19 research outputs found

    New Results about the Boomerang Uniformity of Permutation Polynomials

    Get PDF
    In EUROCRYPT 2018, Cid et al. \cite{BCT2018} introduced a new concept on the cryptographic property of S-boxes: Boomerang Connectivity Table (BCT for short) for evaluating the subtleties of boomerang-style attacks. Very recently, BCT and the boomerang uniformity, the maximum value in BCT, were further studied by Boura and Canteaut \cite{BC2018}. Aiming at providing new insights, we show some new results about BCT and the boomerang uniformity of permutations in terms of theory and experiment in this paper. Firstly, we present an equivalent technique to compute BCT and the boomerang uniformity, which seems to be much simpler than the original definition from \cite{BCT2018}. Secondly, thanks to Carlet's idea \cite{Carlet2018}, we give a characterization of functions ff from F2n\mathbb{F}_{2}^n to itself with boomerang uniformity δf\delta_{f} by means of the Walsh transform. Thirdly, by our method, we consider boomerang uniformities of some specific permutations, mainly the ones with low differential uniformity. Finally, we obtain another class of 44-uniform BCT permutation polynomials over F2n\mathbb{F}_{2^n}, which is the first binomial.Comment: 25 page

    On the Boomerang Uniformity of some Permutation Polynomials

    Get PDF
    The boomerang attack, introduced by Wagner in 1999, is a cryptanalysis technique against block ciphers based on differential cryptanalysis. In particular it takes into consideration two differentials, one for the upper part of the cipher and one for the lower part, and it exploits the dependency of these two differentials. At Eurocrypt’18, Cid et al. introduced a new tool, called the Boomerang Connectivity Table (BCT), that permits to simplify this analysis. Next, Boura and Canteaut introduced an important parameter for cryptographic S-boxes called boomerang uniformity, that is the maximum value in the BCT. Very recently, the boomerang uniformity of some classes of permutations (in particular quadratic functions) have been studied by Li, Qu, Sun and Li, and by Mesnager, Tang and Xiong. In this paper we further study the boomerang uniformity of some non-quadratic differentially 4-uniform functions. In particular, we consider the case of the Bracken-Leander cubic function and three classes of 4-uniform functions constructed by Li, Wang and Yu, obtained from modifying the inverse functions.publishedVersio

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Low cc-differential and cc-boomerang uniformity of the swapped inverse function

    Full text link
    Modifying the binary inverse function in a variety of ways, like swapping two output points has been known to produce a 44-differential uniform permutation function. Recently, in \cite{Li19} it was shown that this swapped version of the inverse function has boomerang uniformity exactly 1010, if n≡0(mod6)n\equiv 0\pmod 6, 88, if n≡3(mod6)n\equiv 3\pmod 6, and 6, if n≢0(mod3)n\not\equiv 0\pmod 3. Based upon the cc-differential notion we defined in \cite{EFRST20} and cc-boomerang uniformity from \cite{S20}, in this paper we characterize the cc-differential and cc-boomerang uniformity for the (0,1)(0,1)-swapped inverse function in characteristic~22: we show that for all~c≠1c\neq 1, the cc-differential uniformity is upper bounded by~44 and the cc-boomerang uniformity by~55 with both bounds being attained for~n≥4n\geq 4.Comment: 25 page

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin

    On Boolean functions, symmetric cryptography and algebraic coding theory

    Get PDF
    In the first part of this thesis we report results about some “linear” trapdoors that can be embedded in a block cipher. In particular we are interested in any block cipher which has invertible S-boxes and that acts as a permutation on the message space, once the key is chosen. The message space is a vector space and we can endow it with alternative operations (hidden sums) for which the structure of vector space is preserved. Each of this operation is related to a different copy of the affine group. So, our block cipher could be affine with respect to one of these hidden sums. We show conditions on the S-box able to prevent a type of trapdoors based on hidden sums, in particular we introduce the notion of Anti-Crooked function. Moreover we shows some properties of the translation groups related to these hidden sums, characterizing those that are generated by affine permutations. In that case we prove that hidden sum trapdoors are practical and we can perform a global reconstruction attack. We also analyze the role of the mixing layer obtaining results suggesting the possibility to have undetectable hidden sum trapdoors using MDS mixing layers. In the second part we take into account the index coding with side information (ICSI) problem. Firstly we investigate the optimal length of a linear index code, that is equal to the min-rank of the hypergraph related to the instance of the ICSI problem. In particular we extend the the so-called Sandwich Property from graphs to hypergraphs and also we give an upper bound on the min-rank of an hypergraph taking advantage of incidence structures such as 2-designs and projective planes. Then we consider the more general case when the side information are coded, the index coding with coded side information (ICCSI) problem. We extend some results on the error correction index codes to the ICCSI problem case and a syndrome decoding algorithm is also given

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore