

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821186

Elena Vasilyeva, Thomas Heinze, Maik Thiele, Wolfgang Lehner

DebEAQ - debugging empty-answer queries on large data graphs

Erstveröffentlichung in / First published in:

IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki, 16.05.-
20.05.2016. IEEE, S. 1402-1405. ISBN 978-1-5090-2020-1.

DOI: http://dx.doi.org/10.1109/ICDE.2016.7498355

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821186
http://dx.doi.org/10.1109/ICDE.2016.7498355

DebEAQ – Debugging Empty-Answer Queries
On Large Data Graphs

Elena Vasilyeva§∗1, Thomas Heinze§2, Maik Thiele∗3, Wolfgang Lehner∗4
§SAP SE, Walldorf, 69190 Germany

∗Database Technology Group, TU Dresden, Dresden, 01062 Germany
1elena.vasilyeva@sap.com, 2thomas.heinze@sap.com, 3maik.thiele@tu-dresden.de, 4wolfgang.lehner@tu-dresden.de

Abstract—The large volume of freely available graph data
sets impedes the users in analyzing them. For this purpose,
they usually pose plenty of pattern matching queries and study
their answers. Without deep knowledge about the data graph,
users can create ‘failing’ queries, which deliver empty answers.
Analyzing the causes of these empty answers is a time-consuming
and complicated task especially for graph queries. To help users
in debugging these ‘failing’ queries, there are two common
approaches: one is focusing on discovering missing subgraphs of
a data graph, the other one tries to rewrite the queries such that
they deliver some results. In this demonstration, we will combine
both approaches and give the users an opportunity to discover
why empty results were delivered by the requested queries.
Therefore, we propose DebEAQ, a debugging tool for pattern
matching queries, which allows to compare both approaches and
also provides functionality to debug queries manually.

I. INTRODUCTION

Following the principle ‘data comes first, schema comes
second’, graph databases allow to store data without having a
predefined, rigid schema and enable a gradual evolution of data
together with its schema. Moreover, graph databases enrich
analytical queries known from relational databases with graph-
specific features such as a shortest path, pattern matching etc.
The schema flexibility and complexity of graph queries make it
extremely difficult for users to formulate appropriate queries.
This often leads to a situation that a query result is empty,
which is denoted as an empty-answer problem [1], [2], [3], [4].
For the relational databases, solutions to this problem can be
classified into three groups: (1) query-based solutions, which
explain the failure in terms of a query graph, (2) data-driven
explanations exploring trusted and untrusted data sources in
data integration systems and describing which tuples have to
be changed in untrusted data sources to deliver some results,
and (3) query rewriting approaches, which modify ‘failing’
queries in such a way that they provide some results.

While this problem is well-investigated in the relational
database research [1], [2] and RDF graphs [5], [6], it has
received only limited attention in the graph database research
on property graphs [7], [8]. Supposing that the data graph is
acquired from a trusted data source, two approaches remain:
query-based solutions and query rewriting techniques. Apply-
ing them on the graph data model, the first approach should
describe the problem in terms of a graph query consisting
of vertices and edges. Specifically, a graph database can
determine the reason of a ‘failing’ query by detecting which
parts of a query are present and which are missing from a data
graph [7]. We call this approach a subgraph-based solution.
Query rewriting techniques should consider the topology and

notation of the query during rewriting and should propose
query relaxation techniques to rewrite the query in such a
way that it delivers a non-empty result [8]. Both solutions are
complementary and can be used together.

Frontend

Query

Editor

Query Analyzer

Graph Processing Engine

Statistics

Collector

Query

Debugger

Query Relaxer

Fig. 1. The system architecture

In this demonstration, we propose DebEAQ, a debugging
tool, which assists users in analyzing unexpected query an-
swers for pattern matching queries over property graphs by us-
ing a subgraph-based solution and query rewriting techniques.
In the first case, users will be able to discover a potential
reason for a failure of a graph query in terms of its topology.
This approach executes an input query in a debugging mode,
studies the topology of an input query, and explains a failure as
a missing subgraph of an input query. In the second case, the
tool utilizes the topology and notation of a query and changes
an input query to deliver a non-empty answer. Both approaches
can be applied sequentially. Additionally, users will be able
to modify a query manually. At the end of the demonstration,
users will also have the possibility to compare both approaches
and the manual process by investigating statistics that are
collected during a debugging session.

II. SYSTEM ARCHITECTURE

The main goal of the demonstration is to provide a debug-
ging support for pattern matching queries delivering empty
results. We focus on a property graph model [9] since it is a
graph data model mostly used in graph databases describing
the data in a very natural way. It considers entities as vertices
and relationships as edges between them. The same vertices
can have multiple connections between each other. Our tool
supports pattern matching queries which are a commonly used
query type in graph databases.

The architecture of our tool as well as its individual com-
ponents are presented in Figure 1. Users are communicating
with the system via a JavaScript-based Query Editor and
Query Debugger. The query editor proposes a set of queries
to users, which are expressed in visual and textual formats.
Alternatively, users can create their own query in the editor
or change the proposed one. The query debugger assists users

Final edited form was published in "IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 1402-1405, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498355

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Anna

Berlin

city

city

Peter

university

knows knows

studyAt

studyAt hasCreator

isReplyOf

locatedIn

locatedIn

locatedIn

locatedIn

hasCreator

(a) A query example

Anna

Berlin

city

city

Peter

university

knows knows

studyAt

studyAt hasCreator
locatedIn

locatedIn

locatedIn

(b) A differential answer

Berlin

city

Peter

isReplyOf locatedIn

hasCreator

(c) A difference subgraph

Fig. 2. An example of a differential query and its result. The query searches for two friends Peter and Anna with a pattern: they study at the same university,
which is located in a city, where Peter lives, and Peter replied to Anna’s message in Berlin.

during a debugging session by proposing next steps to be done
and visualizing intermediate debugging results.

The most important job—debugging—is executed by the
engine itself which combines the Query Analyzer, the Query
Relaxer, and the Statistics Collector. The query analyzer
provides a subgraph-based solution and investigates an empty-
answer problem on a query level by traversing an input graph
query and showing to users, which parts of a graph query are
responsible for the delivery of an empty answer. For taking
the decisions, it consults the statistics collector, which gathers
all necessary information about an input query and data itself
like a size of a data graph, cardinalities of individual edges,
vertices, and paths. After discovering the reasons of an empty
answer, the query relaxer is activated and it modifies an input
query to deliver a non-empty result. For this purpose, the
query relaxer investigates an empty-answer problem with the
help of query rewriting techniques. It supplies users with
query candidates delivering non-empty answers ordered by
their similarity scores with respect to an input query.

The tool itself communicates with the Graph Processing
Engine storing a data graph, executing the queries posed by
the tool, and providing their results. It accepts user requests
in a form of a pattern to be searched in the data graph. The
graph processing engine used in the debugging tool is based
on a research prototype GRAPHITE [10] implemented on top
of an in-memory column store. The data graph is allocated in
two flexible tables separately for vertices and edges allowing
to store multiple attributes and making the schema evolve by
introducing new attributes on the fly.

III. DISCOVERING REASONS OF A FAILURE

The query analyzer investigates the problem of empty
answers on a query level. To support users in getting an
understanding of the reasons of an empty answer, the notion
of a differential query [7] is used. For this purpose, the system
executes an input query as a differential query that seeks for
the points of a failure in a graph query in terms of missing
edges and vertices. As a result, a differential query delivers two
subgraphs: (1) a discovered data subgraph which is isomorphic
to the query subgraph and (2) a difference graph describing the
remaining part of the query that is missing from the data graph.

To discover the missing part of an input query, the query
analyzer detects the maximum common subgraph between a
data graph and an input query. For this purpose, the GraphMCS
algorithm [7] is used, which selects a first query vertex
and edge to traverse and discovers for this starting point a
set of maximum common subgraphs. To cover the whole
search space of candidates, the algorithm has to traverse all
possible combinations of subsequent traversals, which is a

task of exponential complexity. The query analyzer avoids this
complexity by applying different heuristics and selects only a
subset of possible traversals based on the following principles:
First, vertices and edges with a zero cardinality are filtered
out. Second, a traversal begins from a vertex and edge with
the lowest non-zero cardinality. The rationale behind this is
to keep a number of discovered maximum common subgraphs
minimal.

An absence of a query part from a data graph can split a
graph query in several disconnected components. In this case,
the maximum common subgraph can be potentially missed, if
the search is executed in a smaller query component. For such
situations, the GraphMCS algorithm provides a restart strategy
that covers all unconnected components and chooses the largest
discovered subgraph. After the maximum common subgraph
is detected, a difference graph is calculated from a graph
query and a maximum common connected data subgraph. A
difference graph consists of those query vertices and edges
whose instances were not discovered in a data graph and it
is also annotated with additional constraints at the vertices,
which are adjacent to the discovered subgraph as connecting
points.

Assume the graph query in Figure 2(a) delivering an empty
result. The query analyzer discovers a maximum subgraph
existing in a data graph, which corresponds to the query
subgraph in Figure 2(b). There can be multiple instances
of this subgraph in a data graph. In addition, the query
analyzer determines reasons of a failure, i.e. missing subgraphs
with initialized adjacent vertices (Figure 2(c)). The missing
subgraph in the example consists of instances for two vertices
Peter and Message annotated by their identifiers, which are
adjacent to a discovered data subgraph, and a missing structure
from two vertices and three edges. For the demonstration,
the second part of the answer is more important, since it
represents debugging information that can be used for a manual
or automatic relaxation of a query. Our demonstration provides
an input query, in which missing parts are drawn by dashed
lines, as a subgraph-based solution. To allow this annotation, a
query model supports a system property missing, which shows
whether a vertex or edge are present in a data graph.

IV. QUERY RELAXATION

If users need automatic support in query rewriting, they can
trigger a query modification executed by the query relaxer. The
query relaxer represents a ‘Why Empty?’ Engine [8] shown
in Figure 4 and aims at relaxing a ‘failing’ query in such a
way that a generated query candidate has a non-empty answer.
The query relaxer consists of the following components: The
relaxation process is maintained by the Relaxation Manager,

Final edited form was published in "IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 1402-1405, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498355

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Query Editor Query Debugger

graph G{

vertex v1,

vertex v2

edge e1(v1,v2)

} where …

Result Visualization

Graph Processing Engine

Statistics Collector

Query Analyzer Query Relaxer

1.

2.

3.

...

manual debugging

manual debugging

Fig. 3. A debugging process

Query Relaxation

Relaxation

Operators

Relaxation

Heuristics

Cardinality

Estimation

Relaxation Manager

Candidates

Fig. 4. The architecture of a query relaxer

which redirects queries to the graph processing engine, stores
statistics, and takes placement decisions for generated query
candidates. The Query Relaxation component is responsible
for the generation of new query candidates. It consists of
relaxation operators and heuristics. The DebEAQ tool supports
the following operations to relax the query: predicate and
vertex deletion for vertices; predicate, type, direction, and
edge deletion for edges. Which edges or vertices to relax is
decided by relaxation heuristics. Although the tool supports
several heuristics, we use only a maximum impact heuristic,
which has been shown to be the most effective one [8].
Those elements are chosen to be relaxed, whose relaxation
has the highest cardinality impact on neighboring vertices. By
modifying a query, the query relaxer studies cardinalities of its
predicates, edge types, vertices, and edges. In taking all these
decisions into account, the relaxation manager is supported by
the Cardinality Estimation.

The relaxation process itself is modeled as an A*-
search [8]: the candidates are located in an ordered buffer
and the most promising candidates are processed first (see
on the left side in Figure 4). To arrange the candidates in
a pool, the system calculates an expected cardinality benefit
as an average path cardinality of a step with size = 1.
The candidates with higher promising benefits are preferred.
However, this can lead to strong relaxations and, therefore, a
final query candidate can be very different from an input query.
To postpone the evaluation of strong relaxations to a later point
in time, the system compares query candidates also according
to their cardinality-based graph edit distances, which allows to
choose less relaxed queries first. A cardinality-based graph edit
distance expresses how different a query candidate is from an
input query in terms of a relative cardinality change caused by

a relaxation normalized to a complete relaxation. Candidates
with a higher distance have stronger changes and have to be
evaluated later.

V. DEMONSTRATION SCENARIOS

This demonstration showcases the debugging of pattern
matching queries over a property graph delivering empty
results by applying a subgraph-based solution and query
rewriting techniques. The goal of the demonstration is to bring
together both complimentary approaches. While the discovery
of reasons for a failure focuses mostly on a topology, query
relaxation techniques give an inside whether it is possible to
change also the notation of a query to deliver some results. Our
demonstration consists of a tool with an interactive frontend
and a graph processing engine GRAPHITE [10] that runs on
a single server machine with SUSE Linux Enterprise Server
11 (64 bit), an Intel Xeon Processor E5-2643 with 24CPUs
and 96 GB RAM. As a data graph we use LDBC SF1, which
represents a social network with 3.7M vertices and 21.7M
edges, and a property graph generated from the DBPEDIA
with 819K edges and 182K vertices. As queries we have cho-
sen several traversal-based queries from the LDBC interactive
workload and specified them as pattern matching queries in
GRAPHQL language and several randomly generated queries
for DBPEDIA graph.

The demonstration flow is presented in Figure 3. At the
beginning, users have several options how to start a debugging
process: they can either choose a query from a list of available
‘failing’ queries or they can create a query on their own in
the query editor in a textual or in a graph-visualized form
(see Figure 5(a)). Both editors maintain the same common
graph query model; therefore, all changes done in one panel
are immediately reflected in the second panel. The text editor
uses the GRAPHQL language [11]. The user interface provides
also the following functionality: Users can upload their own
queries and hide the textual representation. The visual editors
use tooltips to visualize the properties of edges and vertices.

During a demonstration, users are supported by the query
debugger, which guides them through a debugging process.
After a query has been defined, the graph processing engine
executes it. If a query fails to deliver any answer, an error
message appears in the visualization panel. In this case, users

Final edited form was published in "IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 1402-1405, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498355

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Visual and textual query editors

(b) Visualization of reasons of a failure in a graph query

(c) Query candidates delivering non-empty results

Fig. 5. Demonstration screens

can trigger the query analyzer to discover reasons of a failure,
which consults statistics collector and graph processing engine
to acquire processed parts of an input query and to calculate
difference graphs. As an answer from the query analyzer, users
receive an input query with missing parts marked by a dashed
line. A query is represented in the visual and textual form (see
Figure 5(b)). At this step, users again have a possibility to
rewrite a query manually or can trigger its relaxation. To relax
a query, the graph relaxer acquires all the necessary statistics
from the statistics collector like cardinalities of query vertices,
edges, and paths. As a result of the relaxation, users receive
a list of query candidates delivering non-empty result sets,
which are ordered by their distance to an input query (see

Figure 5(c)). To allow this compact representation, users can
request more proposals and remove non-interesting candidates.
Users can choose a favorite one for investigating its results.
After the relaxation is done, users can study the collected
runtime statistics about the relaxation process.

To conclude, during the demonstration users will have the
possibility to combine both approaches, to create and debug
queries manually, and to compare all these techniques with
each other. The DebEAQ website features a screencast as well
as the description of this demonstration1.

VI. CONCLUSION

This paper introduces DebEAQ, a tool for debugging graph
pattern queries over property graphs delivering empty results.
It combines two approaches for explaining causes of empty
answers: a subgraph-based explanation and rewriting tech-
niques. The subgraph-based solution focuses on the topology
of a query, discovers a maximum common data subgraph, and
calculates a reason of an empty answer—a difference query
subgraph. In contrast, query rewriting techniques consider the
topology and notation of a graph query and relax a query
by discarding predicates, vertices, and edges possibly causing
a failure. This demonstration highlights both approaches and
illustrates how they can benefit from each other. Finally, it
allows to compare them and showcases the usefulness of auto-
matic debugging approaches compared to a manual debugging.

REFERENCES

[1] D. Mottin, A. Marascu, S. Basu Roy, G. Das, T. Palpanas, and
Y. Velegrakis, “IQR: An interactive query relaxation system for the
empty-answer problem,” in Proc. SIGMOD. ACM, 2014, pp. 1095–
1098.

[2] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y. Vele-
grakis, “A probabilistic optimization framework for the empty-answer
problem,” Proc. VLDB Endow., pp. 1762–1773, 2013.

[3] D. Mottin, F. Bonchi, and F. Gullo, “Graph query reformulation with
diversity,” in Proc. SIGKDD, ser. KDD ’15. New York, NY, USA:
ACM, 2015, pp. 825–834.

[4] U. Junker, “QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems,” in AAAI, 2004, pp. 167–172.

[5] A. Poulovassilis and P. T. Wood, “Combining approximation and
relaxation in semantic web path queries,” in The Semantic Web–ISWC
2010. Springer, 2010, pp. 631–646.

[6] H. Huang, C. Liu, and X. Zhou, “Approximating query answering on
rdf databases,” World Wide Web, vol. 15, no. 1, pp. 89–114, 2012.

[7] E. Vasilyeva, M. Thiele, C. Bornhövd, and W. Lehner, “GraphMCS:
Discover the unknown in large data graphs,” in Workshops EDBT, 2014,
pp. 200–207.

[8] E. Vasilyeva, M. Thiele, A. Mocan, and W. Lehner, “Relaxation of
subgraph queries delivering empty results,” in Proc. SSDBM, 2015, pp.
28:1–28:12.

[9] M. A. Rodriguez and P. Neubauer, “Constructions from dots and lines,”
Bulletin of the American Society for Inf. Science and Technology, pp.
35–41, 2010.

[10] M. Paradies, W. Lehner, and C. Bornhövd, “GRAPHITE: an extensible
graph traversal framework for relational database management systems,”
in Proc. SSDBM, 2015, pp. 29:1–29:12.

[11] H. He and A. K. Singh, “Graphs-at-a-time: Query language and access
methods for graph databases,” in Proc. SIGMOD, ser. SIGMOD ’08.
ACM, 2008, pp. 405–418.

1https://wwwdb.inf.tu-dresden.de/misc/debeaq/

Final edited form was published in "IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 1402-1405, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498355

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADP2631.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Elena Vasilyeva, Thomas Heinze, Maik Thiele, Wolfgang Lehner

