7 research outputs found

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments

    Coordinating construction by a distributed multi-robot system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-156).This thesis presents a decentralized algorithm for the coordinated assembly of 3D objects that consist of multiple types of parts, using a networked team of robots. We describe the algorithm and analyze its stability and adaptation properties. We partition construction in two tasks, tool delivery and assembly. Each task is performed by a networked team of specialized robots. We analyze the performance of the algorithms using the balls into bins problem, and show their adaptation to failure of robots, dynamic constraints, multiple types of elements and reconfiguration. We instantiate the algorithm to building truss-like objects using rods and connectors. The algorithm has been implemented in simulation and results for constructing 2D and 3D parts are shown. Finally, we describe hardware implementation of the algorithms where mobile manipulators assemble smarts parts with IR beacons.by Seung-kook Yun.Ph.D

    Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotics and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. Symposium proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area
    corecore