661 research outputs found

    Design of Routers for Optical Burst Switched Networks

    Get PDF
    Optical Burst Switching (OBS) is an experimental network technology that enables the construction of very high capacity routers using optical data paths and electronic control. In this dissertation, we study the design of network components that are needed to build an OBS network. Specifically, we study the design of the switches that form the optical data path through the network. An OBS network that switches data across wavelength channels requires wave-length converting switches to construct an OBS router. We study one particular design of wavelength converting switches that uses tunable lasers and wavelength grating routers. This design is interesting because wavelength grating routers are passive devices and are much less complex and hence less expensive than optical crossbars. We show how the routing problem for these switches can be formulated as a combinatorial puzzle or game, in which the design of the game board determines key performance characteristics of the switch. In this disertation, we use this formu-lation to facilitate the design of switches and associated routing strategies with good performance. We then introduce time sliced optical burst switching (TSOBS), a variant of OBS that switches data in the time domain rather that the wavelength domain. This eliminates the need for wavelength converters, the largest single cost component of systems that switch in the wavelength domain. We study the performance of TSOBS networks and discuss various design issues. One of the main components that is needed to build a TSOBS router is an optical time slot interchanger (OTSI). We explore various design options for OTSIs. Finally, we discuss the issues involved in the design of network interfaces that transmit the data from hosts that use legacy protocols into a TSOBS network. Ag-gregation and load balancing are the main issues that determine the performance of a TSOBS network and we develop and evaluate methods for both

    Autonomous scheduling technology for Earth orbital missions

    Get PDF
    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system

    Scheduling in Networks with Limited Buffers

    Get PDF
    In networks with limited buffer capacity, packet loss can occur at a link even when the average packet arrival rate is low compared to the link's speed. To offer strong loss-rateguarantees, ISPs may need to adopt stringent routing constraints to limit the load at the network links and the routing path length. However, to simultaneously maximize revenue, ISPs should be interested in scheduling algorithms that lead to the least stringent routing constraints. This work attempts to address the ISPs needs as follows. First, by proposing an algorithm that performs well (in terms of routing constraints) on networks of output queued (OQ) routers (that is, ideal routers), and second, by bounding the extra switch fabric speed and buffer capacity required for the emulationof these algorithms in combined input-output queued (CIOQ) routers.The first part of the thesis studies the problem of minimizing the maximum session loss rate in networks of OQ routers. It introduces the Rolling Priority algorithm, a local online scheduling algorithm that offers superior loss guarantees compared to FCFS/Drop Tail and FCFS/Random Drop. Rolling Priority has the following properties: (1) it does not favor any sessions over others at any link, (2) it ensures a proportion of packets from each session are subject to a negligibly small loss probability at every link along the session's path, and (3) maximizes the proportion of packets subject to negligible loss probability. The second part of the thesis studies the emulation of OQ routers using CIOQ. The OQ routers are equipped with a buffer of capacity B packets at every output. For the family of work-conserving scheduling algorithms, we find that whereas every greedy CIOQ policy is valid for the emulation of every OQ algorithm at speedup B, no CIOQ policy is valid at speedup less than the cubic root of B-2 when preemption is allowed. We also find that CCF, a well-studied CIOQ policy, is not valid at any speedup less than B. We then introduce a CIOQ policy CEH, that is valid at speedup greater than the square root of 2(B-1)

    Journal of Telecommunications and Information Technology, 2006, nr 3

    Get PDF
    kwartalni

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available

    A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers

    Get PDF
    Optical buffers implemented by fiber delay lines (FDLs) have a volatile nature due to signal loss and noise accumulation. Packets suffer from excessive recirculation through FDLs, and they may be dropped eventually in their routing paths. Because of this, packet scheduling becomes more difficult in FDL buffers than in RAM buffers, and requires additional design considerations for reducing packet loss. We propose a latency-aware scheduling scheme and an analytical model for all-optical packet switching networks with FDL buffers. The latency-aware scheduling scheme is intended to minimize the packet loss rate of the networks by ranking packets in the optimal balance between latency and residual distance. The analytical model is based on non-homogeneous Markovian analysis to study the effect of the proposed scheduling scheme on packet loss rate and average delay. Furthermore, our numerical results show how various network parameters affect the optimal balance. We demonstrate quantitatively how to achieve the proper balance between latency and residual distance so that the network performance can be improved significantly. For instance, we find that under a given latency limit and light traffic load our scheduling scheme achieves a packet loss rate 71% lower than a scheduling scheme that ranks packets simply based on latency
    corecore