5 research outputs found

    Z-stability in Constructive Analysis

    Full text link
    We introduce Z-stability, a notion capturing the intuition that if a function f maps a metric space into a normed space and if the norm of f(x) is small, then x is close to a zero of f. Working in Bishop's constructive setting, we first study pointwise versions of Z-stability and the related notion of good behaviour for functions. We then present a recursive counterexample to the classical argument for passing from pointwise Z-stability to a uniform version on compact metric spaces. In order to effect this passage constructively, we bring into play the positivity principle, equivalent to Brouwer's fan theorem for detachable bars, and the limited anti-Specker property, an intuitionistic counterpart to sequential compactness. The final section deals with connections between the limited anti-Specker property, positivity properties, and (potentially) Brouwer's fan theorem for detachable bars

    The Bolzano-Weierstrass Theorem is the Jump of Weak K\"onig's Lemma

    Full text link
    We classify the computational content of the Bolzano-Weierstrass Theorem and variants thereof in the Weihrauch lattice. For this purpose we first introduce the concept of a derivative or jump in this lattice and we show that it has some properties similar to the Turing jump. Using this concept we prove that the derivative of closed choice of a computable metric space is the cluster point problem of that space. By specialization to sequences with a relatively compact range we obtain a characterization of the Bolzano-Weierstrass Theorem as the derivative of compact choice. In particular, this shows that the Bolzano-Weierstrass Theorem on real numbers is the jump of Weak K\"onig's Lemma. Likewise, the Bolzano-Weierstrass Theorem on the binary space is the jump of the lesser limited principle of omniscience LLPO and the Bolzano-Weierstrass Theorem on natural numbers can be characterized as the jump of the idempotent closure of LLPO. We also introduce the compositional product of two Weihrauch degrees f and g as the supremum of the composition of any two functions below f and g, respectively. We can express the main result such that the Bolzano-Weierstrass Theorem is the compositional product of Weak K\"onig's Lemma and the Monotone Convergence Theorem. We also study the class of weakly limit computable functions, which are functions that can be obtained by composition of weakly computable functions with limit computable functions. We prove that the Bolzano-Weierstrass Theorem on real numbers is complete for this class. Likewise, the unique cluster point problem on real numbers is complete for the class of functions that are limit computable with finitely many mind changes. We also prove that the Bolzano-Weierstrass Theorem on real numbers and, more generally, the unbounded cluster point problem on real numbers is uniformly low limit computable. Finally, we also discuss separation techniques.Comment: This version includes an addendum by Andrea Cettolo, Matthias Schr\"oder, and the authors of the original paper. The addendum closes a gap in the proof of Theorem 11.2, which characterizes the computational content of the Bolzano-Weierstra\ss{} Theorem for arbitrary computable metric space
    corecore