0.0094 0.7837 0.0017 0.0283 0.0115 78.9700
Laplacian
(853)(400)

Scale space 0.0276 0.3866 0.0066 0.0662 0.0239 57.2330
saddles
(141)(141)

Harris Laplace 0.0408 0.3432 0.0085 0.0727 0.0362 58.8890
points (87)(87)

Table D.1: Error measures of reconstructions from scale space interest points for the
boat.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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239 top points 400 top points Laplacian

400 Laplacian Blobs points 199 ridge points 93 scale space saddles

110 Harris Laplace points 400 Hessian Blobs points 300 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.2: Reconstructions of the butterfly.jpg image for 10 different types of scale
space interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0088 0.7372 0.0021 0.0272 0.0130 82.3160
(523)(400)

Hessian blobs 0.0083 0.7660 0.0020 0.0283 0.0132 80.7660
(878)(400)

Ridge points 0.0296 0.3731 0.0072 0.0583 0.0283 64.0660
(199)(199)

Corner points 0.0122 0.5931 0.0035 0.0334 0.0151 75.1050
(404)(400)

Edge points 0.0278 0.4445 0.0048 0.0591 0.0332 65.2900
(4225)(400)

Hessian Laplace 0.0300 0.5318 0.0053 0.0546 0.0308 66.8880
points
(300)(300)

Top points 0.0180 0.6246 0.0050 0.0441 0.0196 71.4070
(239)(239)

Top points of the 0.0080 0.7682 0.0021 0.0266 0.0121 82.2490
Laplacian
(929)(400)

Scale space 0.0563 0.2203 0.0117 0.0989 0.0415 50.1760
saddles (93)(93)

Harris Laplace 0.0614 0.3924 0.0110 0.0858 0.0487 55.8290
points
(110)(110)

Table D.2: Error measures of reconstructions from scale space interest points for the
butterfly.jpg image using a maximum of 400 interest points per reconstruction. The
first number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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169 top points 400 top points Laplacian

400 Laplacian Blobs points 241 ridge points 74 scale space saddles

49 Harris Laplace points 400 Hessian Blobs points 160 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.3: Reconstructions of the canada1.jpg image for 10 different types of scale
space interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0040 0.8118 0.0007 0.0228 0.0109 85.6280
(536)(400)

Hessian blobs 0.0027 0.8761 0.0004 0.0189 0.0098 90.1250
(933)(400)

Ridge points 0.0076 0.6513 0.0015 0.0327 0.0133 83.6950
(241)(241)

Corner points 0.0051 0.7561 0.0009 0.0266 0.0107 84.3610
(558)(400)

Edge points 0.0111 0.4250 0.0012 0.0376 0.0177 81.2000
(3937)(400)

Hessian Laplace 0.0079 0.6500 0.0012 0.0354 0.0168 84.1650
points
(160)(160)

Top points 0.0176 0.4412 0.0026 0.0578 0.0216 71.6170
(169)(169)

Top points of the 0.0042 0.7668 0.0006 0.0234 0.0103 85.3610
Laplacian
(867)(400)

Scale space 0.1007 0.1527 0.0074 0.1129 0.0625 61.3770
saddles (74)(74)

Harris Laplace 0.0567 0.3493 0.0060 0.0802 0.0459 70.3000
points (49)(49)

Table D.3: Error measures of reconstructions from scale space interest points for the
canada1.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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252 top points 400 top points Laplacian

400 Laplacian Blobs points 192 ridge points 101 scale space saddles

77 Harris Laplace points 400 Hessian Blobs points 145 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.4: Reconstructions of the canada2.jpg image for 10 different types of scale
space interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0054 0.7957 0.0009 0.0187 0.0092 84.5200
(554)(400)

Hessian blobs 0.0049 0.8122 0.0010 0.0201 0.0091 84.6950
(1005)(400)

Ridge points 0.0108 0.4860 0.0025 0.0328 0.0149 74.5190
(192)(192)

Corner points 0.0067 0.7651 0.0012 0.0251 0.0107 79.3320
(440)(400)

Edge points 0.0283 0.2407 0.0026 0.0547 0.0413 60.8650
(4260)(400)

Hessian Laplace 0.0339 0.3573 0.0043 0.0583 0.0319 65.5800
points
(145)(145)

Top points 0.0180 0.5511 0.0018 0.0329 0.0229 79.2960
(252)(252)

Top points of the 0.0048 0.7965 0.0010 0.0171 0.0073 85.2090
Laplacian
(955)(400)

Scale space 0.0485 0.3431 0.0045 0.0708 0.0444 61.8570
saddles
(101)(101)

Harris Laplace 0.0375 0.2673 0.0052 0.0728 0.0383 61.2010
points (77)(77)

Table D.4: Error measures of reconstructions from scale space interest points for the
canada2.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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166 top points 400 top points Laplacian

400 Laplacian Blobs points 355 ridge points 38 scale space saddles

110 Harris Laplace points 400 Hessian Blobs points 304 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.5: Reconstructions of the hawaii1.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0056 0.8255 0.0014 0.0227 0.0105 87.2130
(521)(400)

Hessian blobs 0.0051 0.8370 0.0012 0.0210 0.0089 87.8450
(907)(400)

Ridge points 0.0101 0.7183 0.0022 0.0326 0.0126 82.2030
(355)(355)

Corner points 0.0079 0.7825 0.0015 0.0294 0.0133 85.7730
(480)(400)

Edge points 0.0364 0.5970 0.0051 0.0799 0.0439 72.0990
(5068)(400)

Hessian Laplace 0.0237 0.6991 0.0034 0.0443 0.0288 77.3090
points
(304)(304)

Top points 0.0173 0.6158 0.0039 0.0545 0.0190 72.6950
(166)(166)

Top points of the 0.0051 0.8697 0.0011 0.0211 0.0095 87.0820
Laplacian
(793)(400)

Scale space 0.0796 0.1482 0.0174 0.1312 0.0496 45.3280
saddles (38)(38)

Harris Laplace 0.0393 0.4530 0.0090 0.0753 0.0398 67.3930
points
(110)(110)

Table D.5: Error measures of reconstructions from scale space interest points for the
hawaii1.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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176 top points 400 top points Laplacian

400 Laplacian Blobs points 285 ridge points 58 scale space saddles

113 Harris Laplace points 400 Hessian Blobs points 167 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.6: Reconstructions of the hawaii2.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0187 0.6312 0.0012 0.0282 0.0109 81.1880
(494)(400)

Hessian blobs 0.0175 0.6805 0.0013 0.0287 0.0116 80.2410
(915)(400)

Ridge points 0.0218 0.5134 0.0019 0.0364 0.0138 74.3190
(285)(285)

Corner points 0.0190 0.6107 0.0014 0.0318 0.0122 78.8650
(446)(400)

Edge points 0.0255 0.3222 0.0035 0.0475 0.0206 63.8130
(4041)(400)

Hessian Laplace 0.0408 0.4551 0.0022 0.0474 0.0294 67.9910
points
(167)(167)

Top points 0.0466 0.4064 0.0050 0.0686 0.0344 68.7340
(176)(176)

Top points of the 0.0182 0.6767 0.0013 0.0291 0.0113 81.1940
Laplacian
(819)(400)

Scale space 0.0722 0.2332 0.0085 0.0877 0.0435 56.2540
saddles (58)(58)

Harris Laplace 0.0401 0.4070 0.0038 0.0588 0.0262 65.8030
points
(113)(113)

Table D.6: Error measures of reconstructions from scale space interest points for the
hawaii2.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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164 top points 400 top points Laplacian

400 Laplacian Blobs points 285 ridge points 44 scale space saddles

161 Harris Laplace points 400 Hessian Blobs points 400 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.7: Reconstructions of the lilly.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0120 0.8082 0.0020 0.0389 0.0150 83.5630
(606)(400)

Hessian blobs 0.0129 0.7865 0.0025 0.0373 0.0150 82.8010
(886)(400)

Ridge points 0.0259 0.6905 0.0059 0.0607 0.0229 74.1730
(285)(285)

Corner points 0.0150 0.8035 0.0029 0.0463 0.0186 81.3430
(458)(400)

Edge points 0.0508 0.4721 0.0094 0.0908 0.0397 62.5090
(4369)(400)

Hessian Laplace 0.0258 0.7251 0.0041 0.0596 0.0317 75.2750
points
(532)(400)

Top points 0.0423 0.4858 0.0134 0.0858 0.0286 63.2620
(164)(164)

Top points of the 0.0142 0.8050 0.0027 0.0390 0.0167 82.7400
Laplacian
(750)(400)

Scale space 0.3375 0.1469 0.0405 0.2391 0.0979 22.8830
saddles (44)(44)

Harris Laplace 0.1024 0.4559 0.0226 0.1362 0.0577 48.4710
points
(161)(161)

Table D.7: Error measures of reconstructions from scale space interest points for the
lilly.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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238 top points 400 top points Laplacian

400 Laplacian Blobs points 299 ridge points 124 scale space saddles

84 Harris Laplace points 400 Hessian Blobs points 168 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.8: Reconstructions of the model.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0049 0.7524 0.0007 0.0216 0.0100 85.9570
(479)(400)

Hessian blobs 0.0045 0.8140 0.0007 0.0201 0.0096 86.5980
(859)(400)

Ridge points 0.0069 0.6975 0.0015 0.0291 0.0126 81.0600
(299)(299)

Corner points 0.0049 0.8382 0.0008 0.0212 0.0099 86.4490
(421)(400)

Edge points 0.0218 0.4947 0.0032 0.0586 0.0323 67.4680
(4745)(400)

Hessian Laplace 0.0221 0.6426 0.0021 0.0412 0.0249 70.6120
points
(168)(168)

Top points 0.0107 0.5173 0.0017 0.0395 0.0169 78.0540
(238)(238)

Top points of the 0.0052 0.7878 0.0009 0.0223 0.0105 85.2000
Laplacian
(915)(400)

Scale space 0.0344 0.2769 0.0064 0.0788 0.0294 57.2580
saddles
(124)(124)

Harris Laplace 0.0212 0.4438 0.0031 0.0542 0.0256 67.7230
points (84)(84)

Table D.8: Error measures of reconstructions from scale space interest points for the
model.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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347 top points 400 top points Laplacian

400 Laplacian Blobs points 216 ridge points 144 scale space saddles

125 Harris Laplace points 400 Hessian Blobs points 400 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.9: Reconstructions of the prague.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0905 0.6028 0.0166 0.0534 0.0220 60.0740
(704)(400)

Hessian blobs 0.0882 0.5520 0.0144 0.0549 0.0232 58.3590
(1204)(400)

Ridge points 0.1354 0.4006 0.0318 0.0983 0.0372 47.0680
(216)(216)

Corner points 0.0964 0.5854 0.0171 0.0611 0.0244 60.1090
(423)(400)

Edge points 0.1288 0.3108 0.0233 0.1214 0.0534 40.2640
(5269)(400)

Hessian Laplace 0.1286 0.5154 0.0265 0.1065 0.0411 52.0940
points
(677)(400)

Top points 0.0943 0.6478 0.0182 0.0558 0.0234 63.4130
(347)(347)

Top points of the 0.0862 0.5738 0.0173 0.0550 0.0222 60.1900
Laplacian
(1074)(400)

Scale space 0.1458 0.3411 0.0356 0.1187 0.0458 40.9220
saddles
(144)(144)

Harris Laplace 0.1736 0.2271 0.0378 0.1273 0.0505 32.1460
points
(125)(125)

Table D.9: Error measures of reconstructions from scale space interest points for the
prague.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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317 top points 400 top points Laplacian

400 Laplacian Blobs points 186 ridge points 130 scale space saddles

116 Harris Laplace points 400 Hessian Blobs points 348 Hessian Laplace points

Original image 350 corner points 400 edge points

Figure D.10: Reconstructions of the russia1.jpg image for 10 different types of scale
space interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0204 0.6602 0.0037 0.0341 0.0139 72.7150
(616)(400)

Hessian blobs 0.0203 0.6840 0.0031 0.0347 0.0147 70.5440
(1028)(400)

Ridge points 0.0477 0.3518 0.0096 0.0756 0.0285 51.8450
(186)(186)

Corner points 0.0280 0.5020 0.0048 0.0441 0.0182 67.4210
(350)(350)

Edge points 0.0513 0.4058 0.0081 0.0726 0.0375 49.4990
(3973)(400)

Hessian Laplace 0.0320 0.5099 0.0052 0.0522 0.0298 58.6630
points
(348)(348)

Top points 0.0266 0.6565 0.0049 0.0441 0.0176 69.3920
(317)(317)

Top points of the 0.0215 0.6789 0.0039 0.0350 0.0143 71.4350
Laplacian
(924)(400)

Scale space 0.1069 0.3584 0.0169 0.1260 0.0594 43.1810
saddles
(130)(130)

Harris Laplace 0.0753 0.3077 0.0101 0.0887 0.0455 46.6790
points
(116)(116)

Table D.10: Error measures of reconstructions from scale space interest points for the
russia1.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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311 top points 400 top points Laplacian

400 Laplacian Blobs points 307 ridge points 135 scale space saddles

155 Harris Laplace points 400 Hessian Blobs points 224 Hessian Laplace points

Original image 400 corner points 400 edge points

Figure D.11: Reconstructions of the russia2.jpg image for 10 different types of scale
space interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0052 0.6871 0.0012 0.0206 0.0095 80.7700
(636)(400)

Hessian blobs 0.0044 0.7140 0.0011 0.0197 0.0092 80.2990
(1155)(400)

Ridge points 0.0091 0.5251 0.0017 0.0317 0.0139 74.1730
(307)(307)

Corner points 0.0057 0.6685 0.0014 0.0236 0.0101 79.7480
(532)(400)

Edge points 0.0205 0.4313 0.0043 0.0609 0.0341 58.4070
(5431)(400)

Hessian Laplace 0.0130 0.4655 0.0029 0.0469 0.0231 61.6420
points
(224)(224)

Top points 0.0072 0.4524 0.0016 0.0280 0.0117 78.0440
(311)(311)

Top points of the 0.0047 0.7629 0.0012 0.0210 0.0095 80.7620
Laplacian
(885)(400)

Scale space 0.0148 0.3735 0.0030 0.0502 0.0182 63.3430
saddles
(135)(135)

Harris Laplace 0.0212 0.3545 0.0041 0.0558 0.0244 60.6710
points
(155)(155)

Table D.11: Error measures of reconstructions from scale space interest points for the
russia2.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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173 top points 400 top points Laplacian

400 Laplacian Blobs points 258 ridge points 59 scale space saddles

58 Harris Laplace points 400 Hessian Blobs points 224 Hessian Laplace points

Original image 367 corner points 400 edge points

Figure D.12: Reconstructions of the tulip.jpg image for 10 different types of scale space
interest points. Maximum 400 points of each set are used for reconstruction.
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Reconstruction MSE PM MSPBD MSDE FMSDE SSIM
from:

Laplacian blobs 0.0217 0.8017 0.0007 0.0289 0.0117 87.5410
(437)(400)

Hessian blobs 0.0201 0.8033 0.0008 0.0295 0.0121 88.0380
(727)(400)

Ridge points 0.0258 0.6694 0.0016 0.0433 0.0169 83.1960
(258)(258)

Corner points 0.0223 0.7221 0.0011 0.0348 0.0127 84.6800
(367)(367)

Edge points 0.0628 0.3946 0.0059 0.1050 0.0512 64.8240
(3706)(400)

Hessian Laplace 0.0678 0.6417 0.0028 0.0683 0.0400 71.8790
points
(224)(224)

Top points 0.0484 0.4426 0.0047 0.0786 0.0288 69.6960
(173)(173)

Top points of the 0.0192 0.8186 0.0008 0.0276 0.0120 88.1560
Laplacian
(896)(400)

Scale space 0.0771 0.2064 0.0114 0.1203 0.0481 55.5280
saddles (59)(59)

Harris Laplace 0.1340 0.2515 0.0116 0.1148 0.0682 54.3420
points (58)(58)

Table D.12: Error measures of reconstructions from scale space interest points for the
tulip.jpg image using a maximum of 400 interest points per reconstruction. The first
number behind the point type is the number of interest points detected, the second
number shows the number of points used for the reconstruction. Note that the PM and
the SSIM are similarity measures, while the others are error measures.
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Figure E.1: RMS and MSDE error of reconstructions from corner points with noise on
the position of the interest points with various standard deviation σ. The mean error is
taken over the 12 images of the second test set. The dashed line is the mean RMS error
of the unperturbed point set.
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Figure E.2: RMS and MSDE error of reconstructions from edge points with noise on
the position of the interest points with various standard deviation σ. The mean error is
taken over the 12 images of the second test set. The dashed line is the mean RMS error
of the unperturbed point set.
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Figure E.3: RMS and MSDE error of reconstructions from Harris Laplace points with
noise on the position of the interest points with various standard deviation σ. The mean
error is taken over the 12 images of the second test set. The dashed line is the mean
RMS error of the unperturbed point set.
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Figure E.4: RMS and MSDE error of reconstructions from Hessian blob points with
noise on the position of the interest points with various standard deviation σ. The mean
error is taken over the 12 images of the second test set. The dashed line is the mean
RMS error of the unperturbed point set.
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Figure E.5: RMS and MSDE error of reconstructions from Hessian Laplace points with
noise on the position of the interest points with various standard deviation σ. The mean
error is taken over the 12 images of the second test set. The dashed line is the mean
RMS error of the unperturbed point set.
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Figure E.6: RMS and MSDE error of reconstructions from Laplacian blob points with
noise on the position of the interest points with various standard deviation σ. The mean
error is taken over the 12 images of the second test set. The dashed line is the mean
RMS error of the unperturbed point set.
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Figure E.7: RMS and MSDE error of reconstructions from ridge points with noise on
the position of the interest points with various standard deviation σ. The mean error is
taken over the 12 images of the second test set. The dashed line is the mean RMS error
of the unperturbed point set.
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Figure E.8: RMS and MSDE error of reconstructions from scale space saddle points
with noise on the position of the interest points with various standard deviation σ. The
mean error is taken over the 12 images of the second test set. The dashed line is the
mean RMS error of the unperturbed point set.
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Figure E.9: RMS and MSDE error of reconstructions from top points with noise on the
position of the interest points with various standard deviation σ. The mean error is
taken over the 12 images of the second test set. The dashed line is the mean RMS error
of the unperturbed point set.
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Figure E.10: RMS and MSDE error of reconstructions from top points of the Laplacian
with noise on the position of the interest points with various standard deviation σ. The
mean error is taken over the 12 images of the second test set. The dashed line is the
mean RMS error of the unperturbed point set.
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Samenvatting

Digitale beelden nemen een steeds belangrijkere rol in de maatschappij in. Denk bijvoor-
beeld aan artsen die met behulp van computers bewerkte röntgen foto’s bekijken of het
bewerken van beelden van een digitale camera. Veel software pakketten gebruikt voor
beeldbewerking, zoals bijvoorbeeld Adobe PhotoShopTM, zijn gebaseerd op het direct
manipuleren van pixels (beeld elementen) of groepen daarvan. Echter voor sommige
toepassingen is deze pixel representatie van een beeld niet geschikt. Bijvoorbeeld voor
het vervangen van appels in een scène door peren is een representatie op object niveau
noodzakelijk. Momenteel is er geen enkel pakket beschikbaar dat beeldbewerking op
object niveau mogelijk maakt. Dit proefschrift beschrijft een alternatieve beeld repre-
sentatie gebaseerd op scale space theorie, die gebruikt kan worden om objecten in een
beeld te lokaliseren en die gebruikt kan worden om een beeld aan te passen. Hiermee
zetten we een nieuwe stap richting object gebaseerde beeldbewerking. De scale space
representatie van een beeld is gëınspireerd door het menselijk visueel systeem. Het men-
selijk visueel systeem bekijkt een beeld op verschillende schalen. Neem bijvoorbeeld een
beeldmozäıek, waarbij op een kleine afstand (lage schaal) elk detail goed te zien is, maar
het grote geheel niet, terwijl op een grote afstand (hoge schaal) het grote geheel goed
te zien is, maar de details niet. Omdat van te voren niet bekend is in welke schaal we
gëınteresseerd zijn, dienen alle schalen tegelijk te worden beschouwd. In de beeldbe-
werking wordt het effect van schaal gemaakt door een beeld te vervagen. Het is ook
aangetoond dat het menselijk visueel systeem tot 4e orde spatiële afgeleiden neemt van
een beeld op verschillende schalen. Het blijkt dat dit belangrijk is voor het detecteren
van objecten, zowel voor mensen als voor computer systemen.

In hoofdstuk 2 wordt de zogenaamde α-scale space gëıntroduceerd, een klasse van
scale spaces waarvan de bekende Gaussische scale space een specifiek geval is (namelijk
α = 1). Een probleem bij deze α-scale space is dat er geen uitdrukking bestaat voor
de α-kern in het spatiële domein voor algemene α, alleen in het Fourier domein bestaat
een dergelijke uitdrukking. Omdat in de praktijk de spatiële kern vaak wordt gebruikt,
presenteren we in hoofdstuk 2 een benadering van de α-kern in het spatiële domein voor
algemene α. Deze benadering is gëımplementeerd in een programma, ScaleSpaceViz
genaamd. ScaleSpaceViz is bedoeld voor het uitrekenen en visualiseren van α-scale
spaces, met name om een beter inzicht te krijgen in de verschillende speciale punten
die zich in een α-scale space bevinden. Deze punten, zogenaamde “scale space interest
points”, bevatten informatie over een beeld en kunnen gebruikt worden om een beeld te
representeren. Het is aangetoond dat deze punten geschikt zijn voor het detecteren van
objecten in een beeld en gegeven deze representatie kan een redelijke benadering van het
oorspronkelijke beeld worden gemaakt. In dit proefschrift zal deze scale space interest
point representatie van een beeld een centrale rol innemen.

In hoofdstuk 3 worden drie reconstructie algoritmen met elkaar vergeleken. Deze
reconstructie algoritmen genereren, gegeven een aantal scale space interest points, een
benadering van het oorspronkelijke beeld waar de scale space punten van zijn uitge-
rekend. Het eerste algoritme is eenvoudig te implementeren, maar geeft een visueel
onaantrekkelijk resultaat dat niet veel lijkt op het oorspronkelijke beeld indien weinig
punten worden gebruikt voor de reconstructie. Het tweede algoritme probeert een glad
beeld te maken wat een veel aantrekkelijker resultaat oplevert. Deze methode gebruikt
echter een iteratieve implementatie die veel langzamer is. In hoofdstuk 3 presenteren we
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een algoritme dat het beeld glad maakt, maar toch eenvoudig en snel te implementeren
is. Het algoritme is net iets langzamer dan het eerste algoritme, maar de beeldkwaliteit
komt dicht bij het tweede algoritme.

Om de reconstructies van scale space punten met elkaar te kunnen vergelijken op
een reproduceerbare manier, zijn objectieve foutmaten nodig. In hoofdstuk 4 zijn 34
kwaliteitsmaten voor beelden met elkaar vergeleken aan de hand van een testset die
beoordeeld is door 33 personen. Uit de resultaten blijkt dat veel foutmaten redelijk
overeenkomen met de menselijke beoordelingen indien het om een enkele soort afwijking
gaat (b.v. ruis of jpeg artefacten). Slechts enkele, complexere foutmaten gebaseerd op
het menselijk visueel systeem, blijken ook geschikt voor het evalueren van beelden met
zeer diverse afwijkingen zoals bij beeld reconstructie. In hoofdstuk 4 presenteren we
een nieuwe foutmaat gebaseerd op scale space theorie, waarbij op verschillende schalen
naar spatiële afgeleiden van het beeld wordt gekeken. Deze foutmaat is wiskundig gezien
eenvoudig en volgt de menselijke beoordeling van de beelden redelijk, vergelijkbaar met
de meer complexe, visueel systeem gebaseerde methoden.

In hoofdstuk 5 worden 10 verschillende soorten scale space punten vergeleken met
betrekking tot de geschiktheid voor beeld reconstructie. De vergelijking is uitgevoerd
op twee datasets; de eerste set bestaat uit 8.000 willekeurige stukjes (van 64×64 pixels)
van beelden uit de van Hateren database voor natuurlijke beelden en de tweede dataset
bestaat uit 12 beelden gemaakt met een digitale camera. Voor alle beelden uit de twee
datasets zijn alle 10 verschillende soorten scale space punten berekend en er zijn recon-
structies gemaakt van al deze puntverzamelingen. De resultaten zijn geëvalueerd met
behulp van de in hoofdstuk 4 gëıntroduceerde foutmaten. Uit de resultaten blijkt dat
bepaalde punten, b.v. hoekpunten en blobs beter geschikt zijn voor beeld reconstructie
dan andere punten zoals b.v. top punten of scale space zadelpunten. De meeste punten
kunnen gerangschikt worden aan de hand van de sterkte van de punten. Echter, deze
sterkte is verschillend voor de verschillende soorten punten en kunnen vaak niet direct
met elkaar worden vergeleken. Het is daarom lastig om een zinvolle deelverzameling te
nemen van een set gecombineerde scale space punten. In hoofdstuk 5 wordt een nieuwe
methode gepresenteerd die gebruikt kan worden om een goede subset van gecombineer-
de scale space punten te vinden, rekening houdend met de sterkte van de punten en
de spatiële distributie van de punten. Resultaten laten zien dat deze methode betere
reconstructies oplevert dan een rangschikking van de gecombineerde punten aan de hand
van de sterkte alleen.

In hoofdstuk 6 presenteren we een haalbaarheids-studie voor het gebruik van de
scale space interest point representatie van een beeld voor beeldbewerking. In eerder
werk van verschillende auteurs is aangetoond dat scale space punten geschikt zijn voor
het detecteren van objecten in een complexe scène. In dit proefschrift is aangetoond
dat scale space punten ook gebruikt kunnen worden om de inhoud van beelden aan
te passen, door b.v. objecten uit een beeld te verwijderen, objecten in een beeld te
plaatsen of objecten te vervangen. Door het combineren van detectie van objecten en
het bewerken van beelden aan de hand van scale space punten, kunnen beelden op een
object niveau worden aangepast in plaats van op pixel niveau. Een aantal mogelijke
toepassingen op het gebied van beeldbewerking, beeldsynthese, advertenties, animatie
en medische toepassingen zijn gegeven in hoofdstuk 6. Hoewel nog veel extra onderzoek
nodig is om deze toepassingen te realiseren met het gepresenteerde raamwerk, heeft dit
proefschrift een extra stap richting object gebaseerde beeldbewerking gezet.
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