16,751 research outputs found

    Trust and Privacy Solutions Based on Holistic Service Requirements

    Get PDF
    The products and services designed for Smart Cities provide the necessary tools to improve the management of modern cities in a more efficient way. These tools need to gather citizens’ information about their activity, preferences, habits, etc. opening up the possibility of tracking them. Thus, privacy and security policies must be developed in order to satisfy and manage the legislative heterogeneity surrounding the services provided and comply with the laws of the country where they are provided. This paper presents one of the possible solutions to manage this heterogeneity, bearing in mind these types of networks, such as Wireless Sensor Networks, have important resource limitations. A knowledge and ontology management system is proposed to facilitate the collaboration between the business, legal and technological areas. This will ease the implementation of adequate specific security and privacy policies for a given service. All these security and privacy policies are based on the information provided by the deployed platforms and by expert system processing

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    empathi: An ontology for Emergency Managing and Planning about Hazard Crisis

    Full text link
    In the domain of emergency management during hazard crises, having sufficient situational awareness information is critical. It requires capturing and integrating information from sources such as satellite images, local sensors and social media content generated by local people. A bold obstacle to capturing, representing and integrating such heterogeneous and diverse information is lack of a proper ontology which properly conceptualizes this domain, aggregates and unifies datasets. Thus, in this paper, we introduce empathi ontology which conceptualizes the core concepts concerning with the domain of emergency managing and planning of hazard crises. Although empathi has a coarse-grained view, it considers the necessary concepts and relations being essential in this domain. This ontology is available at https://w3id.org/empathi/

    Ontology modelling methodology for temporal and interdependent applications

    Get PDF
    The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    Context-aware Knowledge-based Systems: A Literature Review

    Get PDF
    Context awareness systems, a subcategory of intelligent systems, are concerned with suggesting relevant products/services to users' situations as smart services. One key element for improving smart services’ quality is to organize and manipulate contextual data in an appropriate manner to facilitate knowledge generation from these data. In this light, a knowledge-based approach, can be used as a key component in context-aware systems. Context awareness and knowledge-based systems, in fact, have been gaining prominence in their respective domains for decades. However, few studies have focused on how to reconcile the two fields to maximize the benefits of each field. For this reason, the objective of this paper is to present a literature review of how context-aware systems, with a focus on the knowledge-based approach, have recently been conceptualized to promote further research in this area. In the end, the implications and current challenges of the study will be discussed

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach
    corecore