32,142 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    The role of artificial intelligence techniques in scheduling systems

    Get PDF
    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture

    A Multi-Objective Planning Framework for Optimal Integration of Distributed Generations

    Get PDF
    This paper presents an evolutionary algorithm for analyzing the best mix of distributed generations (DG) in a distribution network. The multi-objective optimization aims at minimizing the total cost of real power generation, line losses and CO2 emissions, and maximizing the benefits from the DG over a 20 years planning horizon. The method assesses the fault current constraint imposed on the distribution network by the existing and new DG in order not to violate the short circuit capacity of existing switchgear. The analysis utilizes one of the highly regarded evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and MATPOWER for solving the optimal power flow problems
    corecore