11 research outputs found

    Late customisation: issues of mass customisation in the food industry

    Get PDF
    The strategy of mass customisation is being increasingly adopted as companies seek to exploit market trends for greater product variety and individualisation. The implications of changing to mass customisation practice are considerable, where traditional contradictions of high volume and extensive product variety require being reconciled. The literature discusses the need for an integrated approach to mass customisation across all business functions if micro-segmentation of markets is to be profitably pursued, and the current paper investigates extending the paradigm of mass customisation into the, until now, poorly represented sector of food processing. Product design and manufacturing system design for mass customisation are reviewed and contrasted with good practice in more traditional mass customisation industries

    The flexibility of industrial additive manufacturing systems

    Get PDF
    Purpose Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice. Design/methodology/approach This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand. Findings The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems. Originality/value Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems

    Constraint-based approach to investigate the process flexibility of food processing equipment

    No full text
    Over the last decade the UK food processing industry has become increasing competitive. This leads the sector to maintain high numbers of product variations. Although some of these products are stable over long periods, others are short lived or seasonal. The ability to handle both the complexity of process and large variations in product format creates extreme difficulties in ensuring that the existing manufacturing, handling and packaging equipment has the process flexibility to cope. This paper presents an approach for investigating the performance envelopes of machines utilizing a constraint modelling environment. The approach aims to provide the engineer with enhanced understanding of the range of functionality of a given machine and provides the possibility of redesign to process variant product. © 2006 Elsevier Ltd. All rights reserved

    A constraint-based approach for assessing the capabilities of existing designs to handle product variation

    Get PDF
    All production machinery is designed with an inherent capability to handle slight variations in product. This is initially achieved by simply providing adjustments to allow, for example, changes that occur in pack sizes to be accommodated, through user settings or complete sets of change parts. By the appropriate use of these abilities most variations in product can be handled. However when extreme conditions of setups, major changes in product size and configuration, are considered there is no guarantee that the existing machines are able to cope. The problem is even more difficult to deal with when completely new product families are proposed to be made on an existing product line. Such changes in product range are becoming more common as producers respond to demands for ever increasing customization and product differentiation. An issue exists due to the lack of knowledge on the capabilities of the machines being employed. This often forces the producer to undertake a series of practical product trials. These however can only be undertaken once the product form has been decided and produced in sufficient numbers. There is then little opportunity to make changes that could greatly improve the potential output of the line and reduce waste. There is thus a need for a supportive modelling approach that allows the effect of variation in products to be analyzed together with an understanding of the manufacturing machine capability. Only through their analysis and interaction can the capabilities be fully understood and refined to make production possible. This thesis presents a constraint-based approach that offers a solution to the problems above. While employing this approach it has been shown that, a generic process can be formed to identify the limiting factors (constraints) of variant products to be processed. These identified constraints can be mapped to form the potential limits of performance for the machine. The limits of performance of a system (performance envelopes) can be employed to assess the design capability to cope with product variation. The approach is successfully demonstrated on three industrial case studies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The development of a design for changeover (DFC) methodology

    Get PDF

    A constraint-based approach for assessing the capabilities of existing designs to handle product variation

    Get PDF
    All production machinery is designed with an inherent capability to handle slight variations in product. This is initially achieved by simply providing adjustments to allow, for example, changes that occur in pack sizes to be accommodated, through user settings or complete sets of change parts. By the appropriate use of these abilities most variations in product can be handled. However when extreme conditions of setups, major changes in product size and configuration, are considered there is no guarantee that the existing machines are able to cope. The problem is even more difficult to deal with when completely new product families are proposed to be made on an existing product line. Such changes in product range are becoming more common as producers respond to demands for ever increasing customization and product differentiation. An issue exists due to the lack of knowledge on the capabilities of the machines being employed. This often forces the producer to undertake a series of practical product trials. These however can only be undertaken once the product form has been decided and produced in sufficient numbers. There is then little opportunity to make changes that could greatly improve the potential output of the line and reduce waste. There is thus a need for a supportive modelling approach that allows the effect of variation in products to be analyzed together with an understanding of the manufacturing machine capability. Only through their analysis and interaction can the capabilities be fully understood and refined to make production possible. This thesis presents a constraint-based approach that offers a solution to the problems above. While employing this approach it has been shown that, a generic process can be formed to identify the limiting factors (constraints) of variant products to be processed. These identified constraints can be mapped to form the potential limits of performance for the machine. The limits of performance of a system (performance envelopes) can be employed to assess the design capability to cope with product variation. The approach is successfully demonstrated on three industrial case studies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards an integrated framework for the configuration of modular micro assembly systems

    Get PDF
    The future of manufacturing in high-cost economies is to maximise responsiveness to change whilst simultaneously minimising the financial implications. The concept of Reconfigurable Assembly Systems (RAS) has been proposed as a potential route to achieving this ideal. RASs offer the potential to rapidly change the configuration of a system in response to predicted or unforeseen events through standardised mechanical, electrical and software interfaces within a modular environment. This greatly reduces the design and integration effort for a single configuration, which, in combination with the concept of equipment leasing, enables the potential for reduction in system cost, reconfiguration cost, lead time and down time. This work was motivated by the slow implementation of the RAS concept in industry due, in part, to the limited research into the planning of multiple system reconfigurations. The challenge is to enable consideration of, and planning for, the production of numerous different products within a single modular, reconfigurable assembly environment. The developed methodology is to be structured and traceable, but also adaptable to specific and varying circumstances. This thesis presents an approach that aims towards providing a framework for the configuration of modular assembly systems. The approach consists of a capability model, a reconfiguration methodology and auxiliary functions. As a result, the approach facilitates the complete process of requirement elicitation, capability identification, definition and comparison, configuration analysis and optimisation and the generation of a system configuration lifecycle. The developed framework is demonstrated through a number of test case applications, which were used during the research, as well as the development of some specific technological applications needed to support the approach and application
    corecore