31,283 research outputs found

    Two-dimensional patterns with distinct differences; constructions, bounds, and maximal anticodes

    Get PDF
    A two-dimensional (2-D) grid with dots is called a configuration with distinct differences if any two lines which connect two dots are distinct either in their length or in their slope. These configurations are known to have many applications such as radar, sonar, physical alignment, and time-position synchronization. Rather than restricting dots to lie in a square or rectangle, as previously studied, we restrict the maximum distance between dots of the configuration; the motivation for this is a new application of such configurations to key distribution in wireless sensor networks. We consider configurations in the hexagonal grid as well as in the traditional square grid, with distances measured both in the Euclidean metric, and in the Manhattan or hexagonal metrics. We note that these configurations are confined inside maximal anticodes in the corresponding grid. We classify maximal anticodes for each diameter in each grid. We present upper bounds on the number of dots in a pattern with distinct differences contained in these maximal anticodes. Our bounds settle (in the negative) a question of Golomb and Taylor on the existence of honeycomb arrays of arbitrarily large size. We present constructions and lower bounds on the number of dots in configurations with distinct differences contained in various 2-D shapes (such as anticodes) by considering periodic configurations with distinct differences in the square grid

    Experimental Constraints on the Neutralino-Nucleon Cross Section

    Get PDF
    In the light of recent experimental results for the direct detection of dark matter, we analyze in the framework of SUGRA the value of the neutralino-nucleon cross section. We study how this value is modified when the usual assumptions of universal soft terms and GUT scale are relaxed. In particular we consider scenarios with non-universal scalar and gaugino masses and scenarios with intermediate unification scale. We also study superstring constructions with D-branes, where a combination of the above two scenarios arises naturally. In the analysis we take into account the most recent experimental constraints, such as the lower bound on the Higgs mass, the b→sγb\to s\gamma branching ratio, and the muon g−2g-2.Comment: References added, bsgamma upper bound improved, results unchanged, Talk given at Corfu Summer Institute on Elementary Particle Physics, August 31-September 20, 200

    Folding, Tiling, and Multidimensional Coding

    Full text link
    Folding a sequence SS into a multidimensional box is a method that is used to construct multidimensional codes. The well known operation of folding is generalized in a way that the sequence SS can be folded into various shapes. The new definition of folding is based on lattice tiling and a direction in the DD-dimensional grid. There are potentially 3D−12\frac{3^D-1}{2} different folding operations. Necessary and sufficient conditions that a lattice combined with a direction define a folding are given. The immediate and most impressive application is some new lower bounds on the number of dots in two-dimensional synchronization patterns. This can be also generalized for multidimensional synchronization patterns. We show how folding can be used to construct multidimensional error-correcting codes and to generate multidimensional pseudo-random arrays
    • 

    corecore