919 research outputs found

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Doctor of Philosophy

    Get PDF
    dissertationFocused ultrasound (FUS) is a promising noninvasive and radiation-free cancer therapy that selectively delivers high-intensity acoustic energy to a small target volume. This dissertation presents original research that improves the speed, safety, and efficacy of FUS therapies under magnetic resonance imaging (MRI) guidance. First, a new adaptive model-predictive controller is presented that leverages the ability of MRI to measure temperature inside the patient at near real-time speeds. The controller uses MR temperature feedback to dynamically derive and update a patient-specific thermal model, and optimizes the treatment based on the model's predictions. Treatment safety is a key element of the controller's design, and it can actively protect healthy tissue from unwanted damage. In vivo and simulation studies indicate the controller can safeguard healthy tissue and accelerate treatments by as much as 50%. Significant tradeoffs exist between treatment speed, and safety, which makes a real-time controller absolutely necessary for carrying out efficient, effective, and safe treatments while also highlighting the importance of continued research into optimal treatment planning. Next, two new methods for performing 3D MR acoustic radiation force imaging (MR-ARFI) are presented. Both techniques measure the tissue displacement induced by short bursts of focused ultrasound, and provide a safe way to visualize the ultrasound beam's location. In some scenarios, ARFI is a necessity for proper targeting since traditional MR thermometry cannot measure temperature in fat. The first technique for performing 3D ARFI introduces a novel unbalanced bipolar motion encoding gradient. The results demonstrate that this technique is safe, and that 3D displacement maps can be attained time-efficiently even in organs that contain fat, such as breast. The second technique measures 3D ARFI simultaneously with temperature monitoring. This method uses a multi-contrast gradient recalled echo sequence which makes multiple readings of the data without increasing scan time. This improves the signal to noise ratio and makes it possible to separate the effects of tissue heating vs displacement. Both of the 3D MR-ARFI techniques complement the presented controllersince proper positioning of the focal spot is critical to achieving fast and safe treatments

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them
    • 

    corecore