1,330 research outputs found

    Centralized and Decentralized Applications of a Novel Adaptive Control

    Get PDF
    An adaptive control based on the combination of a novel branch of Soft Computing and fractional order derivatives was applied to control two incompletely modeled, nonlinear, coupled dynamic systems. Each of them contained one internal degree of freedom neither directly modeled/observed nor actuated. As alternatives the decentralized and the centralized control approaches were considered. In each case, as a starting point, a simple, incomplete dynamic model predicting the state-propagation of the modeled axes was applied. In the centralized approach this model contained all the observable and controllable joints. In the decentralized approach two similar initial models were applied for the two coupled subsystems separately. The controllers were restricted to the observation of the generalized coordinates modeled by them. It was expected that both approaches had to be efficient and successful. Simulation examples are resented for the control of two double pendulum-cart systems coupled by a spring and two bumpers modeled by a quasi-singular potential. It was found that both approaches were able to “learn” and to manage this control task with a very similar efficiency. In both cases the application of near integer order derivatives means serious factor of stabilization and elimination of undesirable fluctuations. Since in many technical fields the application of simple decentralized controllers is desirable the present approach seems to be promising and deserves further attention and research.N/

    Engineering design using genetic algorithms

    Get PDF
    As modern computational and modeling technologies grow, engineering design heavily relies on computer modeling and simulation to accelerate design cycles and save cost. A complex design problem will involve many design parameters and tables. Exploring design space and finding optimal solutions are still major challenges for complex systems. This dissertation proposed to use Genetic Algorithms to optimize engineering design problems. It proposed a software infrastructure to combine engineering modeling with Genetic algorithms and covered several aspects in engineering design problems. The dissertation suggested a new Genetic Algorithm (Completely dominant Genetic algorithm) to quickly identify High Performance Areas for Engineering Design. To help design engineers to explore design space, the dissertation used a new visualization tool to demonstrate high dimensional Genetic Algorithm results in dynamical graphics. Robustness of design is critical for some of the engineering design applications due to perturbation and manufacturing tolerance. This dissertation demonstrated to use Genetic Algorithms to locate robust design areas and provided a thorough discussion on robustness and diversity in depth

    Digital-Twins towards Cyber-Physical Systems: A Brief Survey

    Get PDF
    Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Physical processes are monitored and controlled by embedded computers and networks, which frequently have feedback loops where physical processes affect computations and vice versa. To ease the analysis of a system, the costly physical plants can be replaced by the high-fidelity virtual models that provide a framework for Digital-Twins (DT). This paper aims to briefly review the state-of-the-art and recent developments in DT and CPS. Three main components in CPS, including communication, control, and computation, are reviewed. Besides, the main tools and methodologies required for implementing practical DT are discussed by following the main applications of DT in the fourth industrial revolution through aspects of smart manufacturing, sixth wireless generation (6G), health, production, energy, and so on. Finally, the main limitations and ideas for future remarks are talked about followed by a short guideline for real-world application of DT towards CPS

    Temporal - spatial recognizer for multi-label data

    Get PDF
    Pattern recognition is an important artificial intelligence task with practical applications in many fields such as medical and species distribution. Such application involves overlapping data points which are demonstrated in the multi- label dataset. Hence, there is a need for a recognition algorithm that can separate the overlapping data points in order to recognize the correct pattern. Existing recognition methods suffer from sensitivity to noise and overlapping points as they could not recognize a pattern when there is a shift in the position of the data points. Furthermore, the methods do not implicate temporal information in the process of recognition, which leads to low quality of data clustering. In this study, an improved pattern recognition method based on Hierarchical Temporal Memory (HTM) is proposed to solve the overlapping in data points of multi- label dataset. The imHTM (Improved HTM) method includes improvement in two of its components; feature extraction and data clustering. The first improvement is realized as TS-Layer Neocognitron algorithm which solves the shift in position problem in feature extraction phase. On the other hand, the data clustering step, has two improvements, TFCM and cFCM (TFCM with limit- Chebyshev distance metric) that allows the overlapped data points which occur in patterns to be separated correctly into the relevant clusters by temporal clustering. Experiments on five datasets were conducted to compare the proposed method (imHTM) against statistical, template and structural pattern recognition methods. The results showed that the percentage of success in recognition accuracy is 99% as compared with the template matching method (Featured-Based Approach, Area-Based Approach), statistical method (Principal Component Analysis, Linear Discriminant Analysis, Support Vector Machines and Neural Network) and structural method (original HTM). The findings indicate that the improved HTM can give an optimum pattern recognition accuracy, especially the ones in multi- label dataset

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    corecore