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Abstract. The past few years have seen a tremendous increase in often
irregularly structured data that can be represented most naturally and
efficiently in the form of graphs. Making sense of incessantly growing
graphs is not only a key requirement in applications like social media
analysis or fraud detection but also a necessity in many traditional enter-
prise scenarios. Thus, a flexible approach for multidimensional analysis
of graph data is needed. Whereas many existing technologies require
up-front modelling of analytical scenarios and are difficult to adapt to
changes, our approach allows for ad-hoc analytical queries of graph data.
Extending our previous work on graph summarization, in this position
paper we lay the foundation for large graph analytics to enable business
intelligence on graph-structured data.
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1 Introduction

In the past decade graph data has become abundant. In the form of social net-
works and road networks it pervades everyday life, but the capability of storing 
and processing graph-structured data has also become crucial in enterprise tasks, 
such as supply chain management and product batch traceability. As the amount 
of graph data grows at an ever-increasing pace, the need for flexible graph analy-
sis technology becomes more and more important. Whereas data warehousing 
tools and online analytical processing (OLAP) solutions for relational data are 
well-understood and mature, approaches for multidimensional analysis of graph 
data are still in their infancy (cf. Sect. 2). In the context of our research project 
SynopSys we aim at closing this gap.

There is a plethora of graph models used in research, each tailored to the 
specific problem at hand. In its most basic definition a graph G := (V, E) is  
a tuple consisting of a set of vertices V and a relation E ⊆ V × V denoting 
the edges between them. For the remainder of this paper we employ the prop-
erty graph model [1] where vertices and edges can have attributes and edges are
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Fig. 1. Property graph illustrating a typical business scenario.

directed links between pairs of vertices. Its generality allows other graph models
to be mapped to it easily while being flexible enough to support a broad variety
of use cases. Figure 1 shows an excerpt of a property graph capturing a typi-
cal business scenario consisting of products, categories, customers, orders, and
customer reviews. Note that vertices and edges of the same “type” can differ
with regards to the attributes they expose. This scenario will serve as a running
example throughout the following sections.

In our previous work [2] we have already outlined the use of graph pattern
matching and transformation for deriving graph summaries. By means of sum-
marization rules instantiated from an assorted set of templates, graph data can
be grouped and aggregated numbers computed.

In this paper we extend our approach for graph analytics with the well-known
concepts from multidimensional analytics [3]. We introduce a formal description
of a general-purpose data model linking the concepts fact, dimension, and mea-
sure to the property graph model (cf. Sect. 3). Also, we present the semantics of
operations for creating graph summaries along dimensions (cf. Sect. 4). Finally,
we outline our plans for future research (cf. Sect. 5).

2 Related Work

The multidimensional model [3] is well-established as the theoretical foundation
of the vast majority of online analytical processing (OLAP) tools. Data ware-
houses are usually created by designing a schema containing facts and dimen-
sions. In an analytical session a set of measures has to be defined, and a (hyper-)
cube is then constructed to capture both measures and dimensions. Unfortu-
nately this intensional approach of up-front modelling is unable to meet the
requirements of today’s ever-changing IT and business landscapes with the dra-
matic increase of data volumes to process and number of sources to integrate.
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For a specific analytical session users should be able to specify in an ad-hoc
manner what the facts and dimensions of interest are.

In 2008 Chen et al. presented their approach for extending OLAP to graphs [4].
They introduce two kinds of dimensions and map the well-known OLAP oper-
ations roll-up, drill-down, and slice/dice to them. Informational dimensions are
derived from the attributes associated with snapshots of an evolving graph,
whereas topological dimensions stem from the attributes of vertices and edges in
each such snapshot. Building on that, they describe a theoretical foundation for
aggregated graphs, which form the measures in OLAP terminology, and propose
the use of partial materialization techniques for reducing memory consumption.
However, their approach is not accompanied by any processing or evaluation
specification, concepts, or architecture. Also, singularizing the temporal dimen-
sion of system time does not seem to be sufficient, because application time
is often more relevant in practice, and it unnecessarily complicates the formal
framework.

In the same year Tian et al. proposed an operator for summarization by
grouping nodes on attributes and pairwise relationships (SNAP) [5]. Whenever a
vertex of one group is connected to any vertex of the other, the two vertex groups
will also be connected. In practice this behavior turns out to be quite limiting,
because it can result in a large number of groups. Therefore, they propose the
k-SNAP operation as an extension, where the homogeneity constraint for group
relationships is relaxed and the user can specify the number of groups in the
graph summaries. By changing the parameter k, the user can emulate the OLAP
operations drill-down and roll-up. The authors prove that the computation of
the k-SNAP operation is NP-complete and propose heuristics to approximate
it. Although the two proposed operations are designed to work with different
edge types, additional edge attributes are not supported. Furthermore, there is
no support for an independent filtering of the input graph (similar to slicing or
dicing in OLAP terms).

In a follow-up paper from 2010 Zhang et al. [6] improve the previous approach
in two ways: first, they provide an automatic means of discretizing numerical
attributes based on the user-specified number of partitions and the graph topol-
ogy. Second, based on what they call the diversity, coverage, and conciseness,
the authors define an interestingness measure for graph summaries. This is then
used for helping users to specify a sensible number of groups for the k-SNAP
operation. The paper improves the practical usability of the overall approach,
but does not address the limitations discussed above.

In 2011 Zhao et al. introduced a novel data warehousing model called Graph
Cube [7]. Their notion of a multidimensional network is based on a restricted
graph model (e.g., no attributes on edges) with the dimensions being the vertex
attributes. An aggregate network (called cuboid) is then formed by computing
equivalence classes for vertices according to the chosen dimensions and by con-
structing a weighted graph. All possible aggregations of the original network
then form a graph cube. The authors propose two kinds of OLAP operations:
cuboid and crossboid queries. The former simply returns the aggregate network
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of the desired cuboid from the graph cube, while the latter is somewhat similar
to a join operation between multiple different cuboids. As for the specification
and evaluation of such queries, the authors do not propose any mechanism but
focus on partial materialization techniques instead.

There are various other approaches to summarizing graphs, but most of them
are statistical in nature—computing a number of figures (e.g., degree distribu-
tions, hop-plots, and clustering coefficients), which describe some characteristics
of the graph. The approaches presented above are different in that they can pro-
duce aggregated views on the graph data in various, user-controlled resolutions
by means of OLAP-like operations. Although much more flexible, in our opin-
ion these approaches are still too rigid, because they fix facts and dimensions
up-front.

3 Data Model

In this section we introduce the various elements of the data model underly-
ing our approach for graph analytics. It is heavily inspired by the well-known
multidimensional model for analytics in data warehouses [3] but is crafted as a
separate layer on top of the property graph model [1].

3.1 Facts

The most fine-grained elements of interest are called (base) facts. In the context
of graph data, a fact can be an attribute of a vertex or an edge or the presence
of an edge itself. For example, interesting facts from our running example can
be the price of products, the amount of products in an order, or the existence of
an edge between products and reviews.

We propose to specify facts using summarization rules, i.e. additive graph
transformations rules consisting of a graph pattern and an action for creating
a representative. Figure 2 depicts such a summarization rule for selecting cus-
tomers and the reviews they have authored as facts. Each pattern element is
assigned an alias (e.g., “$c” for customer vertices), which can be used for speci-
fying dimensions and measures. The action part of the transformation is colored
green and annotated with “++” to indicate the addition of a so-called repre-
sentative vertex. Note that these vertices need not necessarily be materialized;
their primary purpose is to provide references to all facts that are relevant for

Fig. 2. Summarization rule for selecting customers and their review as facts and for
computing a measure for the average number of stars of customer reviews.
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Fig. 3. Explicit and implicit dimensions in a property graph.

the analytical scenario at hand. The use of graph transformations enables the
specification of complex patterns consisting of both informational and topolog-
ical predicates in a graphical form, and it does not require the user to learn a
dedicated domain-specific language.

3.2 Dimensions

As the name suggests, the principal element of multidimensional analysis is the
concept of a dimension. First and foremost a dimension is an aspect of some or
most of the facts, and as such a set of values.

Additionally, dimensions can be structured. If the structure neither is embod-
ied in the graph data itself nor can be derived from it but has to be provided
from external sources instead (e.g., by joining it to the GeoNames dataset to
obtain the relationship between cities, countries and continents), it is said to
be extrinsic, otherwise the structure is intrinsic in the graph data. Regarding
intrinsic dimensional structure we can further differentiate between explicit, if it
is present in the form of connected vertices (e.g., a product category hierarchy),
and implicit, if it can be derived from attribute values (e.g., extracting the day,
month, and year components from an order date). Figure 3 shows examples for
both explicit and implicit dimensional structure.

Dimensions are usually structured into levels; often more than one structure
can be distinguished in a single dimension (e.g., a temporal dimension can be
structured into days, months, and years as well as into days, months, and fiscal
years). Each level can be identified by a unique name and described by a func-
tion mapping an aspect of facts to arbitrary values (e.g. vertices of type order
to the month component of their delivery date attribute).

Definition 1 (Level). A level l := (Name, ϕ) is a tuple, where ϕ : G → X is a
unary function mapping a match of the corresponding dimension’s seed pattern
to an arbitrary value.

Since the topmost level of a dimension has to produce a single element, we add
an artificial root to the hierarchy. This is beneficial if all elements of a dimension
should be placed in a single group.

Corollary 1 (Artificial Root). The artificial root level � = (Top, ϕ�) yields
a single root value ∀G ∈ G.ϕ�(G) = � and is the topmost level, i.e. ∀l ∈ L.l ≤ �.
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Table 1. Two dimensions applicable to the previously selected facts.

In addition to the totally ordered set of levels, a dimension specification (also
uniquely identified by a name) consists of a seed pattern, which is applied to the
facts. Table 1 illustrates these components for two dimensions that are applicable
to the pairs of customer and review that were previously selected as facts. The
syntax alias@attribute encodes the access to an attribute of the aliased vertex or
edge, while -[ predicate ]->( length ) denotes paths of a given length satisfying
a given predicate.

Definition 2 (Dimension Specification). A dimension specification d :=
(Name, S, L ∪ {�},≤) is a tuple, where S : G → P(G) is the seed pattern,
L 	= ∅ is a non-empty set of levels, and ≤⊆ L×L is a total ordering of the levels.
Level names are unique, i.e. ∀l ∈ L.(∃m ∈ L : Namem = Namel) ⇐⇒ m = l.

Without loss of generality, the total ordering of the levels can be chosen such
that the number of items per level decreases monotonically as the level increases.
For example, while a (non-leap) year has 365 days, it has only 52 weeks and just
12 months.

Corollary 2 (Monotony). Given two levels l,m ∈ L, l 	= m, it holds that
l ≤ m =⇒ |ϕm(G)| ≤ |ϕl(G)|.
The levels in a structured dimension often form hierarchies, meaning that seed
pattern matches mapped to the same value in a lower level will also be mapped
to the same value at a higher level. For example, all purchase orders recorded in
January 2014 will be mapped both to January and to 2014.

Corollary 3 (Hierarchy). Given two levels l,m ∈ L, l 	= m, and two matches
of the seed patternG,F ∈ G, G 	= F , it holds that
l ≤ m ⇐⇒ (ϕl(G) = ϕl(F ) =⇒ ϕm(G) = ϕm(F )).

3.3 Measures

A measure is derived from facts using arithmetic operations.

Definition 3 (Measure). A measure m := (Name, f, σ) is a tuple, where
f : G → R is a function computing a numerical value for a fact and σ ∈
{SUM,AVG,MIN,MAX, ...} is an aggregation function for combining numerical
values when grouping facts.
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Fig. 4. Workflow for multidimensional graph analysis.

Measures are specified as part of the fact definition as an attribute of the newly
introduced representative vertex. For example, in Fig. 2 a measure for the average
number of stars of a customer review is given as (Avg. #stars, $r@stars,AVG),
where the syntax for the specification of f means: starting from the vertex with
the alias “$r”, obtain the value of the attribute “stars”.

4 Workflow

Building on the concepts defined in the previous section, we now introduce a
workflow for performing multidimensional analytics on graph-structured data
(cf. Fig. 4). First, a graph cube has to be defined using the following steps:

1. Identify facts. By means of a graph pattern the user has to select the sub-
graphs of interest. For each fact a representative vertex that serves as a handle
is created.

2. Specify dimensions. A dimension consists of at least one level. A level is a
function that maps a subgraph to an arbitrary value. The connection between
facts and mapping functions is achieved with the help of a seed pattern.

3. Define measures. By annotating the summarization rule used in the first
step with a computation function and an aggregation function, a measure can
be defined.

Definition 4 (Graph Cube). A graph cubec := (F,D,M) is an analytical
scenario, where F : G → P(G) is the fact summarization rule, D is a set of
dimension specifications, and M is a set of measures. Its granularity γ : D → L
is initially set to the lowest level of each dimension: ∀d ∈ D.γ(d) = min(Ld).

The dimensional structure can then be exploited to compute different groupings
of facts and thereby transform the graph cube (or more specifically the measures
associated with it).
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Definition 5 (Roll-up/Drill-down). The roll-up operation ↑: Γ × D →
Γ decreases the granularity for the specified dimensiond ∈ D by grouping facts
according to the next higher level (where Ld = {l0, l1, ... , ln} and γ(d) = li). The
drill-down operation ↓: Γ × D → Γ increases the granularity by switching to the
next lower level of the dimension. Derived granularities are defined as follows:

γ↑
d(x) :=

{
li+1 if x = d
γ(x) otherwise γ↓

d(x) :=
{

li−1 if x = d
γ(x) otherwise

Definition 6 (Slice and Dice). Given a set of level-predicate pairs, the func-
tion filter : C × P(L × P ) → C filters the fact base of a graph cube:
filter((F,D,M), p) := (F ′,D,M), where F ′ = {f |f ∈ F ∧∀(l, λ) ∈ p.ϕl(f) |= λ}.

If |p| = 1 a single predicate is applied to only one dimension and the operation
is called slice, otherwise it is called dice. For example, to slice product reviews
by German customers from the cube c, use filter(c, {(Nationality, λ = “DE”)}).
Now we have the basic concepts for multidimensional graph analytics in place.

5 Conclusions and Future Work

In this paper we presented a formal framework for graph analytics by mapping
the well-known concepts fact, dimension, and measure from the multidimensional
model to the property graph model. By relying on additive graph transformation
rules as the means for selecting facts, we overcome the limitations of existing
approaches: first, we can offer the user a graphical specification paradigm and
avoid the introduction of a domain-specific language. Second, we can leverage
the extensive research on efficient graph transformations from the past decades.

In the context of our research project SynopSys we will investigate the sup-
port of cross-cube measures for gaining insights into more complex topological
aspects and anticipate additional OLAP operations based on our data model.
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