51,967 research outputs found

    Probabilistic adaptive model predictive power pinch analysis (PoPA) energy management approach to uncertainty

    Get PDF
    This paper proposes a probabilistic power pinch analysis (PoPA) approach based on Monteā€“Carlo simulation (MCS) for energy management of hybrid energy systems uncertainty. The systems power grand composite curve is formulated with the chance constraint method to consider load stochasticity. In a predictive control horizon, the power grand composite curve is shaped based on the pinch analysis approach. The robust energy management strategy effected in a control horizon is inferred from the likelihood of a bounded predicted power grand composite curve, violating the pinch. Furthermore, the response of the system using the energy management strategies (EMS) of the proposed method is evaluated against the day-ahead (DA) and adaptive power pinch strategy

    Low-Latency Millimeter-Wave Communications: Traffic Dispersion or Network Densification?

    Full text link
    This paper investigates two strategies to reduce the communication delay in future wireless networks: traffic dispersion and network densification. A hybrid scheme that combines these two strategies is also considered. The probabilistic delay and effective capacity are used to evaluate performance. For probabilistic delay, the violation probability of delay, i.e., the probability that the delay exceeds a given tolerance level, is characterized in terms of upper bounds, which are derived by applying stochastic network calculus theory. In addition, to characterize the maximum affordable arrival traffic for mmWave systems, the effective capacity, i.e., the service capability with a given quality-of-service (QoS) requirement, is studied. The derived bounds on the probabilistic delay and effective capacity are validated through simulations. These numerical results show that, for a given average system gain, traffic dispersion, network densification, and the hybrid scheme exhibit different potentials to reduce the end-to-end communication delay. For instance, traffic dispersion outperforms network densification, given high average system gain and arrival rate, while it could be the worst option, otherwise. Furthermore, it is revealed that, increasing the number of independent paths and/or relay density is always beneficial, while the performance gain is related to the arrival rate and average system gain, jointly. Therefore, a proper transmission scheme should be selected to optimize the delay performance, according to the given conditions on arrival traffic and system service capability

    Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties

    Get PDF
    Optimal design of a standalone wind-PV-diesel hybrid system is a multi-objective optimisation problem with conflicting objectives of cost and reliability. Uncertainties in renewable resources, demand load and power modelling make deterministic methods of multi-objective optimisation fall short in optimal design of standalone hybrid renewable energy systems (HRES). Firstly, deterministic methods of analysis, even in the absence of uncertainties in cost modelling, do not predict the levelised cost of energy accurately. Secondly, since these methods ignore the random variations in parameters, they cannot be used to quantify the second objective, reliability of the system in supplying power. It is shown that for a given site and uncertainties profile, there exist an optimum margin of safety, applicable to the peak load, which can be used to size the diesel generator towards designing a cost-effective and reliable system. However, this optimum value is problem dependent and cannot be obtained deterministically. For two design scenarios, namely, finding the most reliable system subject to a constraint on the cost and finding the most cost-effective system subject to constraints on reliability measures, two algorithms are proposed to find the optimum margin of safety. The robustness of the proposed design methodology is shown through carrying out two design case studies

    Safety Verification of Fault Tolerant Goal-based Control Programs with Estimation Uncertainty

    Get PDF
    Fault tolerance and safety verification of control systems that have state variable estimation uncertainty are essential for the success of autonomous robotic systems. A software control architecture called mission data system, developed at the Jet Propulsion Laboratory, uses goal networks as the control program for autonomous systems. Certain types of goal networks can be converted into linear hybrid systems and verified for safety using existing symbolic model checking software. A process for calculating the probability of failure of certain classes of verifiable goal networks due to state estimation uncertainty is presented. A verifiable example task is presented and the failure probability of the control program based on estimation uncertainty is found
    • ā€¦
    corecore