4,629 research outputs found

    Off-peak truck deliveries at container terminals: the 'Good Night' program in Israel

    Get PDF
    Purpose – Avoiding truck congestion and peaks in landside activity is one of the challenges to container terminal managers. The spreading of truck arrivals at terminals can be facilitated by widening the opening hours of terminals at the landside. Israel’s Ministry of Transport has instituted the “Good Night Program”, involving monetary incentives for importers and exporters who deliver containers to ports at night. Design/methodology/approach – This paper aims to quantitatively examine the market utility resulting from shifting traffic from daytime to nighttime, and analyzes customer considerations regarding nighttime transportation. Findings – The external utility found in the traffic-economics model is quite similar to the economic incentive given to customers. Therefore, a significant increase of the incentive is not feasible. Originality/value – Furthermore, it seems that an incentive method by itself is not effective enough, and does not motivate customers to act and find creative solutions to the obstacles they face. To achieve a considerable change in nighttime transport to Israeli ports, more effective methods should be examined

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Using Simulation to Assess the Opportunities of Dynamic Waste Collection

    Get PDF
    In this paper, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The Netherlands. Even though the underground containers are already equipped with motion sensors, the planning of container emptying’s is still based on static cyclic schedules. It is expected that the use of a dynamic planning methodology, that employs sensor information, will result in a more efficient collection process with respect to customer satisfaction, profits, and CO2 emissions. In this research we use simulation to (i) evaluate the current planning methodology, (ii) evaluate various dynamic planning possibilities, (iii) quantify the benefits of switching to a dynamic collection process, and (iv) quantify the benefits of investing in fill‐level sensors. After simulating all scenarios, we conclude that major improvements can be achieved, both with respect to logistical costs as well as customer satisfaction

    The one container drayage problem with soft time windows

    Get PDF
    Intermodal freight transport consists of using different modes of transport without changing the load unit. This results in a significant reduction in the time that goods spend at intermodal terminals, where transshipment takes place. Drayage refers to the transport of freight on trucks among intermodal terminals, depots, customers and suppliers. In spite of the fact that drayage only represents between 5 and 10 percent of total distance, it may amount up to more than 30 percent of the total costs. The aim of this work is to study drayage operations. First, an extensive literature review is undertaken. Since the intermodal transport chain can become more efficient by means of a proper organisation of the drayage movements, the optimization of the daily drayage problem has been identified as one of the main ways of reducing the drayage cost and improving intermodal operations. On this problem, the lack of a common benchmark has hindered reaching further conclusions from all the research carried out. Therefore, this paper proposes a common framework and presents a generalized formulation of the problem, which allows modeling most drayage policies, with the limitation of only considering one-container problems. Results show that flexible tasks in the repositioning of empty containers as well as soft time windows can reduce the operating costs and facilitate the management of drayage companies. This work may help consider adequate policies regarding drayage operations in intermodal terminals

    Development Of Models And Solution Methods For Different Drayage Applications

    Get PDF
    In the last decades, intermodal freight transport is becoming more attractive in the global supply chains and freight transport policy makings. Intermodal freight transport provides a cost-effective, reliable, and efficient movement of freight by utilizing the strengths of different transport modes. The initial and final segment of intermodal freight transport, performed by truck, is known as “drayage.” The scheduling of truck movements in drayage operation within the service area of an intermodal terminal is an operational problem which leads to a truck scheduling problem that determines the efficient schedule of trucks while satisfying all transportation demands and constraints. Drayage accounts for a large percentage of the origin-destination expenses in the intermodal transport. Efficient planning of the drayage operations to improve the economic performance of this operation can increase the efficiency and attractiveness of intermodal transport. The primary objective of this research is to apply operation research techniques to optimize truck movements in drayage operation. The first study in this dissertation considers the drayage problem with time constraints at marine container terminals imposed by the truck appointment system and time-windows at customer locations. A mathematical model is proposed that solve the empty container allocation problem, vehicle routing problem, and appointment booking problem in an integrated manner. This model is an extension of a multiple traveling salesman problem with time windows (m-TSPTW) which is known to be NP-hard (i.e., non-deterministic polynomial-time hard). To solve this model, a reactive tabu search (RTS) algorithm is developed and its accuracy and computational efficiency are evaluated against an industry-established solver IBM ILOG CPLEX. In comparison with the CPLEX, RTS was able to find optimal or near-optimal solution in significantly shorter time. This integrated approach also allows for more accurate evaluation of the effects of the truck appointment system on the drayage operation. The second study extends the drayage literature by incorporating these features in drayage problem: (1) treating tractor, container, and chassis as separate resources which are provided in different locations, (2) ensuring that container and chassis are of the same size and type, (3) considering the possibility that drayage companies can sub-contract the work to owner-operators, and (4) a heterogeneous mix of drayage vehicles (from company fleet and owner-operators) with different start and end locations is considered; drayage company’s trucks start at company’s depot and should return to one of the company’s depots whereas owner-operators’ trucks should return to the same location from where they originated. A mixed-integer quadratic programming model is developed that solves scheduling of tractors, full containers, empty containers, and chassis jointly. A RTS algorithm combined with an insertion heuristic is developed to tackle the problem. The experimental results demonstrated the feasibility of the developed model and solution methodology. The results show that the developed integrated model is capable of finding the optimal solutions and is solvable within a reasonable time for operational problems. This new model allowed us to assess the effectiveness of different chassis supply models on drayage operation time, the percentage of empty movements and air emissions. The fourth work builds on our previous work and extends the integrated drayage scheduling model to consider uncertainty in the (un)packing operation. Recognizing the inherent difficulty in obtaining an accurate probability distribution, this paper develops two new stochastic drayage scheduling models without explicit assumption about the probability distributions of the (un)packing times. The first model assumes that only the mean and variance of the (un)packing times are available, and the second model assumes that the mean as well as the upper and lower bounds of the (un)packing times are available. To demonstrate the feasibility of the developed models, they are tested on problem instances with real-life characteristics. Future work would address the real-time scheduling of drayage problem. It would assume trucks’ locations, travel times, and customer requests are updated throughout the day. We would propose a solution approach for solving such a complex model. The solution approach would be based on re-optimization of the drayage problem and consist of two phases: (1) initial optimization at the beginning of the day, and (2) re-optimization during operation. The third study of this dissertation addresses the impact of a new trend in the North American intermodal terminals in using second-tier facilities on drayage operation. These facilities are located outside the terminals and are used to store loaded containers, empty containers, and chassis. This work builds on our previous work and extends the integrated drayage scheduling model to incorporate these features into drayage problem: (1) trucks do not have to wait at customers’ locations during the packing and unpacking operations, (2) drayage operations include a drop yard (i.e., second-tier facility) for picking up or/and dropping off loaded containers outside the marine container terminal, and (3) the job requests by customers is extended to include empty container pickup, loaded container pickup, empty container delivery, and loaded container delivery. As the mathematical model is an extension of the m-TSPTW, a RTS combined with an insertion heuristic developed by the authors is used to solve the problems

    Simultaneous allocation and scheduling of quay cranes, yard cranes, and trucks in dynamical integrated container terminal operations

    Get PDF
    We present a dynamical modeling of integrated (end-to-end) container terminal operations using finite state machine (FSM) framework where each state machine is represented by a discrete-event system (DES) formulation. The hybrid model incorporates the operations of quay cranes (QC), internal trucks (IT), and yard cranes (YC) and also the selection of storage positions in container yard (CY) and vessel bays. The QC and YC are connected by the IT in our models. As opposed to the commonly adapted modeling in container terminal operations, in which the entire information/inputs to the systems are known for a defined planning horizon, in this research we use real-time trucks, crane, and container storage operations information, which are always updated as the time evolves. The dynamical model shows that the predicted state variables closely follow the actual field data from a container terminal in Tanjung Priuk, Jakarta, Indonesia. Subsequently, using the integrated container terminal hybrid model, we proposed a model predictive algorithm (MPA) to obtain the near-optimal solution of the integrated terminal operations problem, namely the simultaneous allocation and scheduling of QC, IT, and YC, as well as selecting the storage location for the inbound and outbound containers in the CY and vessel. The numerical experiment based on the extensive Monte Carlo simulation and real dataset show that the MPA outperforms by 3-6% both of the policies currently implemented by the terminal operator and the state-of-the-art method from the current literature

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    An Agent-based Approach for Improving the Performance of Distributed Business Processes in Maritime Port Community

    Get PDF
    In the recent years, the concept of “port community” has been adopted by the maritime transport industry in order to achieve a higher degree of coordination and cooperation amongst organizations involved in the transfer of goods through the port area. The business processes of the port community supply chain form a complicated process which involves several process steps, multiple actors, and numerous information exchanges. One of the widely used applications of ICT in ports is the Port Community System (PCS) which is implemented in ports in order to reduce paperwork and to facilitate the information flow related to port operations and cargo clearance. However, existing PCSs are limited in functionalities that facilitate the management and coordination of material, financial, and information flows within the port community supply chain. This research programme addresses the use of agent technology to introduce business process management functionalities, which are vital for port communities, aiming to the enhancement of the performance of the port community supply chain. The investigation begins with an examination of the current state in view of the business perspective and the technical perspective. The business perspective focuses on understanding the nature of the port community, its main characteristics, and its problems. Accordingly, a number of requirements are identified as essential amendments to information systems in seaports. On the other hand, the technical perspective focuses on technologies that are convenient for solving problems in business process management within port communities. The research focuses on three technologies; the workflow technology, agent technology, and service orientation. An analysis of information systems across port communities enables an examination of the current PCSs with regard to their coordination and workflow management capabilities. The most important finding of this analysis is that the performance of the business processes, and in particular the performance of the port community supply chain, is not in the scope of the examined PCSs. Accordingly, the Agent-Based Middleware for Port Community Management (ABMPCM) is proposed as an approach for providing essential functionalities that would facilitate collaborative planning and business process management. As a core component of the ABMPCM, the Collaborative Planning Facility (CPF) is described in further details. A CPF prototype has been developed as an agent-based system for the domain of inland transport of containers to demonstrate its practical effectiveness. To evaluate the practical application of the CPF, a simulation environment is introduced in order to facilitate the evaluation process. The research started with the definition of a multi-agent simulation framework for port community supply chain. Then, a prototype has been implemented and employed for the evaluation of the CPF. The results of the simulation experiments demonstrate that our agent-based approach effectively enhances the performance of business process in the port community

    Algebraic structural analysis of a vehicle routing problem of heterogeneous trucks. Identification of the properties allowing an exact approach.

    Get PDF
    Although integer linear programming problems are typically difficult to solve, there exist some easier problems, where the linear programming relaxation is integer. This thesis sheds light on a drayage problem which is supposed to have this nice feature, after extensive computational experiments. This thesis aims to provide a theoretical understanding of these results by the analysis of the algebraic structures of the mathematical formulation. Three reformulations are presented to prove if the constraint matrix is totally unimodular. We will show which experimental conditions are necessary and sufficient (or only sufficient or only necessary) for total unimodularity

    An efficient mixed integer programming model for pairing containers in inland transportation based on the assignment of orders

    Get PDF
    The inland transportation takes a significant portion of the total cost that arises from intermodal transportation. In addition, there are many parties (shipping lines, haulage companies, customers) who share this operation as well as many restrictions that increase the complexity of this problem and make it NP-hard. Therefore, it is important to create an efficient strategy to manage this process in a way to ensure all parties are satisfied. This paper investigates the pairing of containers/orders in drayage transportation from the perspective of delivering paired containers on 40-ft truck and/or individual containers on 20-ft truck, between a single port and a list of customer locations. An assignment mixed integer linear programming model is formulated, which solves the problem of how to combine orders in delivery to save the total transportation cost when orders with both single and multiple destinations exist. In opposition to the traditional models relying on the vehicle routing problem with simultaneous pickups and deliveries and time windows formulation, this model falls into the assignment problem category which is more efficient to solve on large size instances. Another merit for the proposed model is that it can be implemented on different variants of the container drayage problem: import only, import–inland and import–inland–export. Results show that in all cases the pairing of containers yields less cost compared to the individual delivery and decreases empty tours. The proposed model can be solved to optimality efficiently (within half hour) for over 300 orders
    • 

    corecore