16,149 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    A cross-layer approach to enhance QoS for multimedia applications over satellite

    Get PDF
    The need for on-demand QoS support for communications over satellite is of primary importance for distributed multimedia applications. This is particularly true for the return link which is often a bottleneck due to the large set of end-users accessing a very limited uplink resource. Facing this need, Demand Assignment Multiple Access (DAMA) is a classical technique that allows satellite operators to offer various types of services, while managing the resources of the satellite system efficiently. Tackling the quality degradation and delay accumulation issues that can result from the use of these techniques, this paper proposes an instantiation of the Application Layer Framing (ALF) approach, using a cross-layer interpreter(xQoS-Interpreter). The information provided by this interpreter is used to manage the resource provided to a terminal by the satellite system in order to improve the quality of multimedia presentations from the end users point of view. Several experiments are carried out for different loads on the return link. Their impact on QoS is measured through different application as well as network level metrics

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Overlay networks for smart grids

    Get PDF

    A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks

    Get PDF
    In the railway industry, there are nowadays different actors who would like to send or receive data from the wayside to an onboard device or vice versa. These actors are e.g., the Train Operation Company, the Train Constructing Company, a Content Provider, etc. This requires a communication module on each train and at the wayside. These modules interact with each other over heterogeneous wireless links. This system is referred to as the Train-to-Wayside Communication System (TWCS). While there are already a lot of deployments using a TWCS, the implementation of quality of service, performance enhancing proxies (PEP) and the network mobility functions have not yet been fully integrated in TWCS systems. Therefore, we propose a novel and modular IPv6-enabled TWCS architecture in this article. It jointly tackles these functions and considers their mutual dependencies and relationships. DiffServ is used to differentiate between service classes and priorities. Virtual local area networks are used to differentiate between different service level agreements. In the PEP, we propose to use a distributed TCP accelerator to optimize bandwidth usage. Concerning network mobility, we propose to use the SCTP protocol (with Dynamic Address Reconfiguration and PR-SCTP extensions) to create a tunnel per wireless link, in order to support the reliable transmission of data between the accelerators. We have analyzed different design choices, pinpointed the main implementation challenges and identified candidate solutions for the different modules in the TWCS system. As such, we present an elaborated framework that can be used for prototyping a fully featured TWCS
    corecore