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Abstract – An adaptive control based on the combination of a 
novel branch of Soft Computing and fractional order 
derivatives was applied to control two incompletely modeled, 
nonlinear, coupled dynamic systems. Each of them contained 
one internal degree of freedom neither directly 
modeled/observed nor actuated. As alternatives the 
decentralized and the centralized control approaches were 
considered. In each case, as a starting point, a simple, 
incomplete dynamic model predicting the state-propagation 
of the modeled axes was applied. In the centralized approach 
this model contained all the observable and controllable 
joints. In the decentralized approach two similar initial 
models were applied for the two coupled subsystems 
separately. The controllers were restricted to the observation 
of the generalized coordinates modeled by them. It was 
expected that both approaches had to be efficient and 
successful. Simulation examples are resented for the control 
of two double pendulum-cart systems coupled by a spring and 
two bumpers modeled by a quasi-singular potential. It was 
found that both approaches were able to “learn” and to 
manage this control task with a very similar efficiency. In 
both cases the application of near integer order derivatives 
means serious factor of stabilization and elimination of 
undesirable fluctuations. Since in many technical fields the 
application of simple decentralized controllers is desirable the 
present approach seems to be promising and deserves further 
attention and research. 

I INTRODUCTION 

In the modern approaches of control technology the use of 

uniform mathematical structures and forms is a 

strengthening trend. For instance, an important class of 

physical systems’ control is the set of non-stationary 

stochastic processes in which some deterministic response 

to an external input and a stationary stochastic process are 

superimposed. This is relevant, for instance, when the 

external input cannot be effectively described by some 

probabilistic distribution. A discrete time model can be 

formulated in the form of a difference equation with an 

external input {uk} that is usually considered to be known 

(Autoregressive Moving Average Model with external 

input - ARMAX) [1]:
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In the so-called Takagi-Sugeno fuzzy models the 

consequent parts are expressed by analytical expressions 

similar to (1). The TS fuzzy controllers use some linear 

combinations of the (1)-type rules in which the coefficients 

depend on the antecedents. With the help of such Takagi-

Sugeno fuzzy IF-THEN rules sufficient conditions to 

check the stability of fuzzy control systems are now 

available. These schemes are based on the stability theory 

of interval matrices and those of the Lyapunov approach 

[2]. It was already observed that the fuzzy controller 

stability conditions can be rewritten in form of Linear 

Matrix Inequalities (LMIs) [3, 4]. LMIs can be efficiently 

solved numerically by solving very complex Riccati 

equations for a positive definite solution [5]. 

Neural Networks in general are useful means of 

developing nonlinear models. A particular case of such 

applications is when the model itself consists of certain 

nonlinear mapping, for instance in the linearization of the 

nonlinear characteristics of various sensors [6]. Neuro-

fuzzy systems provide the fuzzy systems with automatic 

tuning systems using Neural Network (NN) as a tool. The 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 

cross between an artificial neural network and a Fuzzy 

Inference System (FIS) [2, 7, 8, 9]. The adaptive network 

can be a multi-layer feed-forward network in which each 

node (neuron) performs a particular function on incoming 

signals. Based on the ability of an ANFIS to learn from 

training data, it is possible to create an ANFIS structure 

from an extremely limited mathematical representation of 

the system. The ANFIS system generated by the fuzzy 

toolbox available in MATLAB allows the generation of a 

standard Sugeno style fuzzy inference system or a fuzzy 

inference system based on sub-clustering of the data [10]. 

Radial Basis Function Networks (RBFNs) provide an 

attractive alternative to the standard Feedforward 

Networks using backpropagation learning technique [11]. 

The linear weights associated with the output layer can be 

treated separately from the hidden layer neurons. As the 

hidden layer weights are adjusted through a nonlinear 

optimization, output layer weights are adjusted through 

linear optimization [2]. In fact the nodes of a RBFN 

represent “fuzzified” or “blurred” regions which 

correspond to the well defined antecedent sets of a fuzzy 

controller. The neuron’s firing achieves its maximum at the 

centre of the region while its strength decreases with the 

distance from the center according to some Gaussian 

function (various distance measures can also be used). In 

many cases development of the whole model is a 

complicated task especially when the “antecedent” part is 

strongly nonlinear multivariable function of the input. 

Evolutionary methods as e.g. the Particle Swarm 

Optimization Method that realizes stochastic random 

search in a multi-dimensional optimization space [12, 13]

therefore may also be combined with them. In the case of 

certain problem classes similarity relations can also be 

observed and utilized to simplify the design process [14]. 

A significant common feature of the above approaches is 

that they try to develop a “complete” soft computing based 

model of the system to be controlled. This naturally makes 

the question arise whether it is always reasonable to try to 

identify a “complete” model. As a plausible alternative 



simple adaptive controllers can be imagined that do not 

wish to create a complete model. Instead of that on the 

basis of slowly fading recent information a more or less 

temporal model can be constructed and updated step by 

step by the use of simple updating rules consisting of finite 

algebraic steps of lucid geometric interpretation. Realizing 

that "generality" and "uniformity" of the "traditional SC 

structures" excludes the application of plausible 

simplifications made the idea rise that by addressing 

narrower problem classes a novel branch of soft computing 

could be developed by the use of far simpler and far more 

lucid uniform structures and procedures than the classical 

ones. The first steps in this direction were made in the field 

of Classical Mechanical Systems (CMSs) [15], based on 

the Hamiltonian formalism detailed e.g. in [16]. This 

approach used the internal symmetry of CMSs, the 

Symplectic Group (SG) of Symplectic Geometry in the 

tangent space of the physical states of the system. The 

"result" of the "situation-dependent system identification" 

was a symplectic matrix compensating the effects of the 

inaccuracy of the rough dynamic model initially used as 

well as the external dynamic interactions not modeled by 

the controller. By the use of perturbation calculus it was 

proved that under certain restrictions this new approach 

could be successful in the control of the whole class of 

classical mechanical systems [17]. (It is interesting that the 

method of Taylor series extension combined with the 

Hamiltonian formalism is widely used in our days for 

problem solution, e.g. [18, 19].) Later it became clear that 

all the essential steps used in the control could be realized 

by other mathematical means than the symplectic matrices 

related to some phenomenological interpretation. Other Lie 

groups defined in similar manner by some basic quadratic 

expression like in the case of the Generalized Lorentz 

Group [20], or symplectic matrices of special structure 

[21]. The main advantage of using such groups in 

comparison with the ARMAX-based observations is that 

while the latter may result in singular or badly conditioned 

system model to be used for the prediction, the Lie group 

based models are never singular. (Of course, this fact itself 

cannot evade all the possible numerical problems.) In 

comparison with the other Soft Computing methods the 

use of simple, small uniform a priori known size can be 

mentioned. 

Another important aspect in connection with incomplete 

modeling is the existence of two possible alternative 

approaches: application of a single, complex rough initial 

model containing each modeled degree of freedom, or 

tackling the problem in a “decentralized” manner in which 

certain subsystems are controlled by independent 

controllers modeling and controlling only certain degrees 

of freedom of the subsystem in their care. In this case, for 

the local, decentralized controllers, any dynamic coupling 

between the locally controlled subsystems appears as 

external perturbation influencing the behavior of the 

subsystem under their control. This problem was discussed 

in details e.g. in a plenary speech by D’Andrea in 

connection with the dynamic coupling of wings located in 

each other’s vicinity in flowing air [22]. Since the novel 

soft computing approach offers simple and convenient 

implementation for both approaches, and according to the 

former investigations it was found to be able to manage the 

consequences of dynamic coupling with unmodeled and 

uncontrolled subsystems, it was expedient to investigate its 

operation in “decentralized use” and comparing the so 

obtained results with that of the “centralized use”. In the 

sequel at first the paradigm is set mathematically, and 

following that the basic principles of the adaptive control is 

described. Following the presentation of the typical 

simulation results the conclusions are drawn. 

II THE DYNAMIC MODEL OF THE COUPLED 

SUBSYSTEMS 

The cart under consideration consisted of a body and 

wheels of negligible momentum and inertia having the 

overall mass of M [kg]. The pendulums were assembled on 

the cart by parallel shafts and arms of negligible masses 

and lengths L1 and L2 [m], respectively. At the end of each 

arm a ball of negligible size and considerable mass (m1 and

m2) [kg] were attached, respectively. The Euler-Lagrange 

equations of motion of this system are given as follows: 
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in which M denotes the inertia matrix 
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In the above formulae g denotes the gravitational 

acceleration [m/s2], Q1 and Q2 [N×m] denote the driving 

torque at shaft 1 and 2, respectively, and Q3 [N] stands for 

the force moving the cart in the horizontal direction. The 

appropriate rotational angles are q1 and q2 [rad], and the 

linear degree of freedom belongs to q3 [m]. The 1st

rotational and the linear degrees of freedom were the 

controlled and actuated ones, while the second rotary axis 

is without observation, control, and actuation that means 

that Q2 took the constant value zero. Furthermore, two 

pieces of the above described subsystems were coupled 

along their linear direction of motion by the forces Q3
A=–

Q3
B given in [N] as 
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in which k describes a spring stiffness in [N/m] units, and 

L0 [m] belongs to the zero spring force separation. To 

model the buffers two non-linear terms are applied that are 

very sharp near the 0.5×L0 and 1.5×L0 separations, while in 

the “internal points” it is very flat. It is described by two 

parameters, namely by the “strength” A [N×m2], and a 

small parameter bump [m] determining the “nearness” of 

the singularity of these coupling forces. In the sequel the 

principles of the adaptive control are detailed. 

III THE ADAPTIVE CONTROL 

From mathematical point of view the can be formulated as 

follows. There is given some imperfect model of the 

system on the basis of which some excitation is calculated 



to obtain a desired system response id as e= (id). The 

system has its inverse dynamics described by the unknown 

function ir= ( (id))=f(id) and resulting in a realized 

response ir instead of the desired one, id. Normally one can 

obtain information via observation only on the function f() 
considerably varying in time, and no any possibility exists 

to directly "manipulate" the nature of this function: only id

as the input of f() can be “deformed” to id* to achieve and 

maintain the id=f(id*) state. The following "scaling 

iteration" was suggested for finding the proper 

deformation: 
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in which the Sn matrices denote some linear 

transformations to be specified later. As it can be seen 

these matrices maps the observed response to the desired 

one, and the construction of each matrix corresponds to a 

step in the adaptive control. It is evident that if this series 

converges to the identity operator just the proper 

deformation is approached, therefore the controller 

„learns” the behavior of the observed system by step-by-

step amendment and maintenance of the initial model. 

Details of ambiguity resolution of (5) and finding the 

proper Sn matrices on group-theoretical basis were 

published in many times. Regarding the appropriate details 

we refer to [20, 21]. In the sequel the significance of the 

application of fractional order derivatives is emphasized. 

Since according to (2) in the role of the “response” the 2nd

order time-derivatives, while in the role of the “excitation” 

the generalized coordinates as joint forces and torques are 

in the case of a mechanical system, on the basis of purely 

kinematical considerations prescribing a PID-type error-

relaxation, and by the use of a rough dynamic model 

consisting of a constant scalar inertia matrix Mm, and a 

constant additional vector term b, the generalized forces 

can be estimated as. 
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By the use of Caputo’s definition of fractional order 

derivatives 
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(6) can be modified as Q=MmqD(1+ )+b, in which the 

desired (1+ )th order derivative is calculated by replacing 

the 2nd order desired derivative into (7). In this solution (7) 

can be regarded as a temporal filtered average of the 

integer order 2nd derivative from which the noisy 

fluctuations of the desired 2nd derivative are “integrated 

out”. In the t>0 region the “tail” of the (t- )-  kernel 

function really acts as a frequency filter rejecting the high 

frequency fluctuations, while its singularity in t=
enhances the relatively high significance of the actual time. 

Observing the fact that for constant du/dt (7) can 

analytically calculated, one of its practical numerical 

approximations can be obtained by restricting the system’s 

memory to a final [t,t-T] interval, dividing it into small 

subintervals along which the variation of du/dt is

neglected: 

Figure 1 

The =1 (top)¸ 0.8 (middle), and 0.1 (bottom) order derivatives of a 

sinusoidal signal of unit amplitude of circular frequencies 50, 100, 

150, and 200 Hz
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It is worth noting that (8) exactly yields the integer 1st

derivative as 1. The effects of fractional order 

derivation can well be illustrated via calculating (8) for 

=1 ms long intervals of division and T=20 ms long 

“memory” in the case of a sinusoidal signal of unit 

amplitude and circular frequency of 50, 100, 150, and 200 

Hz: a) with decreasing order decreases the amplitudes of 

the derivatives; b) the higher frequencies are rather 

suppressed than the lower ones; c) some phase-ships can 

be observed that increases with the order of derivation. In 

the adaptive control the appropriate fractional order 

derivatives are compared to each other on the construction 

of the necessary “deformation”. In the next part simulation 

examples are given for =1 ms, T=10 ms, and =1 and 0.8. 

IV SIMULATION RESULTS 

In the simulations for the desired relaxation of the 

trajectory tracking error a simple PID-type rule was 

prescribed by the use of purely kinematic terms. This error 

relaxation could be achieved exactly only in the possession 

of the exact dynamic model of the system to be controlled. 

Subsystem A had the following numerical data: m1
A=10 kg, 

m2
A=10 kg, L1

A=2 m, L2
A=2 m, MA=4 kg. In order to 

introduce asymmetry into the system subsystem B had the 

following data: m1
B=20 kg, m2

B=10 kg, L1
B=3 m, L2

B=1 m, 

MB=6 kg. The coupling spring had the stiffness of k=104

N/m, the “bumper’s force constant” was 103 N×m2, and 

bump=10-3 m. The separation belonging to the zero spring 

force was L0=3 m. Instead of the exact actual dynamic 

model the constant diagonal inertia matrix containing the 

elements 10 [kg×m2] or [kg] in its main diagonal, and 

having the numerical value 10 in the matrix elements in the 

role of the sum of the gravitational and Coriolis terms was 

used in both the centralized and the decentralize cases. 

(Only the sizes of the appropriate arrays were different to 

each other.) The cycle-time of the controller was supposed 

to be 1 [ms].  

Figure 2 

Typical operation of the adaptive decentralized control: the phase 

spaces of the controlled subsystems {[m/s] vs. [m] and [rad/s] vs. 

[rad]} for =1 (1st row) and for =0.8 (2nd row), and the phase-

spaces of the uncontrolled axes {[rad/s] vs. [rad]} for =1 (3rd row) 

and for =0.8 (4th row). 

Figure 3 

Typical operation of the adaptive centralized control for =0.8: the 

phase spaces {[m/s] vs. [m] and [rad/s] vs. [rad]} (1st row) and the 

trajectory tracking error [m, rad] vs. time [ms] (2nd row) of the 

controlled subsystems; phase-spaces of the uncontrolled axes {[rad/s]

vs. [rad]} (3rd row); 

In Fig. 2 typical results can be seen for the adaptive
decentralized control. In the =1 case certain instability 

can be observed that successfully is eliminated by a little 

decrease of the order of time-differentiation applied 

( =0.8). Fig. 3 displays the counterpart of this latter case 

for the adaptive centralized control. The numerical results 

of the centralized and decentralized approaches are very 

close to each other, minor differences in the operation can 

be observed only in the relaxation of the rough initial 

transient of the controlled axes, mainly in the phase space: 

each of them has zero initial velocity while the “nominal 

trajectory” starts with considerable one. The nominal 

trajectories in each case asymptotically approach the zero 

velocity as well as the computed ones. 

The significance of the adaptivity is illustrated by Fig. 4 

that is the non-adaptive counterpart of the control 

illustrated by Fig. 3. Continuous use of the rough initial 

dynamic models leads to unacceptable results. 



V CONCLUSIONS 

In this paper the behavior of the decentralized and the 

centralized application of an adaptive control method 

based on a novel branch of Computational Cybernetics and 

fractional time-derivatives were compared to each other. In 

the paradigm investigated the approximately modeled, 

coupled non-linear subsystems also had unmodeled and 

uncontrolled internal degrees of freedom. The simulation 

results well illustrated that both ways of the application of 

adaptivity considerably improved the quality of the 

trajectory reproduction and successfully compensated the 

effects of coupling between the subsystems. The 

application of a near integer derivative in the kinematically 

prescribed trajectory tracking strategy well smoothed and 

stabilized the operation of the controllers. The results 

anticipate that this novel method can be a useful means for 

a practically advantageous decentralized control of various 

coupled, incompletely and inaccurately modeled 

subsystems. 
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