3,052 research outputs found

    DIP: Disruption-Tolerance for IP

    Full text link
    Disruption Tolerant Networks (DTN) have been a popular subject of recent research and development. These networks are characterized by frequent, lengthy outages and a lack of contemporaneous end-to-end paths. In this work we discuss techniques for extending IP to operate more effectively in DTN scenarios. Our scheme, Disruption Tolerant IP (DIP) uses existing IP packet headers, uses the existing socket API for applications, is compatible with IPsec, and uses familiar Policy-Based Routing techniques for network management

    Congestion management techniques for disruption-tolerant satellite networks

    Get PDF
    Delay and disruption-tolerant networks are becoming an appealing solution for extending Internet boundaries toward challenged environments where end-to-end connectivity cannot be guaranteed. In particular, satellite networks can take advantage of a priori trajectory estimations of nodes to make efficient routing decisions. Despite this knowledge is already used in routing schemes such as contact graph routing, it might derive in congestion problems because of capacity overbooking of forthcoming connections (contacts). In this work, we initially extend contact graph routing to provide enhanced congestion mitigation capabilities by taking advantage of the local traffic information available at each node. However, since satellite networks data generation is generally managed by a mission operation center, a global view of the traffic can also be exploited to further improve the latter scheme. As a result, we present a novel strategy to avoid congestion in predictable delay- and disruption-tolerant network systems by means of individual contact plans. Finally, we evaluate and compare the performance improvement of these mechanisms in a typical low Earth orbit satellite constellation.Fil: Madoery, Pablo Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Fraire, Juan Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentin

    Improvement of messages delivery time on vehicular delay-tolerant networks

    Get PDF
    “Copyright © [2009] IEEE. Reprinted from International Conference on Parallel Processing Workshops ICPPW '09.ISSN:1530-2016. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Networks (VDTNs) are an application of the Delay-Tolerant Network (DTN) concept, where the movement of vehicles and their message relaying service is used to enable network connectivity under unreliable conditions. To address the problem of intermittent connectivity, long-term message storage is combined with routing schemes that replicate messages at transfer opportunities. However, these strategies can be inefficient in terms of network resource usage. Therefore, efficient scheduling and dropping policies are necessary to improve the overall network performance. This work presents a performance analysis, based on simulation, of the impact of different scheduling and dropping policies enforced on Epidemic and Spray and Wait routing schemes. This paper evaluates these policies from the perspective of their efficiency in reducing the message’s end-to-end delay. In our scenario, it is shown that when these policies are based on the message’s lifetime criteria, the message average delay decreases significantly and the overall message delivery probability also increases for both routing protocols. Further simulations show that these results outperform the MaxProp and PRoPHET routing protocols that have their own scheduling and dropping mechanisms.Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group, Portugal, in the framework of the VDTN@Lab Project, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU

    Self-Positioning Smart Buoys, The \u27Un-Buoy\u27 Solution: Logistic Considerations Using Autonomous Surface Craft Technology and Improved Communications Infrastructure

    Get PDF
    Moored buoys have long served national interests, but incur high development, construction, installation, and maintenance costs. Buoys which drift off-location can pose hazards to mariners, and in coastal waters may cause environmental damage. Moreover, retrieval, repair and replacement of drifting buoys may be delayed when data would be most useful. Such gaps in coastal buoy data can pose a threat to national security by reducing maritime domain awareness. The concept of self-positioning buoys has been advanced to reduce installation cost by eliminating mooring hardware. We here describe technology for operation of reduced cost self-positioning buoys which can be used in coastal or oceanic waters. The ASC SCOUT model is based on a self-propelled, GPS-positioned, autonomous surface craft that can be pre-programmed, autonomous, or directed in real time. Each vessel can communicate wirelessly with deployment vessels and other similar buoys directly or via satellite. Engineering options for short or longer term power requirements are considered, in addition to future options for improved energy delivery systems. Methods of reducing buoy drift and position-maintaining energy requirements for self-locating buoys are also discussed, based on the potential of incorporating traditional maritime solutions to these problems. We here include discussion of the advanced Delay Tolerant Networking (DTN) communications draft protocol which offers improved wireless communication capabilities underwater, to adjacent vessels, and to satellites. DTN is particularly adapted for noisy or loss-prone environments, thus it improves reliability. In addition to existing buoy communication via commercial satellites, a growing network of small satellites known as PICOSATs can be readily adapted to provide low-cost communications nodes for buoys. Coordination with planned vessel Automated Identification Systems (AIS) and International Maritime Organization standards for buoy and vessel notificat- - ion systems are reviewed and the legal framework for deployment of autonomous surface vessels is considered

    Hybrid routing technique for a fault-tolerant, integrated information network

    Get PDF
    The evolutionary growth of the space station and the diverse activities onboard are expected to require a hierarchy of integrated, local area networks capable of supporting data, voice, and video communications. In addition, fault-tolerant network operation is necessary to protect communications between critical systems attached to the net and to relieve the valuable human resources onboard the space station of time-critical data system repair tasks. A key issue for the design of the fault-tolerant, integrated network is the development of a robust routing algorithm which dynamically selects the optimum communication paths through the net. A routing technique is described that adapts to topological changes in the network to support fault-tolerant operation and system evolvability

    Sensor-assisted Video Mapping of the Seafloor

    Get PDF
    In recent years video surveys have become an increasingly important ground-truthing of acousticseafloor characterization and benthic habitat mapping studies. However, the ground-truthing and detailed characterization provided by video are still typically done using sparse sample imagery supplemented by physical samples. Combining single video frames in a seamless mosaic can provide a tool by which imagery has significant areal coverage, while at the same time showing small fauna and biological features at mm resolution. The generation of such a mosaic is a challenging task due to height variations of the imaged terrain and decimeter scale knowledge of camera position. This paper discusses the current role of underwater video survey, and the potential for generating consistent, quantitative image maps using video data, accompanied by data that can be measured by auxiliary sensors with sufficient accuracy, such as camera tilt and heading, and their use in automated mosaicking techniques. The camera attitude data also provide the necessary information to support the development of a video collage. The collage provides a quick look at the large spatial scale features in a scene and can be used to pinpoint regions that are likely to yield useful information when rendered into high-resolution mosaics. It is proposed that high quality mosaics can be produced using consumer-grade cameras and low-cost sensors, thereby allowing for the economical scientific video surveys. A case study is presented with the results from benthic habitat mapping and the ground-truthing ofseafloor acoustic data using both real underwater imagery and simulations. A computer modeling of the process of video data acquisition (in particular on a non-flat terrain) allows for a better understanding of the main sources of error in mosaic generation and for the choice of near-optimal processing strategies. Various spatial patterns of video survey coverage are compared and it is shown that some patterns have certain advantages in the sense of accumulated error and overall mosaic accuracy

    Creation of a vehicular delay-tolerant network prototype

    Get PDF
    Vehicular Delay-Tolerant Network (VDTN) is a new disruptive network architecture where vehicles act as the communication infrastructure. VDTN follows a layered architecture based on control and data planes separation, and positioning the bundle layer under the network layer. VDTN furnishes low-cost asynchronous communications coping with intermittent and sparse connectivity, variable delays and even no end-to-end connection. This paper presents a VDTN prototype (testbed) proposal, which implements and validates the VDTN layered architecture considering the proposed out-of-band signaling. The main goals of the prototype are emulation, demonstration, performance evaluation, and diagnose of protocol stacks and services, proving the applicability of VDTNs over a wide range of environments.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Covilhã Delegation, Portugal in the framework of the VDTN@Lab Project, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU
    corecore