37 research outputs found

    Solar cells inside woven textiles

    Get PDF
    Energy harvesting textiles are a relatively new field of research. In the future our clothes, accessories, and other fabrics could generate electricity from the sun and charge our devices on the go. While photovoltaic yarns, and solar cells printed directly on textiles are technologies of the future, there are already suitable solutions on the market for small scale energy harvesting. Some existing products such as energy harvesting backpacks and jackets already make use of these alternatives but mostly the level of integration of solar cells to the textile is low. The technology remains as a separate part instead of merging into the design and construction of textile. The goal of this practice-based research is to create woven textiles that allow integrating photovoltaics to the functional and aesthetic design of the fabric. The background research aims to introduce the relevant terms and concepts about solar cells for textile design purposes, and paint an overall picture of the future of the photovoltaic textiles field. During the practice-based research part, this knowledge is used for woven material prototyping and testing. The thesis work establishes a design strategy which combines creative material experimentation with backing from applied scientific exploration. Traditional textile design practice is used to develop handwoven material drafts which allow inserting solar cells into the structure of multilayered cloth. To find out how the properties of textiles affect the efficiency of the solar cell, the textile prototypes were tested during several rounds. Solar Cells Inside Woven Textiles is a continuation of an interdisciplinary research project with the New Energy Technologies group from Aalto Engineering Physics Department. The thesis builds on the knowledge generated during the previous process. Because of the collaborative nature of the project, the role of a textile designer in an interdisciplinary research project is addressed. The reflections are based on personal experiences during the process and conversations with design and technology professionals about the subject. This thesis work is positioned on the ground in-between design and science. The final outcome is a collection of woven textile prototypes showcasing the learning and possibilities of designing for photovoltaics integration. Visualization of the collected data allows comparison of different materials, colors and weave structures and provides feedback of the design choices. Using textile design as a tool for scientific exploration may offer tangible proposals for future concepts and research questions. This work serves as one example of working as a designer in a hybrid environment

    Fibre-shaped electronic devices: preparation, characterization and modelling

    Full text link
    The study focuses on the development of a parallel coil electrode structure which is favourable for fibre-shaped electronic devices. The experimental results and theoretical modelling demonstrated that this novel electrode structure works well in electrochromic devices and energy harvesting devices.<br /

    Smart Clothing Framework for Health Monitoring Applications

    Get PDF
    Wearable technologies are making a significant impact on people’s way of living thanks to the advancements in mobile communication, internet of things (IoT), big data and artificial intelligence. Conventional wearable technologies present many challenges for the continuous monitoring of human health conditions due to their lack of flexibility and bulkiness in size. Recent development in e-textiles and the smart integration of miniature electronic devices into textiles have led to the emergence of smart clothing systems for remote health monitoring. A novel comprehensive framework of smart clothing systems for health monitoring is proposed in this paper. This framework provides design specifications, suitable sensors and textile materials for smart clothing (e.g., leggings) development. In addition, the proposed framework identifies techniques for empowering the seamless integration of sensors into textiles and suggests a development strategy for health diagnosis and prognosis through data collection, data processing and decision making. The conceptual technical specification of smart clothing is also formulated and presented. The detailed development of this framework is presented in this paper with selected examples. The key challenges in popularizing smart clothing and opportunities of future development in diverse application areas such as healthcare, sports and athletics and fashion are discussed

    Technology Takeover and Transformation: Humans vs. Technology

    Get PDF
    When looking at the history of the fashion industry up to the present day, technology can easily distinguish the progress of fashion throughout the ages. The direction of this research is to gain insight and a deeper realization of how technology is taking over and transforming those in and revolving around fashion by slowly taking over and replacing human involvement or presence. Statistics and research show due to the adverse effects of COVID-19, technological development within fashion has seen a significant increase. COVID-19 was either the final push towards making technological ideas a reality or was the birth of new technological concepts in an attempt to reshape the fashion industry. Both those within the fashion industry and the fashion consumer must gain understanding of these technologies, lest they be left behind. This research specifically focuses on those working within the fashion industry and does not have as heavy of an emphasis on those outside of the industry. To gain an extensive knowledge on how we have gotten to where we are, this research will address fashion technologies from all angles, past, present, and future to see how it has come to have the potential to replace humans within the fashion industry

    Fiber-shaped electronic devices

    Get PDF
    Textile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end-use management. Herein, the performance requirements of fiber-shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state-of-art of current fiber-shaped electronics emphasizing light-emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber-shaped electronic components are presented as directions for future research on wearable electronics

    Infrastructure for washable computing

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.Includes bibliographical references (leaves 73-74).Wash-and-wear multilayer electronic circuitry can be constructed on fabric substrates, using conductive textiles and suitably packaged components. Fabrics are perhaps the first composite materials engineered by humanity; their evolution led to the development of the Jacquard loom, which itself led to the development of the modern computer. The development of fabric circuitry is a compelling closure of the cycle that points to a new class of textiles which interact with their users and their environments, while retaining the properties that made them the first ubiquitous "smart material". Fabrics are in several respects superior to existing flexible substrates in terms of their durability, conformability, and breathability. The present work adopts a modular approach to circuit fabrication, from which follow circuit design techniques and component packages optimized for use in fabric-based circuitry, flexible all-fabric interconnects, and multilayer circuits. While maintaining close compatibility with existing components, tools, and techniques, the present work demonstrates all steps of a process to create multilayer printed circuits on fabric substrates using conductive textiles.by E. Rehmi Post.S.M

    Advanced Materials and Technologies in Nanogenerators

    Get PDF
    This reprint discusses the various applications, new materials, and evolution in the field of nanogenerators. This lays the foundation for the popularization of their broad applications in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics, and artificial intelligence
    corecore