2,013 research outputs found

    Distributed Containment Control of Networked Fractional-Order Systems with Delay-Dependent Communications

    Get PDF
    This paper is concerned with a containment problem of networked fractional-order system with multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed protocol is proposed in delayed communication channels. By employing the algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically proved that the whole follower agents will flock to the convex hull which is formed by the leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is obtained. As a special case, the interconnection topology under the undirected case is also discussed. Finally, some numerical examples with simulations are presented to demonstrate the effectiveness and correctness of the theoretical results

    Hostile-based bipartite containment control of nonlinear fractional multi-agent systems with input delays: a signed graph approach under disturbance and switching networks

    Get PDF
    This article addresses the hostile-based bipartite containment control of nonlinear fractional multi-agent systems (FMASs) with input delays. Several fundamental algebraic criteria have been offered by the use of signed graph theory. To make the controller design more realistic, we assumed that the controller was under some disturbance. For the analysis of bipartite containment control, we used a fixed and switching signed network. The commonly used Lyapunov function approach and the Razumikhin technique were used. The use of these techniques can conquer the challenge brought on by switching, temporal delays, and fractional mathematics. To better elucidate the theoretical results, two examples are provided

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory

    Delay-Dependent Stability Region for the Distributed Coordination of Delayed Fractional-Order Multi-Agent Systems

    Get PDF
    Delay and especially delay in the transmission of agents’ information, is one of the most important causes of disruption to achieving consensus in a multi-agent system. This paper deals with achieving consensus in delayed fractional-order multi-agent systems (FOMAS). The aim in the present note is to find the exact maximum allowable delay in a FOMAS with non-uniform delay, i.e., the case in which the interactions between agents are subject to non-identical communication time-delays. By proving a stability theorem, the results available for non-delayed networked fractional-order systems are extended for the case in which interaction links have nonequal communication time-delays. In this extension by considering a time-delay coordination algorithm, necessary and sufficient conditions on the time delays and interaction graph are presented to guarantee the coordination. In addition, the delay-dependent stability region is also obtained. Finally, the dependency of the maximum allowable delay on two parameters, the agent fractional-order and the largest eigenvalue of the graph Laplacian matrix, is exactly determined. Numerical simulation results are given to confirm the proposed methodologies

    Multi-agent modeling of the South Korean avian influenza epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several highly pathogenic avian influenza (AI) outbreaks have been reported over the past decade. South Korea recently faced AI outbreaks whose economic impact was estimated to be 6.3 billion dollars, equivalent to nearly 50% of the profit generated by the poultry-related industries in 2008. In addition, AI is threatening to cause a human pandemic of potentially devastating proportions. Several studies show that a stochastic simulation model can be used to plan an efficient containment strategy on an emerging influenza. Efficient control of AI outbreaks based on such simulation studies could be an important strategy in minimizing its adverse economic and public health impacts.</p> <p>Methods</p> <p>We constructed a spatio-temporal multi-agent model of chickens and ducks in poultry farms in South Korea. The spatial domain, comprised of 76 (37.5 km Ă— 37.5 km) unit squares, approximated the size and scale of South Korea. In this spatial domain, we introduced 3,039 poultry flocks (corresponding to 2,231 flocks of chickens and 808 flocks of ducks) whose spatial distribution was proportional to the number of birds in each province. The model parameterizes the properties and dynamic behaviors of birds in poultry farms and quarantine plans and included infection probability, incubation period, interactions among birds, and quarantine region.</p> <p>Results</p> <p>We conducted sensitivity analysis for the different parameters in the model. Our study shows that the quarantine plan with well-chosen values of parameters is critical for minimize loss of poultry flocks in an AI outbreak. Specifically, the aggressive culling plan of infected poultry farms over 18.75 km radius range is unlikely to be effective, resulting in higher fractions of unnecessarily culled poultry flocks and the weak culling plan is also unlikely to be effective, resulting in higher fractions of infected poultry flocks.</p> <p>Conclusions</p> <p>Our results show that a prepared response with targeted quarantine protocols would have a high probability of containing the disease. The containment plan with an aggressive culling plan is not necessarily efficient, causing a higher fraction of unnecessarily culled poultry farms. Instead, it is necessary to balance culling with other important factors involved in AI spreading. Better estimations for the containment of AI spreading with this model offer the potential to reduce the loss of poultry and minimize economic impact on the poultry industry.</p

    Networked Convergence of Fractional-Order Multiagent Systems with a Leader and Delay

    Get PDF
    This paper investigates the convergence of fractional-order discrete-time multiagent systems with a leader and sampling delay by using Hermite-Biehler theorem and the change of bilinearity. It is shown that such system can achieve convergence depending on the sampling interval h, the fractional-order α, and the sampling delay τ and its interconnection topology. Finally, some numerical simulations are given to illustrate the results
    • …
    corecore